pyQms Documentation
Release 0.5.0-beta

Johannes Leufken
Anna Niehues
L. Peter Sarin
Michael Hippler
Sebastian A. Leidel
Christian Fufezan

Feb 21, 2018






CONTENTS







pyQms Documentation, Release 0.5.0-beta

The latest Documentation was generated on: Feb 21, 2018

CONTENTS 1



pyQms Documentation, Release 0.5.0-beta

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

pyQms enables universal and accurate quantification of mass spectrometry data



https://travis-ci.org/pyQms/pyqms
https://ci.appveyor.com/project/JB-MS/pyqms

pyQms Documentation, Release 0.5.0-beta

1.1 Summary

pyQms is an extension to Python that offers amongst other things
1. fast and accurate quantification of all high-res LC-MS data
2. full labeling and modification flexibility

3. full platform independence

1.2 Abstract

Quantitative mass spectrometry (MS) is a key technique in many research areas (Yates III et al. 2009), including pro-
teomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by
chemical formulas, universal quantification tools are highly desirable. Here we present pyQms, an open-source soft-
ware for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching
which offers accurate quality assessment of the quantification and the ability to directly incorporate mass spectrometer
accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition
technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto un-
explored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes
in large-scale and high-throughput, the most challenging task for a quantification algorithm.

— Leufken, J., Niehues, A., Hippler, M., Sarin, L. P, Hippler, M., Leidel, S. A., and Fufezan, C. (2017)
pyQms enables universal and accurate quantification of mass spectrometry data. MCP In Press

Link to manuscript.

http://www.mcponline.org/content/early/2017/07/20/mcp.M117.068007.abstract

1.3 pyQms module

At its core, pyQms is a Python module that allows a isotope pattern library to be initialized and any list of (mz,
intensity) to be matched against the library, yielding a mScore.

1.4 Documentation

http://pyqms.readthedocs.io/en/latest/

1.5 Implementation

pyQms requires Python3.4+ .

The module is freely available on pyqms.github.io or pypi, published under MIT LGPL and requires no additional
modules to be installed. For fast spectra from mzML access we recommend pymzML (Bald et al. 2012). For example
scripts it is necessary to install pymzML as well or change the code for alternated spectra access. For some scripts
also the openpyxl module is required.

4 Chapter 1. Introduction


http://www.mcponline.org/content/early/2017/07/20/mcp.M117.068007.abstract
http://pyqms.readthedocs.io/en/latest/

pyQms Documentation, Release 0.5.0-beta

1.6 Download

Get the latest version via github

https://github.com/pyQms/pyQms

1.7 Citation

Please cite us when using pyQms in your work.

The original publication can be found here: Leufken, J., Nichues, A., Hippler, M., Sarin, L. P, Hippler, M., Leidel,
S. A., and Fufezan, C. (2017) pyQms enables universal and accurate quantification of mass spectrometry data.
Mol. Cell. Proteomics 16, 1736—1745

1.7.1 Full article

http://www.mcponline.org/content/16/10/1736

1.7.2 Early access article version

http://www.mcponline.org/content/early/2017/07/20/mcp.M117.068007 .abstract

1.7.3 DOI

10.1074/mcp.M117.068007

1.8 Installation

Install requirements:

user@localhost:~$ cd pyqms
user@localhost:~/pygqms$ pip3.4 install -r requirements.txt

Install pyQmis:

user@localhost:~/pygqms$ python3.4 setup.py install

(You might need administrator privileges to write in the Python site-package folder. On Linux or OS X, use
“sudo python setup.py install’ or write into a user folder by using this command ~python setup.
py install —-user . On Windows, you have to start the command line with administrator privileges.)

1.8.1 pyQms docs recompiling and extending

You will require sphinx and other packages to build the documentation from scratch. We recommend to use a Python
virtual environment for easy installation and use.

1.6. Download 5



https://github.com/pyQms/pyQms
http://www.mcponline.org/content/16/10/1736
http://www.mcponline.org/content/early/2017/07/20/mcp.M117.068007.abstract

pyQms Documentation, Release 0.5.0-beta

1.9 Tests

Run nosetests in root folder. You might need to install nose for Python3 first. Then just execute:

’ user@localhost:~/pygms$ nosetests3

to test the package.

1.10 LICENSE

This software is under MIT license, please refer to LICENSE for full license.

1.11 Publications and project using pyQms for quantification

- Hohner, R., Barth, J., Magneschi, L., Jaeger, D., Niehues, A., Bald, T., Grossman, A., Fufezan, C., and
Hippler, M. (2013) The Metabolic Status Drives Acclimation of Iron Deficiency Responses in
Chlamydomonas reinhardtii as Revealed by Proteomics Based Hierarchical Clustering and Reverse
Genetics. Mol. Cell. Proteomics 12, 2774-2790 Pubmed

- Barth, J., Bergner, S. V., Jaeger, D., Niehues, A., Schulze, S., Scholz, M., and Fufezan, C. (2014) The
Interplay of Light and Oxygen in the Reactive Oxygen Stress Response of Chlamydomonas reinhardtii
Dissected by Quantitative Mass Spectrometry. Mol. Cell. Proteomics 13, 969-989 Pubmed

- Kukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska, M., Fufezan, C.,
Finazzi, G., and Hippler, M. (2014) Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow
Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress
Adaptation. Plant Physiol. 165, 1604-1617 Pubmed

- Alings, F., Sarin, L. P, Fufezan, C., Drexler, H. C. A., and Leidel, S. A. (2015) An evolutionary
approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 21,
202-212 Pubmed

- Bergner, S. V., Scholz, M., Trompelt, K., Barth, J., Gibelein, P., Steinbeck, J., Xue, H., Clowez, S.,
Fucile, G., Goldschmidt-Clermont, M., Fufezan, C., and Hippler, M. (2015) STATE
TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and
Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. Plant Physiol. 168, 615-634
Pubmed

- Hochmal, A. K., Zinzius, K., Charoenwattanasatien, R., Gibelein, P., Mutoh, R., Tanaka, H., Schulze,
S., Liu, G., Scholz, M., Nordhues, A., Offenborn, J. N., Petroutsos, D., Finazzi, G., Fufezan, C., Huang,
K., Kurisu, G., and Hippler, M. (2016) Calredoxin represents a novel type of calcium-dependent
sensor-responder connected to redox regulation in the chloroplast. Nat. Commun. 7, 11847 Pubmed

- Pfannmiiller, A., Leufken, J., Studt, L., Michielse, C. B., Sieber, C. M. K., Giildener, U., Hawat, S.,
Hippler, M., Fufezan, C., and Tudzynski, B. (2017) Comparative transcriptome and proteome analysis
reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium
fujikuroi. PLoS One in press, 1-27 Pubmed

1.12 Contact information

Please refer to:

