
Cookbook

pydna

Björn Johansson
CBMA

University of Minho

Braga

Portugal

What is pydna?

Pydna is a python package that provides functions and data types to deal with double stranded DNA.
It depends on Biopython (a python bioinformatics package), networkx (a graph theory package) and
numpy (a mathematics package).

What does Python dna provide?

Python dna provide classes and functions for molecular biology using python. Notably, PCR, cut and
paste cloning (sub-cloning) and homologous recombination between linear DNA fragments are
supported. Most functionality is implemented as methods for the double stranded DNA sequence
record classes “Dseq” and "Dseqrecord", which are a subclasses of the Biopython Seq and SeqRecord
classes, respectively.

Pydna was designed to semantically imitate how sub-cloning experiments are typically documented
in scientifc literature. One use case for pydna is to create executable documentation for a sub-cloning
experiment. Te pydna code unambiguously describe the experiment, and can be executed to yield
the sequence of the of the resulting DNA molecule(s) and all intermediary steps. Pydna code
describing a sub cloning is reasonably compact and also meant to be easily readable.

Typical usage at the command line could look like this:

>>> import pydna
>>> seq = pydna.Dseq("GGATCCAAA","TTTGGATCC", ovhg=0)
>>> seq
Dseq(-9)
GGATCCAAA
CCTAGGTTT

Te example above shows an example usage of the Dseq class which is a double stranded version of
the Biopython seq class. Tis is the main pydna data type along with the Dseqrecord class which is a
double stranded version of the Biopython SeqRecord class.

Te Dseq object was initialized using two strings and a value for the stagger (ovhg) between the DNA
strands in the 5' (lef) extremity. Tis is of course not a practical way of creating a Dseq object in
most cases, but there are other more practical methods as we will see further on.

Te Dseq object comes with a cut method that takes one or more restriction enzymes as arguments.
A list is returned with the fragments produced in the digestion:

>>> from Bio.Restriction import BamHI
>>> a,b = seq.cut(BamHI)
>>> a

http://biopython.org/wiki/Main_Page
http://biopython.org/wiki/SeqRecord
http://biopython.org/wiki/Seq

Dseq(-5)
G
CCTAG
>>> b
Dseq(-8)
GATCCAAA
 GTTT

Te fragments a and b formed in the example above can be religated together by the addition
operator:

>>> a+b
Dseq(-9)
GGATCCAAA
CCTAGGTTT
>>> b+a
Dseq(-13)
GATCCAAAG
 GTTTCCTAG
>>> b+a+b
Dseq(-17)
GATCCAAAGGATCCAAA
 GTTTCCTAGGTTT

Te Dseq objects keep track of the structure of the DNA ends and only allow ligation of compatible
fragments:

>>> b+a+a
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/dist-packages/pydna/dsdna.py", line
217, in __add__
 raise TypeError("sticky ends not compatible!")
TypeError: sticky ends not compatible!
>>>

Two examples are given in this tutorial (Example 1 and 2). Te data fles that are referred to in this
document can be found in the folder “cookbook_fles” that was downloaded together with this fle.
Alternatively, the examples can be solved on-line using pydna live.

pydna live

Python 2.7.3 with pydna and Biopython are avaliable for testing interactively online at
htp://pydna-shell.appspot.com/ (Fig1).

Te Biopython package is not completely supported since pydna live runs on the google app engine,
which currently does not permit C-extensions. However, all functionality needed for pydna is
provided.

All fles referred to in this cookbook are provided in the sub directory “cookbook_fles”. Tis means
that you can execute the statements given here directly as they are writen by copy and paste
(leaving out the prompt “>>>”). If you perform these examples on your own system, you have to
adjust fle paths when reading and writing fles.

Fig. 1

http://pydna-shell.appspot.com/

Example 1: Sub cloning by restriction digestion and ligation

Te construction of the vector YEp24PGK_XK is described on page 4250 in the publication below:

Johansson et al., “Xylulokinase Overexpression in Two Strains of Saccharomyces cerevisiae Also
Expressing Xylose Reductase and Xylitol Dehydrogenase and Its Efect on Fermentation of Xylose
and Lignocellulosic Hydrolysate” Applied and Environmental Microb

Briefy, the XKS1 gene from Saccharomyces cerevisiae is amplifed by PCR using two primers called
primer1 and primer3. Te primers add restriction sites for BamHI to the ends of the XKS1 gene. Te
gene is digested with BamHI and ligated to the YEp24PGK plasmid that has previously been digested
with BglII which cut the plasmid in one location. Te two enzymes are compatible so fragments cut
with either enzyme can be ligated together. Fig 1 shows an image outlining the strategy.

