PYORCAI2C

INSTALL

pip install pyorcai2c

BASIC USAGE

import pyorcai2c
i2c = ftdi(b'SERIAL_NUMBER")

res = i2c.write(slave=ANY_NUMBER, target=ANY_NUMBER, data=ANY_NUMBER)
print(res)

res = i2c.read(slave=ANY_NUMBER, target=ANY_NUMBER)
print(res)

RETRIEVING FTDI BOARD SERIAL NUMBER

If you don't know the serial number of the FTDI board you are using do the following:

import ftd2xx
available devices
available devices

ftd2xx.createDeviceInfolist()
ftd2xx.listDevices()

BURST READ WRITE USAGE

always requires the argument as a integer positive number. No other arguments are
mandatory.

ping slave
res = i2c.write(slave=ANY_NUMBER)
print(res)

i2c command
res = i2c.write(slave=ANY_NUMBER, target=COMMAND_AS_ A NUMBER)

print(res)
argument of can eiher be a single integer or a dictionary in the form
will optimize i2c communication by performing
PROFESSEUR : M.DA ROS BTS SIO BORDEAUX - LYCEE GUSTAVE EIFFEL

+1/4+

the minimum number of burst write needed to complete the request.
If argument of is a number argument is also needed. If argument of
is an dictionary the argument will be ignored.

A burst read of n bytes can easely be performed through one of the following ways:

read burts by specifing start address and number of bytes
res = i2c.read(slave=ANY_NUMBER, target=ANY_NUMBER, n=n)
print(res)

read burst by specifing target as an array
res = i2c.read(slave=ANY_NUMBER, target=[ANY_NUMBER 1, ANY_NUMBER 2,
ANY_NUMBER_31])

print(res)

argument of can eiher be a single integer or a list of integers. will optimize
i2c communication by performing the minimum number of burst read needed to complete the request.
If argument of is a number n argument is defaulted to 1 if absent. If argument
of is a list of integers the n argument will be ignored.

12C USAGE BASED ON REGISTER MAP

To import ORCA products register map do the following:

import os

cwd = os.getcwd()

regmap_filepath = os.path.join(cwd, 'regmaps', 'pmic@l.json')
regmap = i2c.load_register_map(regmap_filepath)

Loading a register map will allow for both register based and field based communication.

res = i2c.write(slave=ANY_NUMBER, target=VALID_ REGISTER_NAME,
data=ANY_NUMBER)
print(res)

res = i2c.write(slave=ANY_NUMBER, target=VALID FIELD NAME, data=ANY_NUMBER)
print(res)

res = i2c.read(slave=ANY_NUMBER, target=VALID REGISTER_NAME)
print(res)

res = i2c.read(slave=ANY_NUMBER, target=VALID FIELD NAME)
print(res)

PROFESSEUR : M.DA ROS v2/44 BTS SIO BORDEAUX - LYCEE GUSTAVE EIFFEL

ADVANCED USAGE:

All of the above ways of communications can be mixed up without much restraint and in a pretty natual
way. Mixing up , of as the target arguments.

The following strange calls will simply and just work. The module will take care of optimizing the 12C
communications by minimizing it through as many burst command as possible.

The module response structure will reflect the request for the data part of the response while the acks part
will be based on starting register address of the burst command.

res = i2c.read(
slave=slave,
target=[
ox04,
0x02,
ox05,
OxA1l,
OxA3,
OxA2,
0x06,
'ChargeCtrll’,
'ChargeCtrl2’,
'LDO1Mode ',
'LDO2Ctrl’,
'LDO2Voltage',
"tst_bias_a“',
'TstCntrl?7"',
'LDO1Voltage'

)

print(res)

res = i2c.write(
slave=slave,
target={
0x02: OXAA,
0x01:0xEA,
0x10:0xCD,
0x05 : OXFE,
0x06:0xBB,
'LDO2Voltage' :0x55,
'Buckl1Ctrl2':0x33,
"unused BucklCtrl2 b2':1,
"unused_Buck1Ctrl2 b4':1,
"unused Buck1Ctrl2 b5':0,
'BucklTon':255,
'Buck1VRegA':0
}

)

print(res)

PROFESSEUR : M.DA ROS +3/44 BTS SIO BORDEAUX - LYCEE GUSTAVE EIFFEL

additional code examples:

You can find additional examples
here: https://github.com/orcasemi/pyorcai2c/blob/main/tests/test.py
and here: https://github.com/orcasemi/pyorcai2c/blob/main/tests/debug.py

co-development (ORCA DEVELOPMENT TEAM ONLY)

1. clone the repository locally
git clone git@github.com:orcasemi/pyorcai2c.git
if you get an error about not having enough clearance to clone it please follow this tutorial to setup a
github ssh-key and contact orcasemi github organization to be added as a member

2. setup and activate virtual envinroment

cd pyorcai2c
python -m venv

3. if you are on windows and you have never done that before you need to enable powershell to run
scripts in order to activate the newly created virtual envinroment

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

run that from an admin elevated powershell

4. activate the virtual envinroment

.\venv\Scripts\activate

PROFESSEUR : M.DA ROS v4/44 BTS SIO BORDEAUX - LYCEE GUSTAVE EIFFEL

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