Dr. Christian Fufezan
Cellzome

6 Chapter 1. Introduction


https://nose.readthedocs.org/en/latest/
https://www.ncbi.nlm.nih.gov/pubmed/23820728
https://www.ncbi.nlm.nih.gov/pubmed/24482124
https://www.ncbi.nlm.nih.gov/pubmed/24948831
https://www.ncbi.nlm.nih.gov/pubmed/25505025
https://www.ncbi.nlm.nih.gov/pubmed/25858915
https://www.ncbi.nlm.nih.gov/pubmed/27297041
https://www.ncbi.nlm.nih.gov/pubmed/28441411

pyQms Documentation, Release 0.5.0-beta

Molecular Discovery Research
GlaxoSmithKline

69117 Heidelberg

Germany

eMail: christian @fufezan.net

1.12. Contact information 7


mailto:christian@fufezan.net

pyQms Documentation, Release 0.5.0-beta

8 Chapter 1. Introduction



CHAPTER
TWO

QUICK START

2.1 Download and installation

Please Download and install pyQms following these Installation instructions. Please consider using a virtual environ-
ment (e.g. using the excellent virtualenvwrapper) for using and developing pyQms.

2.2 Matching a peak list

Let’s start with a most simple example: Mathing a single peptide on a predefined peak list. Start a Python (3.4+)
console and start quantifying in 4 steps:

First import pyQms:

import pygms

Second, initialize a isotopologue library (pygms. IsotopologueLibrary) using ‘DDSPDLPK’ as the example
peptide (from BSA example file) and the charge state 2:

1lib = pyams.IsotopologuelLibrary (
molecules = [ 'DDSPDLPK' 7,
charges =121,

)

Third, match the library on the provided peak list. You can find a peak list here, which will produce a match with this
peptide. Copy and paste the peak list into the Python console.

Fourth, use the pygms . IsotopologueLibrary.match_all () function to quantify the peptide using the peak
list:

results = lib.match_all(

mz_1i_list = peak_list,
file_name = 'test',
spec_id = 1165,
spec_rt = 29.10,
results = None

)

Done! The peptide has been quantified in the given peak list. Please continue with the next section to learn how to
access and process the results.



https://virtualenvwrapper.readthedocs.io/en/latest/

pyQms Documentation, Release 0.5.0-beta

Note: The keyword arguments file_name, spec_id and spec_rt are hardcoded in this example case. In the advanced
examples these information (as well as the peak list) are parsed from the mzML file directly.

2.3 Access and interpret the results

The results object represents the pygms . Results class and is organized as a dictionary:

results.keys ()

Will give the following output:

dict_keys (
[
m_key (
file_name='test',
formula='C(37)H(59)N(9)0(16)",
charge=2,
label_percentiles=(('N', '0.000"),)

)

The keys of the pygms . Results class are namedtuple () with the following field_names:
¢ file_ name
* formula
* charge
* label_percentiles

file_name related to the original file name of the LC-MS/MS runs, formula is the molecular formula of the input
molecule/peptide, charge refers to the charge state of the matched isotope envelope and label_percentile indicates
the labeling of the molecule. Default behaviour is to use the natural abundance of the element isotopes (default this
fieldname is set to 0% artificical enrichment of nitrogen i.e. (‘N’,0.000’) in a tuple of multiple possible labeling
percentiles i.e. ((‘N’°,0.000),).

Note: Every input molecule (e.g. peptide ‘DDSPDLPK’ ) will be converted to its molecular formula
(‘C(37)H(59)N(9)O(16)’) in Hill notation by pyQms. To map between the peptide and formula, please use
the integrated lookups, i.e. results.lookup[ ‘formula to molecule’] or results.lookup[‘molecule to formula’].
Please consider, that multiple molecules can have the same formula, therefor e.g. results.lookup[ ‘formula to
molecule’ ][ ‘C(37)H(59)N(9)O(16)’] is by default a list.

For each of the keys one will get the following dict:

{

'data': [
match (
spec_id=1165,
rt=29.1,

score=0.9606609710868856,
scaling_factor=40.75802642055527,
peaks=(

10 Chapter 2. Quick start



https://en.wikipedia.org/wiki/Hill_system

pyQms Documentation, Release 0.5.0-beta

(443.7112735313511, 2517650.0, 1.0, 443.7112648946701, 62091), (444.
—21248374593875, 1156173.75, 0.4459422196277157, 444.2127374486285, 27689),
(444.71384916266277, 336326.96875, 0.12958327918547244, 444.
7142840859656, 8046),
(445.21533524843596, 58547.0703125, 0.02805309805863953, 445.
—21582563050043, 1742)
)

1,

'max_score': 0.9606609710868856,
'len_data': 1,

'max_score_index': 0

The keys on the top level of this dictionary are:
e data
* max_score
¢ len_data
e max_score_index

While len_data will indicate how many spectra were matched for the formula in the repective key, max_score and
max_score_index provides the maximum score, which was obtained during matching and the index of this match in
the data list, respectively. The data list contains matches for all single spectra as namedtuple (). The following
fieldnames are contained in each match:

* spec_id

° 1t

* score

* scaling_factor
* peaks

Besides the given input information on the spectrum like the spectrum ID (spec_id) and the retention time (spec_rt)
the mScore of the match is provided (score) as well as the determined amount/intensity of the molecule in the spectrum
(scaling_factor). Furthermore, detailed match information are given in peaks. This tuple contains for each peak of the
isotopologue the following information in this order:

* The measured (and matched) m/z value of the isotope peak in the spectrum
* The measured intensity of the isotope peak in the spectrum

* The relative intensity of the isotopologue peak to the monoisotopic peak
 The calculated m/z value of the isotope peak of the input molecule

* The calculated intensity of the isotope peak of the input molecule

These information can be processed to further analyze, besides the mScore, the quality of the match.

Note: Please note, that measured m/z entry in peaks can be None, if this peak was not found in the input data.

We have now seen, how peptides/molecules can be quantified and how the results can be accessed.

2.3. Access and interpret the results 11




pyQms Documentation, Release 0.5.0-beta

Note: The pygms.Results class offers several functions to access, process and visualize the data. E.g. pygms.
Results.extract_results () provides and iterator yielding key, i, entry. The key is the namedtuple ()
containing the molecules information, i is the position of entry in results[key][‘data’] and entry is the match
namedtuple ().

2.4 Quantify peptides in a whole LC-MS run

This part will describe how to process a whole LC-MS/MS run and quantify multiple peptides in one batch. This
example assumes you have started your Python console in the pygms base folder.

For this example we will use pymzML, which is used to parse mzML files and retrieve the spectra and meta data used
for quantification. pymzML will be installed as a requirement (See: Installation).

