spacr.sp_stats

Module Contents

spacr.sp_stats.choose_p_adjust_method(num_groups, num_data_points)[source]

Selects the most appropriate p-value adjustment method based on data characteristics.

Parameters: - num_groups: Number of unique groups being compared - num_data_points: Number of data points per group (assuming balanced groups)

Returns: - A string representing the recommended p-adjustment method

spacr.sp_stats.perform_normality_tests(df, grouping_column, data_columns)[source]

Perform normality tests for each group and data column.

spacr.sp_stats.perform_levene_test(df, grouping_column, data_column)[source]

Perform Levene’s test for equal variance.

spacr.sp_stats.perform_statistical_tests(df, grouping_column, data_columns, paired=False)[source]

Perform statistical tests for each data column.

spacr.sp_stats.perform_posthoc_tests(df, grouping_column, data_column, is_normal)[source]

Perform post-hoc tests for multiple groups with both original and adjusted p-values.

spacr.sp_stats.chi_pairwise(raw_counts, verbose=False)[source]

Perform pairwise chi-square or Fisher’s exact tests between all unique group pairs and apply p-value correction.

Parameters: - raw_counts (DataFrame): Contingency table with group-wise counts. - verbose (bool): Whether to print results for each pair.

Returns: - pairwise_df (DataFrame): DataFrame with pairwise test results, including corrected p-values.