A Proofs

Lemma 1. Let ¢ be a conjunction of linear inequalities over the variables x; for i from 0 ton—1. We can
construct an H-polytope H = (A,b) with Alg. 2 s.t. (Ax <b) & (z | ¢).

Proof. Let f(x) = gil a;x; We first show that every lin. ineq. in the conjunction can be reformulated to

the form f(x) <b. It is trivial to show the ineq. can be manipulated to have variables on lhs and a constant
on rhs, that > can be manipulated to an equivalent form with <, and > can be manipulated to become <.
The < comparison can be changed to a < comparison by decrementing the rhs constant from b to & where
b’ is the largest representable number less than b. We prove ineq. with < can be reformulated to use < by
contradiction. Assume either f(z) < b and f(z) > ¥ or f(x) > b and f(x) < b'. Either b’ < f(x) < b, a
contradiction, since f(z) cannot be both larger than the largest representable number less than b and also
less than b.1 Or b < f(x) < V', a contradiction, since b' < b by definition.

Given a conjunction of lin. ineq. in the form f(z) < b, Alg. 2 constructs A and b with a row in A and value
in b corresponding to each conjunct. There are two cases: (Az <b) = (z = ¢) and (z E ¢) — (Az < b).

We prove case 1 by contradiction. Assume (Azx < b) and (z £ ¢). By construction of H in Alg. 2, each
conjunct of ¢ is exactly 1 constraint in H. If Az < b, then all constraints in H must be satisifed, and thus
all conjuncts in ¢ must be satisfied and x = ¢, a contradiction.

We prove case 2 by contradiction. Assume (z = ¢) and (Az £ b). By construction of H in Alg. 2, each
conjunct of ¢ is exactly 1 constraint in H. If z = ¢, then all conjuncts in ¢ must be satisfied, and thus all
constraints in H must be satisifed and Az < b, a contradiction. O

Lemma 2. Let H = (A,b) be an H-polytope s.t. Ax < b. Alg. 4 constructs a DNN, N, that classifies
whether inputs satisfy Ax <b. Formally, v € H < Ny(x)o < Ny(2)1.

Proof. There are 2 cases:
1. 2 € H— Ny(z)o < Ny(z),
2. Ns(z)o < Ns(x)y —x € H

We prove case 1 by contradiction. Assume x € H and Ng(z)g > Ns(x);. From Alg. 4, each neuron in
the hidden layer of A, corresponds to one constraint in H. The weights of each neuron are the values in the
corresponding row of A, and the bias is the negation of the corresponding value of b. If input = satisfies the
constraint, then the neuron value will be at most 0, otherwise it will be greater than 0. After the ReLU,
each neuron will be equal to 0 if the corresponding constraint is satisfied by = and greater than 0 otherwise.
The first output neuron sums all neurons in the hidden layer, while the second has a constant value of 0. If
x € H, then all neurons in the hidden layer after activation must have a value of 0 since all constraints are
satisfied. However, if all neurons have value 0, then their sum must also be 0, and therefore Ns(z)g = N;(z)1,
a contradiction.

We prove case 2 by contradiction. Assume N;(z)g < Ns(z); and x ¢ H. If x & H, at least one neuron
in the hidden layer must have a value greater than 0 after the ReLU since at least one constraint is not
satisfied. Because some neuron has a value greater than 0, their sum must also be greater than 0, and
therefore Ns(x)o > Ns(z)1, a contradiction. O

Lemma 3. Let H = (A,b) be an H-polytope s.t. Az <b. Alg. 3 constructs a DNN, N, that maps values
from the n-dim. unit hypercube to the axis aligned hyperrectangle that minimally bounds H. The range of
this mapping does not exclude any x s.t. Az <b. Formally, Vo € H.3z € [0,1]".x = Np(z).

Proof. The proof is by contradiction. Let the axis aligned hyperrectangle that minimally bounds H be
specified by lower bounds Ib and upper bounds ub s.t. Vo € HYix; € [1b;, ub;]. Alg. 3 constructs a DNN,
N, that computes N,(z) = Wz + b, where W = diag(ub — Ib) and b = [b. This function is invertible:
Ny M) =Wz —b) =Wtz — Wb, Assume 3z € H.3i.(z = N ' (2)) A((2: < 0) V (2 > 1)). From the
def. of N7, we get N1 (Ib); < z; < Nyt (ub); and W' (Ib;) = W' (Ib) = 0 < 2 < W, (uby) — W, (Ib;) =

(ﬁ(ubz) - ﬁ(!bi)) = 1. Therefore (Ib; < z; < wub;) = (0 < z; < 1), a contradiction. O

1We discuss the assumption that such a number exists in Appendix A.1.