We start again by importing pyQms and initializing a isotopologue library ( pygms. IsotopologueLibrary ):

import pyqgms
lib = pygms.Isotopologuelibrary (
molecules =1
'HLVDEPQNLIK',
'YICDNQDTISSK',
'DLGEEHFK'
]I
charges = [2, 3, 4, 51,

We need to import pymzML and initialize the run. Note, that the path to the BSA1 mzML file (‘data/BSA1.mzML")
may have to be adjusted. This file can be downloaded using this example script get_example_BSA_file (See: Get the
BSA example mzML file) and can then be found under the ‘data’ folder in the pyqms base folder.

import pymzml
run = pymzml.run.Reader( 'data/BSAl.mzML' )

We now iterate over the spectra in the mzML file and quantify all peptides in all MS1 spectra. Before we start
the loop we set the results variable to None. Please note, that the results variable is iteratively passed to pygms.
IsotopologueLibrary.match_all (). This will lead to one results object, which combines quantifications
for all peptides in every spectra. See also description above (see: access results) or refer directly to the pygms.
Results: class :

results = None
for spectrum in run:
scan_time = spectrum['scan time']
spec_id = spectrum['id']
if spectrum['ms level'] == 1:
results = lib.match_all(
mz_i_list = spectrum.centroidedPeaks,
file_name = 'BSAl',
spec_id = spec_id,
spec_rt = scan_time,
results = results

Note: pymzML centroids spectra if these are not already centroided, if spectrum.centroidedPeaks is accessed.

12 Chapter 2. Quick start




pyQms Documentation, Release 0.5.0-beta

The results can now be accessed as described above (see: access results). Furthermore the pygms . Results class
can be pickled:

import pickle
pickle.dump (
results,
open (
'data/BSAl_pyQOms_results.pkl',
"wb '

For further examples and how to use the adaptor functions, please refer to the next section.

2.5 Use the adaptors, Luke

The Adaptors functions are useful for parsing a set of identified peptides (e.g. from Ursgal result files; Ursgal docu-
mentation) including retention time information for determining the maximum intensity of every (identified) peptide
in the LC-MS/MS measurement. Furthermore, adaptors can be added to e.g. read results of other analysis pipelines
and tools.

The current adaptor to read Ursgal results can be used as follows for the shipped identification result file of the
database search engine OMSSA. Please note, that if the adaptors are used one need to define fixed modifications like
Carbamidomathylation as presented. This modification and the molecules will then be correctly formatted as input for

pyqms:

import pygms
import pygms.adaptors
input_fixed_ labels = {

'cror |
{

'element_composition' : {
'o"’ 1,
'H' : 3,
'14N" ¢ 1,
'C!' 2

}I

'evidence_mod_name': 'Carbamidomethyl'

by

}

formatted_ fixed_labels, evidence_lookup, molecules = pyqms.adaptors.parse_evidence (
fixed_labels = input_fixed_labels,
evidence_files = [ 'data/BSAl_omssa_2_ 1 9 unified.csv' ],

The returned objects can be used a direct input for the pyQms pygms. IsotopologueLibrary. The advantage
of parsing evidence files is, that MS2 identification information is added to the results and can e.g. be used for defining
RT windows for a correct quantification of every peptide:

lib = pyams.IsotopologuelLibrary (

molecules = molecules,

charges = [1, 2, 3, 4, 5],
fixed_labels = formatted_ fixed_labels,
evidences = evidence_lookup

2.5. Use the adaptors, Luke 13



https://github.com/ursgal/ursgal
http://ursgal.readthedocs.io/en/latest/
http://ursgal.readthedocs.io/en/latest/
https://github.com/ursgal/ursgal

pyQms Documentation, Release 0.5.0-beta

2.6 Further examples and more adavanced usage

Please refer to the Example Scripts section for more usage examples and ready-to-go Python scripts for quantification,
data analysis and visualization.

14 Chapter 2. Quick start



CHAPTER
THREE

CONTENTS

3.1 Isotopologue Library

class pygms . Isotopologuelibrary (molecules=None, charges=None, metabolic_labels=None,

fixed_labels=None, params=None, trivial_names=None, ver-
bose=True, evidences=None)

The Isotopologue library is the core of pyQms.

Keyword Arguments

molecules (1ist of str)— Molecules used to build the library, for more details see
below.

charges (1ist of int) - Charge list used to build the library
metabolic_labels (dict) - see below

fixed_ labels (dict) - see below

params (dict)— Match parameters, see pygms.params

trivial_ names (dict)— Dictionary that is used to build up lookups. Key is a molecule
and value a trivial name.

evidences (dict) — Dictionary that is used to build up additional lookups. Key is a
formula pointing to a subdict. Subdict has molecules as keys and values are ‘trivial_names’
as a list and ‘evidences’ holding evidence/identification information

verbose (bool)— Be verbose or not during initialization and matching.

Keyword argument examples:

* molecules The molecule format can be anything that the ChemicalComposition class understands. Cur-
rently this can for example be:

[

"+

' format ('H20"),
'.format (peptide="PEPTIDE"),
+ '.format ('PO3"', peptide='PEPTIDE'),
# : '.format (
peptide = peptide,
unimod = 'Oxidation',
pos = 1

15




pyQms Documentation, Release 0.5.0-beta

* metabolic_labels is used to define new element pools with enriched isotopes. The dict key defines an
enriched element, e.g. 15N or 13C and its value is a list of floats [0 - 1.0] defining enrichment.The
combination of those pools is used to calculate isotopologues:

{
‘158" ¢ [O, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99]

* fixed_labels are based on unimod. Fixed molecules do not change the shape of the isotoplogue drastically
but introduce a simple mass shift, like SILAC, 180 or others.

The format is for example:

{
'R' ¢+ ['C(=6) 13C(6) N(-4) 15N(4)'",""]

Returns Isotopologue library as dict where the top key is always the chemical forumla unimod style.

Return type dict

simplified:

{

"C(34)H(53)N(7)0(15)": {
'co': |
'c': 34, 'H': 53, 'N': 7, 'O': 15

(('N", "0.000"),): {
# charge
1: {
# all transformed mz values
'atmzs': {
800443,
800444,
# ... skipped
803459,
803460,
803461
}V
# theoretical mz values
'mz': [

800.4472772254203,
801.450389542063,
802.4536114854914,
803.4568170275203,
804.4597382487398,
805.46317186734¢6,
806.4631454917885,
807.4676949759603

]V

# transformed mz values within error

# packages are on on peak level

"tmzs': [

{
800443,
800444,

16

Chapter 3. Contents



http://www.unimod.org/modifications_list.php?

pyQms Documentation, Release 0.5.0-beta

# ... skipped
800451

801446,
801447,
# ... skipped
801454

802450,
802451,
# ... skipped
802458

}I

{

803453,
803454,
803455,
# ... skipped
803461

by

None,
None,
None,
None

by

# charge independent information

'abun': [
64799,
26251,
7164,
1456,
175,
20,

ll
0
]I
'c_peak_pos':
OI

'mass': [

3599640346001,
3629760500413,
3660976813065,
3692029128123,
3720238519379,
3753571372156,
3752307742944,

3.1. Isotopologue Library

17



pyQms Documentation, Release 0.5.0-beta

806.3796798135622
} 14
'n_c_peaks': 4.0,
'relabun': [

1.0,
.40511743373159037,
.11054965400744385,
.022466784140529883,
.002693331560888158,
.0003019650321460501,
.716705830708012e-06,
.639837831552297e-08

w J O O O o O

match_all (mz_i_list=None, file_name=None, spec_id=None, spec_rt=None, results=None)
Matches all isotopologues in the library agains a given mz_i_list

Parameters

emz_i_list (list of tuples) — Spectrum information that should be matched
against. Tuples of m/z and intensity

e file name (str) — Information used for storage purpose. Useful if multiple files are
parsed with one pygms.result instance.