We will replicate this cloning strategy using the tools provided by pydna.

Start your interactive python session and import the pydna module.
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import pydna
>>> pydna.__version__
'0.1.4'

Fig. 2: Construction of the YEp24PGK_XK vector

YEP24PGK_XK

XKS1

BamHI

BamHI

XKS1

BglIII

BamHI

XKS1

YEp24_PGK

YEp24PGK

XKS1

YEp24_PGK

BamHI

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93154
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93154
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93154

Use the pydna read function to assign the primers and template sequence to SeqRecord objects for the
primers (they are single stranded) and a Dseqrecord object for the template.

>>> p1 = pydna.read("./cookbook_files/primer1.txt", ds=False)
>>> p3 = pydna.read("./cookbook_files/primer3.txt", ds=False)
>>> XKS1 = pydna.read("./cookbook_files/XKS1_orf.txt")

We use the pydna PCR function to make the PCR product from the primers and the template sequence.
The result should be a linear Dseqrecord of 1829 bp.

>>> PCR_prod = pydna.pcr(p1 ,p3 ,XKS1)
>>> PCR_prod
Dseqrecord(-1829)

We then cut the PCR product with BamHI.

>>> from Bio.Restriction import BamHI
>>> stuffer1, insert, stuffer2 = PCR_prod.cut(BamHI)

The stuffer1 and stuffer2 sequences are the small DNA pieces at each end. The seq property shows the
Dseq object that is held by the of the Dseqrecord object.

>>> stuffer1.seq
Dseq(-7)
GCG
CGCCTAG
>>> stuffer2.seq
Dseq(-11)
GATCCAGATCT
 GTCTAGA
>>> insert.seq
Dseq(-1819)
GATCCTCTAGAATGGTTTGT...GGAAAAGACTCTCATCTAAG
 GAGATCTTACCAAACA...CCTTTTCTGAGAGTAGATTCCTAG

We then cut the YEp24PGK plasmid with the BglII enzyme.

>>> YEp24PGK = pydna.read("./cookbook_files/YEp24PGK.txt")
>>> from Bio.Restriction import BglII
>>> YEp24PGK_BglII = YEp24PGK.cut(BglII).pop()

We now have two linear DNA molecules insert and YEp24PGK_BglII. We then add them together to
form a larger linear molecule:

>>> YEp24PGK_XK = YEp24PGK_BglII + insert
>>> YEp24PGK_XK
Dseqrecord(-11456)

The plasmid is still linear, but we can change this property with the looped method.

>>> YEp24PGK_XK = YEp24PGK_XK.looped()
>>> YEp24PGK_XK
Dseqrecord(o11452)

The number indicate the size and the “o” that the DNA is circular. The molecule appears smaller, but
this is since the sticky ends annealed together. The sync method will rotate the new plasmid, so that it
starts at the same position as the old plasmid. This makes the final sequence easier to read.

>>> YEp24PGK_XK = YEp24PGK_XK.synced(YEp24PGK)

The seguid method give the seguid of the sequence.

>>> YEp24PGK_XK.seguid()
'HRVpCEKWcFsKhw/W+25ednUfldI'

We then write the plasmid to a file:

>>> YEp24PGK_XK.write("YEp24PGK_XK_vector.gb")

You can now open the saved sequence fle with your favorite sequence editor.

If you are doing these examples on pydna live, the google app engine does not permit saving fles.
You can print the content of the fle instead:

>>> print YEp24PGK_XK.format("gb")

Beware! Tis is a long output. Te output window can be made wider if necessary for a correct print
out.

http://pydna-shell.appspot.com/

Example 2: Sub cloning by homologous recombination

Te construction of the vector pGUP1 is described in the publication:

Régine Bosson, Malika Jaquenoud, and Andreas Conzelmann, “GUP1 of Saccharomyces Cerevisiae
Encodes an O-acyltransferase Involved in Remodeling of the GPI Anchor,” Molecular Biology ofthe
Cell 17, no. 6 (June 2006): 2636–2645.

Our objective is to replicate the cloning steps using pydna so that we can have the final sequence of the
plasmid.

The cloning is described in the paper on page 2637 on the upper left side of the publication:

"Te expression vectors harboring GUP1 or GUP1H447A were obtained as follows: the open reading frame
of GUP1 was amplifed by PCR using plasmid pBH2178 (kind gif from Morten Kielland-Brandt) as a
template and using primers and , underlined sequences being homologous to the target vector pGREG505
(Jansen et al., 2005). Te PCR fragment was purifed by a PCR purifcation kit (QIAGEN, Chatsworth,
CA) and introduced into pGREG505 by co transfection into yeast cells thus generating pGUP1 (Jansen et
al., 2005)."