Theorem 1. Let 1) = (N, @) be a correctness problem with its property defined as a formula of disjunctions
and conjunctions of linear inequalities over the inputs and outputs of N'. Property Reduction (Alg. 1) maps
¥ to an equivalid set of correctness problems reduce(v) = {{(N1,¢1), ..., (N, dr)}.

N E Y < VN, ¢i) € reduce(v).N; = ¢;
Proof. A model that satisfies any disjunct of DN F(—¢) falsifies ¢. If ¢ is falsifiable, then at least one disjunct
of DNF(—¢) is satisfiable.

Alg. 1 constructs a correctness problem for each disjunct. For each disjunct, Alg. 1 constructs an H-
polytope, H, which is used to construct a prefix network, N, and suffix network, N. The algorithm then
constructs networks N’ (z) = concat(N (z),x) and N (z) = Ng(N'(N,(z))). Alg. 1 pairs each constructed
network with the property ¢ = Vz.z € [0,1]™ — N (2)o > N (2);. A violation occurs only when N (z)y <
N"(z)1. By Lemmas 1, 2, and 3, we get that N (z)g < N”(z); if and only if N'(z) € H. If N'(z) € H
then N’(x) satisfies the disjunct and is therefore a violation of the original property. O

A.1 On Existance of a Bounded Largest Representable Number

Our proof that property reduction generates a set of robustness problems equivalid to an arbitrary problem
relies on the assumption that strict inequalities can be converted to non-strict inequalities. To do so we
rely on the existance of a largest representable number that is less than some given value. While this is
not necessarily true for all sets of numbers (e.g., R), it is true for for most numeric representations used in
computation (e.g., IEEE 754 floating point arithmetic).

B Benchmarks

B.1 ACAS Xu Property Benchmark

The ACAS Xu problem benchmark consists of 10 DNN properties, each applied to a subset of 45 small
networks. This benchmark is described in detail in Appendix VI of [1]. Each of the 45 fully-connected
networks in this benchmark have 5 input values and 5 output values with 6 hidden layers of 50 neurons each
and relu activations. For completeness, we provide formal definitions of the 10 ACAS Xu properties.

Property ¢,

V2.((55947.691 < zo < 60760) A (=7 < 21 < T) A (—7 < 22 < 7)
A(1145 < 23 < 1200) A (0 < 24 < 60)) = (N ()0 < 1500)

Property ¢,

Va.((55947.691 < 29 < 60760) A (—7 < x1 < 7)A (-7 <22 <)
A(1145 < 3 < 1200) A (0 < 24 < 60)) — (argmaz(N(z)) # 0)

Property ¢3

Va.((1500 < 20 < 1800) A (—0.06 < 21 < 0.06) A (3.10 < x5 < )
A(980 < 5 < 1200) A (960 < x4 < 1200)) — (argmin(N (z)) # 0)

Property ¢4
Va.((1500 < mo < 1800) A (—0.06 < z1 < 0.06) A (0 < 25 < 0)
A(1000 < x5 < 1200) A (700 < x4 < 800)) — (argmin(N (z)) # 0)



Property ¢5

Va.((250 < 20 < 400) A (0.2 < 1 < 0.4) A (=7 < 22 < —7 + 0.005)
A(100 < 23 < 400) A (0 < 24 < 400)) — (argmin(N(z)) = 4)

Property ¢g

Va.(((12000 < 2 < 62000) A
A(100 < 23 < 1200) A (0
V(12000 < o < 62000) A
A(100 < 23 < 1200) A (0

0.7<z <m)A(—7 < z2 < —7 +0.005)

< x4 <1200))

(=7 <21 < —=0.7) A (=7 < 22 < —7 + 0.005)
< @4 <1200)) — (argmin(N (z)) = 0)

Property ¢~

Vz.((0 < 20 < 60760) A (—m < z1 <) A (=7 < z2 < 7)
A(100 < 23 < 1200) A (0 < 24 < 1200)) — (argmin(N (z)) # 4)

Property ¢g

Vz.((0 < 2o < 60760) A (—7 < 21 < —0.75m) A (=0.1 < 25 <0.1)
A(600 < z3 < 1200) A (600 < x4 < 1200)) — ((argmin(N(x)) = 0) V (argmin(N (z)) = 1))

Property ¢g

Va.((2000 < 2o < T000) A (—0.4 < 21 < —0.14) A (=7 < x2 < —7 + 0.01)
A(100 < z3 < 150) A (0 < x4 < 150)) — (argmin(N (z)) = 3)