* spec_id (int) — Information used for storage purpose.
* spec_rt (float) - Information used for storage purpose.
* results (pygms.Results) — (optional)

If a results object is passed to match_all, then this object will be updated and returned. This is for e.g. to
accumulate results for a whole LC-MS/MS run.

For various examples using match_all please refer to the example scripts.
Returns Object holding all quantitative information
Return type results class object (obj)

match_isotopologue (index=None, formula=None, charge=None, label_percentile=None,
spec_tmz_set=None, spec_tmz_lookup=None, mz_i_list=None,
mz_score_percentile=None)
Matches a single isotopologue onto a mz_i_list or spec_tmz_set

Parameters

e index (int) — Using this index one can retrieve all information about the molecule, i.e.
lower_mz, upper_mz, charge, label_percentile, formula from self.formulas_sorted_by_mz.
Alternatively, one can use the more verbose option: formula, charge and label_percentile

e formula (str) - pygms formula type
* charge (int)— molecule charge

* label_percentile — pyQms label percentile

18 Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

emz_i_ list(list of tuples)-Listofm/zand intensity tuples, will be transformed
to a spec_tmz_set given the defined precession. Alternatively, spec_tmz_set can be used
as input.

* spec_tmz_set (set of ints) — tmz value set used for matching. Requires
spec_tmz_lookup to get the actual mz which is required for scoring.

* mz_score_percentile (float) — Weighting of mz used for scoring. (1 -
mz_score_percentile) is then intensity weighting. Values 0 - 1.0.

Note: Depending on the machine (some measure intensity better than others) adjusting
mz_score_percentile value will give more accurate results. Best adjusted in pyqms.params (which can
be passed during isotoplogue lib initialization)

Returns
Match results (tuple of score, scaling factor and matched peaks).

* score reflects the fit of the theoretical isotopologue to the measured (both mz and intensi-
ties are compared)

* scaling factor reflects the actual amount of the molecule in the respective spectrum. It
is defined as the sum of the total measured intensities divided by the sum of the total
calculated intensities

* matched_peaks is list of tuples that contain measured_mz, measured_i, rel_i, calcu-

lated_mz, calculated_i

Multiple m/z values can occur in the range of the measured precision of every peak of the isotopologue,
thus all combinations are considered and scored. Only the best scored match is returned for each isotopo-
logue.

print_overview (formula, charge=None)
Prints an overview of a given molecule or formula to the std.out

Parameters
e formula (str) - Either formula or molecule

¢ charge (int) — Charge of the molecule

Examples

For PEPTIDE and charge 1:

Chemical formula C(34)H(53)N(7)0(15)

(('N', '"0.000"),)

Isotope Abundance

pos Mass m/z [MH]+1 transformed rel.

0 799.3599640346 800.4472772254 64799 1.00000000000 0

1 800.3629760500 801.4503895421 26251 0.40511743373 1

2 801.3660976813 802.4536114855 7164 0.11054965401 2

3 802.3692029128 803.4568170275 1456 0.02246678414 3

4 803.3720238519 804.4597382487 175 0.00269333156 None
5 804.3753571372 805.4631718673 20 0.00030196503 None
6 805.3752307743 806.4631454918 1 0.00000771671 None
7 806.3796798136 807.4676949760 0 0.00000003640 None

3.1. Isotopologue Library 19



pyQms Documentation, Release 0.5.0-beta

score_matches (matched_peaks, mz_score_percentile)
Score matched peaks.

Parameters

* matched_peaks (1ist of tuples)- Listof tuples containing

measured_mz (mmz)

measured_intensity (mi)

relative_intensity_of_calculated_isotopologue_peak (ri)

calculated_mz (cmz)

calculated_i (ci)

* mz_score_percentile (float)— weighting of mz score
Parameters that influence the scoring are ‘MIN_REL_PEAK_INTENSITY_FOR_MATCHING’
Example plots

The figure below highlights the scoring principle. Erros for m/z and intensity values are determined and
combined into the final mScore. For each peak of the isotopologue both errors are determined and influence
the final score.

k Rel.l mz_error [ppm]  sij-mz ;neasured m/ calculated m/z
u 1 1.0000 1.946E-08 0.9961 443.711274 443.711265
E 2 0.4459 -5.711E-07 0.8858 | 444.212484 444212737
3 0.1296 -9.780E-07 0.8044 | 444.713849 444.714284
4 0.0281 -1.101E-06 0.7797 | 445.215335 445.215826
SMZ: 0.9461
calculated
matched e=04 > mScore: 0.9607
measured
| . S 0.9703

ki1 2 3 4 ('
4? k  Rel.I Seii] sij-i measured I calcu}ated calculated I
%) %] *scaling I
(e 1 1.0000 |5.159E-03 0.9742 2517650.0 |2530706.6 |62091.00000
4(]_,) 2 |0.4459 |2.448E-02 0.9675 1156173.8 |1128549.0 |27689.00000
. E 3 0.1296 |2.558E-02 |0.9761 | 336327.0 |327939.1 |8046.00000
4 |0.0281 |1.754E-01 0.8503 58547.1 71000.5 1742.00000

Calculated intensities are scaled to match the measured value and the deviation is calculated. The lower
the intensity, the less accurate teh actual peaks are represented. To compensate for this, the intensity score
decreases faster for large relative intensities compared to small relative intensities. This is highlighted in
the following figure. Legend, x-axis represents the relative intensity error (measured - theoretical intensity)
and the y-axis the intensity score. Different colors represent various relative peak intensities.

20

Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

Relative intensity error
Measured - theoretical Intensity

Scoring

Note: The proper display of the formulas of the next section requires access to the Internet when browsing
the HTML documentation. The formulas are correctly embedded into the pdf of the documentation.