Briefly, two primers (GUP1rec1sens and GUP1rec2AS) were used to amplify the GUP1 gene from
Saccharomyces cerevisiae chromosomal DNA using the two primers

>GUP1rec1sens
gaattcgatatcaagcttatcgataccgatgtcgctgatcagcatcctgtc

>GUP1rec2AS
gacataactaattacatgactcgaggtcgactcagcattttaggtaaattccg

Ten the vector pGREG505 was digested with the restriction enzyme SalI. Tis is not mentioned in
Bosson et. al, but they make a reference to Jansen 2005:

Jansen G, Wu C, Schade B, Tomas DY, Whiteway M. 2005. Drag&Drop cloning in yeast. Gene, 344:
43–51.

Jansen et al describe the pGREG505 vector and that it is digested with SalI before cloning. Te SalI
digests the vector in two places, so a fragment containing the HIS3 gene is removed.

Te SalI sites are visible in the plasmid drawing in Fig. 3.

http://www.ncbi.nlm.nih.gov/pubmed/15656971
http://www.ncbi.nlm.nih.gov/pubmed/15656971
http://www.ncbi.nlm.nih.gov/pubmed/16597698
http://www.ncbi.nlm.nih.gov/pubmed/16597698
http://www.ncbi.nlm.nih.gov/pubmed/16597698

In the fnal step, the digested vector is mixed with the PCR product and transformed into yeast.

Tis is a cloning in three steps:

A. PCR of the GUP1 locus using GUP1rec1sens GUP1rec2AS, resulting in
 a linear insert.

B. Digestion of the plasmid pGREG505 with SalI, Tis step is not
 mentioned above, but evident from (2). Tis digestion removes a
 DNA fragment containing the HIS3 marker gene from the fnal
 construct.

C. Recombination between the linear insert and the linear vector.

See Fig. 4 for a graphical representation.

Fig. 3: pGREG505 vector

We will now replicate the cloning procedure using pydna. For this we use Python interactively:
First we import pydna and verify the version. The current directory should be where you have the data
files mentioned before.

Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import pydna
>>> pydna.__version__
'0.1.4'

The primer sequences, template and vector is read into SeqRecord objects (primers) and Dseqrecord
objects (gene and plasmid).

>>> GUP1rec1sens = pydna.read("./cookbook_files/GUP1rec1sens.txt",
ds=False)
>>> GUP1rec2AS = pydna.read("./cookbook_files/GUP1rec2AS.txt",
ds=False)
>>> GUP1_locus = pydna.read("./cookbook_files/GUP1_locus.gb")
>>> pGREG505 = pydna.read("./cookbook_files/pGREG505.gb")

The PCR product is made from the primers and the template sequence.

>>> insert = pydna.pcr(GUP1rec1sens, GUP1rec2AS, GUP1_locus)

We need to import the SalI restriction enzyme from Biopython.

Fig. 4: Construction of pGUP1 by homologous
recombination

HIS3

SalI SalI

GUP1 GUP1
A. PCR

B. Digestion

GUP1

C. Recombination

GUP1

pGUP1

>>> from Bio.Restriction import SalI

We cut the vector with SalI

>>> lin_vect, his3 = pGREG505.cut(SalI)
>>> lin_vect
Dseqrecord(-8301)

We use the pydna circular assembly function to assemble the two linear DNA sequences into a circular
DNA molecule. The variable cp will have a list of Dseqrecords.

>>> fs, cp = pydna.circular_assembly((insert, lin_vect), limit=28)

We check the list. It should have only one recombination product. The number indicate the size and the
“o” that the DNA is circular.

>>> cp
[Dseqrecord(o9981)]

We pop the list:

>>> pGUP1 = cp.pop()

The pydna sync function makes sure that our new vector starts from the same position as the pGREG
vector. This makes our recombinant plasmid easier to read.

>>> pGUP1 = pGUP1.synced(pGREG505)

Finally, we calculate the seguid for the sequence.

>>> pGUP1.seguid()
'42wIByERn2kSe/Exn405RYwhffU'

Finally we write the sequence to a file

>>> pGUP1.write("pGUP1_vector.gb")

If you are doing these examples on pydna live, the google app engine does not permit saving fles.
You can print the content of the fle instead:

http://pydna-shell.appspot.com/

>>> print pGUP1.format("gb")

Beware! Tis is a long output. Te output window can be made wider if necessary for a correct print
out.