Property ¢19

V£.((36000 < o < 60760) A (0.7 < 21 < ) A (=7 < 22 < —7 + 0.01)
A(900 < x5 < 1200) A (600 < x4 < 1200)) — (argmin(N(z)) = 0)

B.2 Neurify-DAVE Property Benchmark

The Neurify-DAVE benchmark, introduced in [4], is a set of local interval-reachability properties applied to a
network that predicts steering angles for a self-driving car. The original benchmark applied these properties
to a smaller version of the original DAVE DNN. The networks take 100x100 color images as input and produce
a single value, y, which is converted to a value between —m and 7 with the function f(z) = 2 x arctan(z).
While the smaller network has an input domain of [0, 1]3°°%° the original network uses an input domain of
[—103.939,103.939]10000 » [-116.779, 116.779]10090 x [-123.68, 123.68]1°°%0 due to mean centering of inputs
originally in the interval [0, 255]30000,

The small version of DAVE has 2 convolutional layers with relu activations, and 24 and 36 5x5 kernels,
respectively. Both of these layers use strides of 5 and have no padding. These are followed by 2 fully-
connected layers, the first of which has a size of 100 and relu activations, and the second of which has a
single neuron and no activation. This network has 10277 neurons and 81261 parameters. In addition to this



small network, we include the original DAVE network as part of this benchmark to help demonstrate the
scalability of analyses. The original DAVE networks has five convolutional layers with 24, 26, 48, 64, and 64
convolutional kernels, respectively. The first 3 layers use 5x5 kernels, with strides of 2, while the next two
use 3x3 kernels with strides of 1. All of the convolutional layers use relu activations and have no padding.
The convolutional layers are followed by 5 fully-connected layers with sizes 1164, 100, 50, 10, 1, respectively.
The first four of these have relu activations. The original DAVE network has 82669 neurons and 2116983
parameters.

The properties for the Neurify-DAVE benchmark all have the following form: for all inputs within distance
¢ from input z, the output value must be within 15 degrees of A/(x). Formally, this can be stated as:

Vo' ((#' €[z —e,z+e]) A2/ € X)) = (N(z) —15° < N(2) < N(x) + 15°)

where X is the appropriate input domain, described above. This benchmark uses € € {1,2,5,8,10} for the

original DAVE network, and ¢ € {%, %, %, %, %} for the small network to adjust for input domain.

B.3 GHPR Problem Benchmark

The global halfspace-polytope reachability (GHPR) problem benchmark, is made up of 2 sets of properties,
one of which is defined over MNIST networks, and one of which is defined over the DroNet network. Each
property sets consists of 10 properties. Within the benchmark, the 10 MNIST properties are each applied
to 2 networks, drawn from benchmark used for the ERAN verifier [3]. We chose to use a small convolutional
network and a medium convolutional network, both with relu activations. The 10 DroNet properties are
applied to the DroNet network [2], which has a ResNet based architecture. The properties are described in
more detail below.

B.3.1 MNIST

The networks used as part of the GHPR-MNIST benchmark are the convSmallRELU_ Point.pyt and
convMedGRELU__Point.pyt models from the ERAN-MNIST benchmark?. The small network has 2 con-
volutional layers with 16 and 32 4x4 kernels respectively, and strides of 2 and no padding. The convolutional
layers are followed by 2 fully-connected layers with dimensions 100 and 10, respectively. The network has
4398 neurons and 89608 parameters. The medium network has 2 convolutional layers with 16 and 32 4x4
kernels respectively, and strides of 2 and uses zero padding. The convolutional layers are followed by 2 fully-
connected layers with dimensions 1000 and 10, respectively. The network has 6498 neurons and 1587508
parameters.

The MNIST properties are of the form: for all inputs, the output values for classes a and b are closer
to one another than either is to the output value of class c¢. The values of a, b, and ¢ are selected from
the confusion matrix of the medium convolutional network on the MNIST test set, shown in Table 1 with
the diagonal values removed. We select the 10 pairs of a and b with the most confusion. We then select a
value for ¢, such that images of digit a were never classified as ¢, and images of digit b were never classified
as c. As an example, we would select 4 and 9 for ¢ and b, since images of fours were classified as nines 13
times, more than any other pair. We then select the value 8 for ¢, since no images of fours or nines were ever
misclassified as eights. This results in 10 properties, defined formally below.

Property ¢q.

Va.(z € [0,1]") = (N(@)a — N (@)s| < IN(z)a — N(2)s])
NN ()4 = N(z)o| < [N (2)9 = N(@)s]))

Property ¢;.