The pyQms matching score (mScore) is based on the work of Gower (1971) A General Coefficient of
Similarity and Some of Its Properties, Biometrics (27), 857-871. The matching and scoring is performed
on the m/z values and the intensity values independently yielding two scores, i.e. ™% and S™e"sity  In
both cases, each peak k is scored, comparing the measured value ¢ with the calculated value j (equation
1), whereas a perfect match is 1. Each peak of the isotopologue that has a relative intensity (relative to
the maximum intensity isotope peak) 7 above the matching threshold (by default 1% of the maximum
intensity isotope peak) is matched and scored.

sijr € [0,1] (3.1

The m/z score
For each peak k, the m/z similarity between measured value ¢ and the calculated value j is defined as

o
sije =1 (=) (3.2)
Whereas delta?;-,j the difference in ppm between measured mz;;, and calculated mz;; and o defines the
range in ppm, in which the score decreases from 1 to O in a linear fashion. In principle, « is equal to the
precision of the measurement defined by the user (pyQms parameter “REL_MZ_RANGE”, default 5 ppm,
http://pyqms.readthedocs.io/en/latest/params.html). For example, if the difference between measured and

theoretical m/z values would be 2.5 ppm, then the s}’ score for this peak k£ would be 0.5.

The total m/z score for all peaks termed S™* is the weighted sum of all single similarity m/z scores {7
(equation 3). The weighting is defined by the theoretical intensity of the peak k relative to the highest peak
in the theoretical isotope pattern, termed 7.

k
> STk
M= (3.3)

DTk

3.1. Isotopologue Library 21


http://venus.unive.it/romanaz/modstat_ba/gowdis.pdf
http://pyqms.readthedocs.io/en/latest/params.html

pyQms Documentation, Release 0.5.0-beta

The intensity score

Prior to intensity scoring, the scaling factor o is calculated by comparing the intensities of the measured ¢
and calculated j intensities for all peaks k within the matching threshold (see above). This scaling factor is
calculated by dividing the weighted sum of the measured intensity by the weighted sum of the theoretical

intensities (equation 4).
k
> intensity;gTy
o= (3.4)
Y intensity;,ry

Using this scaling factor, which is equal to the abundance of the measured molecule, one can calculate
6;7?;8”5”?’, which is the relative intensity error between measured and theoretical intensity for each peak k
(equation 5).

5intensity _ ‘ZntenSZtyzk — crintensityjk| 35
e intensity; (35
ointensity;y
The intensity score of peak k is then defined (equation 6).
5intensity
intensity ijk
%ij A 3.6
ik ( 1—rg+ €> (3.6)

In analogy to the m/z score (s;7;), the denominator defines the range in which the peak based intensity
score decreases from 1 to 0. However, in contrast to the m/z score, the intensity error has to be weighted
by the abundance of each peak (1 - 7, ) as more abundant peaks can be measured more accurately than
smaller peaks. Additionally, we introduced (pyQms parameter “REL_I_RANGE”, default 0.2), which
represents the most conservative relative error applied to the most precisely measured peak (r;, = 1). Thus,
the overall relative error (denominator) will increase with lower peaks The total intensity score Smtensity

is the weighted sum of all similarity scores k in analogy to the S™* score:

k
intensity
— > Sijk r

Sl’ﬂ ensity — (3.7)

k
DTk

The combined final score: mScore The final score is termed mScore and is a sum of S™# and S*"tensity,
However, because some machines can measure m/z much more accurately then intensities, we introduced
& to allow for flexibilities depending on the type of mass spectrometer used. £ (the pyQms parameter
“MZ_SCORE_PERCENTILE”, default 0.4) is the fraction the S™* score is weighted into the sum. Thus,
the final mScore is defined as:

mScore = £S™* + (1 — £)gntensity (3.8)

3.2 Result Class

class pygms .Results (lookup=None, params=None, fixed_labels=None, metabolic_labels=None,

aa_compositions=None, isotopic_distributions=None, charges=None, ver-
bose=Fulse)

pyQms results class.

Holds all matching information and lookups. Can be accessed as a dictionary. Several lookup allow the mapping
of moleclar formulas to molecules (e.g. peptides) and/or trivial names (e.g. protein names).

Structure

key (named tuple)

22

Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

¢ file_name

e formula

* charge

* label_percentiles
value (named tuple)

* spec_id

e 1t

* score

e scaling_factor

* peaks

add (key, value)
Adds match to the result container.

Parameters
* key (named tuple) - ( file_name, formula, charge, label_percentiles )

* value (named tuple)— (spec_id, rt, score, scaling_factor, peaks)
Returns formatted_key (named tuple) : ( file_name, formula, charge, label_percentiles )

Structure
key (named tuple)
* file_name
 formula
* charge
* label_percentiles
value (named tuple)
* spec_id
e 1t
* score

* scaling_factor

* peaks
calc_amounts_from_rt_info_file (rt_info_file=None, rt_border_tolerance=None,
calc_amount_function=None, evi-
dence_score_field="PEP’, buffer_only=False,

buffered_csv_dicts=None)
Function to calculate molecule/peptide amounts based on the quant summary/rt info file genearte by

write_rt_info_file (). See e.g. example script generate_quant_summary_file.py. A function to
calculate the final molecule amounts can be defined otherwise the default maximum intensity function is
used.

Parameters

e rt_info_file (str) - output file name of the quant summary/rt info csv file, must be
be a complete or relative path

3.2.

Result Class 23



pyQms Documentation, Release 0.5.0-beta

e rt_border_tolerance (int) - retention time border tolerance in minutes

* calc_amount_function (obj) — python function to calculate final amounts based
on a simple dictionary structure

The function to calculate the amount of the molecules (calc_amount_function) should be able to process
the below shown dictionary structure (obj_for_calc_amount). The default function returns the maximum
amount in the retention time window or in the complete profile. The function should return the determined
amount, the retention time (or approximate) as well as the score. If functions are used which deternine
the amount over more than one spectrum retention times for this amount should be e.g. at the maximum
intensity of the profile. Scores could be e.g. averaged or also the score at the maximum amount could be
used.

Example for obj_for_calc_amount:

{

'rt! [rtl,rt2,...],

it : [inl,in2,...7,

'scores' [scl,sc2,...]
[

14
'spec_ids' id1l,idt2,...1,

Example key names (default):
¢ ‘max I in window’
e ‘max I in window (rt)’
¢ ‘max I in window (score)’
¢ ‘auc in window’ (area under curve)
e ‘sum [ in window’ (summed up intensities)

curate_rt_windows (evidence_dict, rt_tolerance)
Internal function to curate RT windows

determine_max_itensity (0obj_for_calc_amount)
Function to determine the maximum intensity in given elution profile. The structure of the object passed to
the function is shown below. This fucntion can be used as a template function to write and use of function
to determine the amount of a molecule e.g. area under curve or summed up intensities. All self written
function must return amount, rt at or around the amount and the mScore at or around the amount in an
dictionary with appropiate key names.

Example key names (default):
¢ ‘max I in window’
¢ ‘max I in window (rt)’

¢ ‘max I in window (score)’

Note: This is the default function to determine the peptide amount when write_amount_csv() is called.

Examples:

{
'rt! : [rtl,rt2,...1,
i : [inl,in2,...1,
'scores' : [scl,sc2,...1,

24

Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

'spec_ids' : [idl,idt2,...],

Returns keys are shown above
Return type dict

extract_results (molecules=None, charges=None, file_names=None, label_percentiles=None, for-

mulas=None, score_threshold=None)
Extract selected results.

Extracts all matches from the results instance that meet given filter criteria.
Parameters

e molecules (list of str, optional) — considered molecules. Those will be
translated using self._translate_molecules_to_formulas()

* charges (1ist of int, optional)- considered charge states.
e file _names (I1ist of str, optional)- listof file names to be considered.

* label_percentiles (list of tuple, optional)- listof label percentile tu-
ples to be considered.

e formulas (1ist of str)- list of chemical formulas
Yields key, i, entry (tuple) — result class key, index of entry and entry
Structure

key (named tuple)

¢ file_name

 formula

* charge

* label_percentiles
value (named tuple)

* spec_id

*rt

* score

* scaling_factor

* peaks

max_score (molecules=None, charges=None, file_names=None, label_percentiles=None, formu-

las=None)
Find max score for a given set of parameters.

Parameters

* molecules (list of str, optional) — considered molecules. Those will be
translated using self._translate_molecules_to_formulas()

* charges (list of int, optional)- considered charge states.

e file _names (Ilist of str, optional)- listof file names to be considered.

3.2.

Result Class 25



pyQms Documentation, Release 0.5.0-beta

* label_percentiles (list of tuple, optional)-listof label percentile tu-
ples to be considered.

e formulas (1ist of str)- list of chemical formulas
Returns key is appropriate key in result.dict
Return type best_score, key, index (tuple)

plot_MIC_3D (key, file_name=None, rt_window=None, i_transform=None)
Plot MIC from results using rpy2 in 3D.
plot_MICs_2D (key_list, file_name=None, rt_window=None, i_transform=None, xlimits=None, addi-
tional_legends=None, title=None, zlimits=None, ablines=None, graphics=None)

Parameters additional_legends (dict) — key points on lists of strings that are plotted
as well.

write_result_csv (output_file_name=None)
Write raw results into a .csv file

Parameters output_file_name (str) — output file name of the csv containing containing
all raw results, should be a complete path

Warning: Depending on data size the resulting csv can become very large. Some csv viewer can not
handle files with a large number of lines.

Keys in csv:

¢ Formula : molecular formula of the molecule (str)

¢ Molecule : molecule or trivial name (str)

e Charge : charge of the molecule (int)

* ScanID : ScanlID of the quantified spectrum (int)

 Label Percentiles : Labeling percentile ( (element, enrichment in %), )

e Amount : the determined amount of the molecule

» Retention Time : retetention time of the ScanID

e mScore : score of the isotopologue match

* Filename : filename of spectrum input files
write_result_mztab (output_file_name=None, rt_border_tolerance=None)

Write minimal peptide quantification results into a .mztab file. It is neccessary to specify the
‘formula to evidences’ dict in the lookup of the results class to write results!

Note:
This basic mzTab writer is still in beta stage. Use and evaluate with care.
PRIDE CV based quantifcation unit and value is fixd to:
» PRIDE:0000393, Relative quantification unit
» PRIDE:0000425, MS1 intensity based label-free quantification method

Args:

26

Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

output_file_name (str): output file name of the mztab containing containing all raw re-
sults, should be a complete path
Note:

Adiitional information has to be passed tot he result class for a more complete mztab
output.

Keys in mztab:
* sequence
* accession
* unique
* database
» database_version
* search_engine
* best_search_engine_score[1-n]
* modifications
e retention_time
¢ retention_time_window
* charge
* mass_to_charge
* peptide_abundance_study_variable[1-n]
* peptide_abundance_stdev_study_variable[1-n]
* peptide_abundance_std_error_study_variable[1-n]
* search_engine_score[1-n]_ms_run[1-n]
* peptide_abundance_assay[1-n]
* spectra_ref
* opt_{identifier}_*
* reliability
* uri

Addtional information can be added to the mzTab file by adding a dict like shown below to the re-
sults.lookup dict under the key ‘mztab_meta_info’.:

mztab_meta_info = {
'protein_search_engine_score' [1,
'psm_search_engine_score' : ['"[MS,MS:1001475,0MSSA:evalue, ]'],
'fixed_mod' ["[UNIMOD, UNIMOD:4, Carbamidomethyl, ]
! J ’
'variable_mod' : ['"[UNIMOD, UNIMOD:35, Oxidation, ]'],
'study_variable-description' : ['Standard BSA measurement'],
'ms_run-location' : ['"BSAl.mzML'],

3.2. Result Class 27



pyQms Documentation, Release 0.5.0-beta

write_rt_info_file (output_file=None, list_of_csvdicts=None, trivial_name_lookup=None,

Function to write a default quant summary/rt info file. See e.g. example script gener-

rt_border_tolerance=None, update=True, buffer_only=False)

ate_quant_summary_file.py.

The quant summary file can manually be updated (e.g. the start and stop RT information). If an evidence
lookup is present in the result class ( can be passed to the isotopologue library or later be set in the
result class), these information are used to define the retention time borders (e.g. peptide identfication

Parameters

e output_file (str)— output file name of the csv, should be a complete path

* list_of_ csvdicts (1ist) — list of dictionaries passed to the DictWriter class, de-

fault fieldnames can be found below

* trivial_name_lookup (dict) — self defined trivial_name_lookup, see format be-

low.

e rt_border_tolerance (int) - retention time border tolerance in minutes

e update (bool)—if True read in or passed dictionaries in list_of_csvdicts will be updated

with default evidence and trivial name information

information from peptide spectrum matches).

Default fieldnames:

file_name : filename of spectrum input file

formula : molecular formula of the molecule

molecule : molecule or trivial name

trivial_name(s) : protein or trivial names

label_percentiles : labeling percentile ( (element, enrichment in %), )

charge : charge of the molecule

start (min) : start of retention time window

stop (min) : stop of retention time window

max I in window : maximum intensity in retention time window

max [ in window (rt) : retention time @ maximum intensity in retention time window
max [ in window (score) : score @ maximum intensity in retention time window
auc in window : area under curve in retention time window

sum I in window : summed up intensities in retention time window

evidences (min) : all evidences/identifications (score @rt;...)

Trivial name lookup example:

{

'"C(33)H(59)14N(1)N(8)0(9)S(1)" : ['BSA','Bovine serum albumine']

28

Chapter 3. Contents



mailto:score@rt

pyQms Documentation, Release 0.5.0-beta

3.3 Chemical composition

class pygms .ChemicalComposition (sequence=None, aa_compositions=None, iso-
topic_distributions=None)
Chemical composition class. The actual sequence or formula can be reset using the add function.