Va.(z € [0,1]") = (N (z)s — N(2)s| < IN(z)s — N(2),
NN (@)s = N(2)s| < [N (2)s = N(2)

2 Available at https://github.com/eth-sri/eran#neural-networks-and-datasets
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Predicted Label

True Label 0 1 2 3 4 5 6 7 8 9
0 * 1 1 0O 1 0 0 0 2 1
1 0o * 1 3 0 1 0 0 O 0
2 1 2 * 1 0 0 1 2 0 0
3 0 0 O *'0 1 0 2 1 4
4 0 0 1 o * 0 4 2 0 13
5 2 0 1 10 0o * 1 1 1 1
6 7 3 0 1 2 3 * 0 0 0
7 1 4 7 1 0 0 0 * 1 3
8 4 0 5 10 0 4 0 2 * 5
9 2 3 0 2 4 2 0 3 0 *

Table 1: The confusion matrix of the medium convolutional DNN on the MNIST test set.

Property ¢s.

Vr.(z € [0,1]") = (N (z)s — N(2)3] < IN(x)5 — N(x)4
AN ()5 — N(2)3| < [N (x)3 — N (2)4
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B.3.2 DroNet

The network used for the GHPR-DroNet benchmark is the DroNet network® [2] for autonomous quadrotor
control. This network is based on a ResNet type architecture, with 3 residual blocks. It is comprised of
475131 neurons and 320226 parameters.

The properties for DroNet codify the desired behavior that, if the probability for collision is low, the
system should not make sharp turns. The DroNet properties are of the form: for all inputs, if the probability
of collision is between p,,;n, and ppqz, then the steering angle is within d degrees of 0.

Property ¢g.
Vr.((z € [0,1]") A (0 < N(z)p <0.1)) = (—=5° < N(z)g <5°)

Property ¢;.

Vr.((z € [0,1]") A (0.1 < N(z)p £0.2)) = (—10° < N (z)s < 10°)
Property ¢s.

Va.((z € [0,1]") A (0.2 < N(z)p <0.3)) = (—20° < N(z)s < 20°)
Property ¢s.

Vr.((z € [0,1]") A (0.3 < N(z)p <0.4)) = (—30° < N(z)s < 30°)
Property ¢4.

Va.((x € [0,1]") A (0.4 < N(z)p < 0.5)) = (—40° < N(z)s < 40°)
Property ¢s.

Vr.((z € [0,1]") A (0.5 < N(z)p < 0.6)) = (—50° < N (z)s < 50°)
Property ¢g.

Va.((z € [0,1]") A (0.6 < N (z)p <0.7)) = (—60° < N(z)s < 60°)
Property ¢7.

Va.((z € [0,1]") A (0.7 < N(z)p <0.8)) — (—70° < N(z)s < 70°)
Property ¢s.

Vr.((z € [0,1]") A (0.8 < N(z)p < 0.9)) = (—80° < N (z)s < 80°)

Property ¢qg.

Va.((z € [0,1]") A (0.9 < N(2)p < 1.0)) — (—90° < N(z)s < 90°)

Shttps://github.com/uzh-rpg/rpg_public_dronet




B.4 CIFAR-EQ Property Benchmark

The CIFAR-EQ problem benchmark, is made up of a set of 291 equivalence properties defined over 2
networks trained on CIFAR10. The benchmark has a 91 global equivalence properties, the first of which is
an untargeted equivalence property specifying that the two networks must predict the same class for every
input.

Va.(z € [0,1]") = (argmaz(Ni(z)) = argmax(Na(x)))

The other 90 properties are targeted equivalence properties, specifying that if the first network predicts
class A, then the second network cannot predict class B, and vice versa, where A and B are different classes.
We create a property for each possible pair of output classes for a total of 90 properties.

Vz.(z € [0,1]") — ((argmaz(Ni(z)) # A) V (argmaz(Na(x)) # B))

The next 200 properties are local properties, created from the first 10 images from the CIFAR10 test set
that are correctly classified by both networks. Each local property is specified with an L., e-ball around the
original input. In this work, we use the epsilon values of % and %. The first 20 properties are untargeted
equivalence properties, specifying that all inputs within the e-ball are classified as the same class by both

networks. This results in 20 properties, 2 for each of the 10 inputs.

Va' (2" € [z — e,z + €]") = (argmaz(N1(2')) = argmaz(Na(a')))

The final 180 properties are targeted equivalence properties, specifying that if either network classifies
the input to the correct class, C, then the other network should not classify it as class D, different from the
correct class. This results in 180 properties, 18 for each of the 10 inputs.

Vo' (2 € [z —e,x +¢€]") = (((argmazx(Ni(2")) = C) — (argmaz(Na(z')) # D))
A ((argmaz(Na(a')) = C) > (argmaz(Ni (') # D))
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