Keyword Arguments
* sequence (str)— Peptide or chemical formula sequence
* aa_compositions (Optional [dict])— amino acid compositions
* isotopic_distributions (Optional [dict])—isotopic distributions
Keyword argument examples:
* sequence

This can for example be:

molecules = [
'"+H202H2-0H"',
'+ '.format ('H20"),
! '.format (pepitde='ELVISLIVES'),
! + '.format ('PO3', peptide='ELVISLIVES'"),
! # : ' format (
peptide = 'ELVISLIVES',
unimod = 'Oxidation',
pos =1
)
]
Examples
>>> ¢ = pygms.ChemicalComposition ()

>>> c.use ("ELVISLIVES#Acetyl:1")
>>> c.hill_notation ()
'C52H90N10018"
>>> c.hill_notation_unimod ()
C(52)H(90)N(10)0(18)"
>>> ¢
{'o': 18, 'H': 90, 'C': 52, 'N': 10}
>>> c.composition_of_mod_at_pos[1l]
defaultdict (<class 'int'>, {'O': 1, 'H': 2, 'C': 2})
>>> c.composition_of_aa_at_pos[1]
{'o': 3, 'H': 7, 'C': 5, 'N': 1}
>>> c.composition_at_pos[1l]
defaultdict (<class 'int'>, {'O': 4, 'H': 9, 'C': 7, 'N': 1})

>>> ¢ = pygms.ChemicalComposition ('+H202H2")
>>> C

{'o': 2, 'H': 4}

>>> c.subtract_chemical_formula ('H3")

>>> ¢

{'o': 2, 'H': 1}

3.3. Chemical composition 29



pyQms Documentation, Release 0.5.0-beta

Note: We did not include mass calculation, since pyQms will do it much more accurately using unimod and
other element enrichments.

add_chemical_formula (chemical_formula)
Adds chemical formula to the instance

Chemical formula can be a string or a dictionary with the element count.

For example:

chemical_formula = 'CI8H36N9018'
chemical_formula = {

'c' . 18,

'H' : 36,

'N'" 9,

'o' : 18
}

add_peptide (peptide)
Adds peptide sequence to the instance.

Note: Only standard amino acids can be processed. If one uses special amino acids like (U of F) they
have to be added to knowledge_base.py.

clear ()
Resets all lookup dictionaries and self

One class instance can be used analysing a series of sequences, thereby avoiding class instantiation over-
head.

Warning: Make sure to reset when looping over sequences and use the class. Chemical formulas
(elemental compositions) will accumulate if not resetted.

composition_at_pos = None

dict — chemical composition at given peptide position incl modifications (if peptide sequence was used as
input or using the use function)

Note: Numbering starts at position 1, since all PSM search engines use this nomenclature.

composition_of_aa_at_pos = None

dict — chemical composition of amino acid at given peptide position (if peptide sequence was used as input
or using the use function)

Note: Numbering starts at position 1, since all PSM search engines use this nomenclature.

Examples:

c.composition_of_mod_at_pos[l] = {
'15N': 2, '13C': 6, 'N': -2, 'C': -6

}

30 Chapter 3. Contents




pyQms Documentation, Release 0.5.0-beta

composition_of_mod_at_pos = None
dict — chemical composition of unimod modifications at given position (if peptide sequence was used as
input or using the use function)

Note: Numbering starts at position 1, since all PSM search engines use this nomenclature.

hill_notation (include_ones=False, cc=None)
Formats chemical composition into Hill notation string.

Parameters cc (dict, optional)-— elemental composition dict
Returns
Hill notation format of self.

For example:

'C50H88N10017"'

Return type str

hill notation_unimod (cc=None)
Formats chemical composition into Hill notation string adding unimod features.

Parameters cc (dict, optional)- elemental composition dict
Returns
Hill notation format including unimod format rules of self.

For example:

Return type str

subtract_chemical_formula (chemical_formula)
Subtracts chemical formula from instance.

subtract_peptide (peptide)
Subtracts peptide (chemical formula) from instance.

use (sequence)
Re-initialize the class with a new sequence

This is helpful if one ones to use the same class instance for multiple sequence since it remove class
instantiation overhead.

Parameters sequence (str) -

Note: Will clear the current chemical composition dict!

3.4 Unimod mapper

class pygms . UnimodMapper
UnimodMapper class that creates lookup to the unimod.xml located in kb/ext/unimod.xml and offers several
helper methods.

3.4. Unimod mapper 31


https://en.wikipedia.org/wiki/Hill_system
https://en.wikipedia.org/wiki/Hill_system
http://www.unimod.org/fields.html

pyQms Documentation, Release 0.5.0-beta

Mapping from e.g. name to composition or unimod ID to mass is possible.
Please refer to unimod for further informations on modifications including naming, formulas, masses etc.

appMass2element_1list (mass, decimal_places=2)
Creates a list of element composition dicts for a given approximate mass

Parameters mass (f1oat)— approximate mass of modification

Keyword Arguments decimal_places (int) - Precision with which the masses in the Uni-
mod is compared to the input, i.e. round( mass, decimal_places )

Returns Dicts of elements
Return type list

Examples:

>>> import pygms
>>> U = pygms.UnimodMapper ()
>>> U.appMass2element_list (18, decimal_places=0)

[{'F': 1, 'H': -1}, {'13C': 1, 'H': -1, '2H': 3},
{'"H': -2, 'C': -1, 'S': 1}, {'H': 2, 'C': 4, 'O': -2},
{'H': -2, 'C': -1, '0': 2}]

appMass2id_1list (mass, decimal_places=2)
Creates a list of unimod IDs for a given approximate mass

Parameters mass (f1oat) — approximate mass of modification

Keyword Arguments decimal_places (int)—Precision with which the masses in the Uni-
mod is compared to the input, i.e. round( mass, decimal_places )

Returns Unimod IDs
Return type list

Examples:

>>> import pydgms

>>> U pyams .UnimodMapper ()

>>> U.appMass2id_list (18, decimal_places=0)
(127, '329', '608', '1079', '1167"']

appMass2name_1list (mass, decimal_places=2)
Creates a list of unimod names for a given approximate mass

Parameters mass (float) — approximate mass of modification

Keyword Arguments decimal_places (int)—Precision with which the masses in the Uni-
mod is compared to the input, i.e. round( mass, decimal_places )

Returns Unimod names
Return type list

Examples:

>>> import pydgms
>>> U pyams . UnimodMapper ()
>>> U.appMass2name_list (18, decimal_places=0)
['"Fluoro', 'Methyl:2H(3)13C(1l)', 'Xle->Met', 'Glu->Phe', 'Pro->Asp']

32 Chapter 3. Contents



http://www.unimod.org/modifications_list.php?

pyQms Documentation, Release 0.5.0-beta

composition2id_1list (composition)
Converts unimod composition to unimod name list, since a given composition can map to mutiple entries
in the XML.

Parameters composition (dict)— element composition (element, count pairs)
Returns Unimod IDs
Return type list

composition2mass (composition)
Converts unimod composition to unimod monoisotopic mass.

Parameters composition (dict)— element composition (element, count pairs)
Returns monoisotopic mass
Return type float

composition2name_1list (composition)
Converts unimod composition to unimod name list, since a given composition can map to mutiple entries
in the XML.

Parameters composition (dict)— element composition (element, count pairs)
Returns Unimod names
Return type list

id2composition (unimod_id)
Converts unimod ID to unimod composition

Parameters unimod_id (int) — identifier of modification
Returns Unimod elemental composition
Return type dict

id2mass (unimod_id)
Converts unimod ID to unimod mass

Parameters unimod_id (int) — identifier of modification
Returns Unimod mono isotopic mass
Return type float

id2name (unimod_id)
Converts unimod ID to unimod name

Parameters unimod_id (int) — identifier of modification
Returns Unimod name
Return type str

mass2composition_list (mass)
Converts unimod mass to unimod element composition list, since a given mass can map to mutiple entries
in the XML.

Parameters mass (f1oat)— mass of modification
Returns Unimod elemental compositions
Return type list

mass2id_list (mass)
Converts unimod mass to unimod name list, since a given mass can map to mutiple entries in the XML.

3.4.

Unimod mapper 33



pyQms Documentation, Release 0.5.0-beta

Parameters mass (f1oat)— mass of modification
Returns Unimod IDs
Return type list

mass2name_list (mass)
Converts unimod mass to unimod name list, since a given mass can map to mutiple entries in the XML.

Parameters mass (f1oat)— mass of modification
Returns Unimod names
Return type list

name2composition (unimod_name)
Converts unimod name to unimod composition

Parameters unimod_name (st r)— name of modification (as named in unimod)
Returns Unimod elemental composition
Return type dict

name2id (unimod_name)
Converts unimod name to unimod ID

Parameters unimod_name (st r)— name of modification (as named in unimod)
Returns Unimod ID
Return type int

name2mass (unimod_name)
Converts unimod name to unimod mono isotopic mass

Parameters unimod_name (st r)— name of modification (as named in unimod)
Returns Unimod mono isotopic mass
Return type float

name2specificity_site_list (unimod_name)
Converts unimod name to list of specified amino acids or sites

Parameters unimod_name (st r)— name of modification (as named in unimod)
Returns list of specificity sites

Return type list

3.5 Adaptors

adaptors._parse_evidence_and_format_fixed labels (data=None)

Reformats input params to pyQms compatible params. Additionally evidence files are read in and the fixed
labels are reformatted (stripped from the modifications if peptides are read in) as required by pyQms. This
is especially required if data/samples contains Carbamidomethylation as modification and the sample was e.g.
15N labeled. This ensures that the nitrogens pools of the peptides (which are 15N labeled) do not mix up with
the nitrogen pool of the Carbamidomethylation (14N since intriduced during sample preparation). All fixed
modifications needs to be specified so that is can be ignored from the input evidence file but correctly formatted
for the parameters.

Example format:

34 Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

'molecules' : {'PEPTIDEA', ...},
'evidences' : {
'C18H36018N9" : {
'PEPTIDEA'" : {
'evidences' : [
{
'RT':13.37,

'score':0.01,
'score_field':'PEP'

by

1,

'trivial_names': [
'"PROTEIN_NAME',
'"PATHWAY_NAME',

by

bo

'charges'  {1,2,...},

'params' : |
'MACHINE_OFFSET_IN_PPM':O,

by

Example of data passed:

{
{'NAME': 'default'}},

'params': {'measurement_and_reporting’':

'fixed_labels': [
{

'modification': {
'unimodID': '4"',
'specificity_sites': ['C'],

'mono_mass': 57.021464,

'element': {'O': 1, 'H': 3, 'N': 1, 'C': 2},

'name': 'Carbamidomethyl'
}I
'AA': 'C"
}
JI
'molecules': 'AA',
'metabolic_labels': [{'modification': '0, 0.99', 'atom': '"15N'}],

'charges': [1, 2, 3, 4, 51,

'file': '/BSAl.mzML'

}

Returns:

dict: molecules, evidences, correctly fomatted fixed labels, charges and
parameters

adaptors.parse_evidence (fixed_labels=None, evidence_files=None, molecules=None, evi-
dence_score_field=None, return_raw_csv_data="False)
Reads in the evidence file and returns the final formatted fixed labels, the evidence lookup, which is passed to

the isotopologue library and the final formatted molecules (fixed labels are stripped form the molecules).

3.5. Adaptors 35



pyQms Documentation, Release 0.5.0-beta

Note: Output .csv files from Ursgal (Documentation) can directly be used. Also mzTab files can be used as
input.

Parameters
* fixed_labels (dict) — dict with fixed labels, example format is shown below.
* evidence_files (1ist) - list of evidence file paths.
e molecules (I1ist)— list of additional molecules
* evidence_score_field (str) — specify fieldname which holds the search engine

score (Default is “PEP”)

Example fixed label format:

{
el : [

'element': {
'o': 1,
'H': 3,
"14N': 1,
'C': 2
}I
'evidence_mod_name': 'Carbamidomethyl'

by

Returns final formatted fixed label dict, evidence lookup, list of molecules
Return type tuple
adaptors.calc_amount_function (obj_for_calc_amount)
Fucntion to calculate actual molecule amounts. Three types of amounts are calculated for a matched isotope

chromatogram (MIC), maximum intensity, summed up intensity and area under curve. Additionally the score
and the retention time at the maximum intensity are determined.

A test function exists to check correct amount determination.
Returned keys in amound dict:

¢ ‘max I in window’

¢ ‘max I in window (rt)’

¢ ‘max I in window (score)’

¢ ‘auc in window’

e ‘sum I in window’

Returns amount dict with keys shown above.

Return type dict

36 Chapter 3. Contents


https://github.com/ursgal/ursgal
http://ursgal.readthedocs.io/en/latest/
http://www.psidev.info/mztab

pyQms Documentation, Release 0.5.0-beta

3.6 Parameters

pyQms default params, parsed from current params.py file.

Note: This sphinx source file was auto-generated using pyqms/docs/parse_params_for_docu.py, which parses
pyqms/params.py Please do not modify this file directly, but rather the original parameter files!

>>> params = {

'BUILD_RESULT_INDEX'' : True,

'COLORS'' : {0.0: (37, 37, 37), 0.1: (99, 99, 99), 0.3: (204, 204, 204), 0.6:_
— (248, 120, 72), 0.8: (209, 239, 121), 0.5: (203, 27, 29), 1: (27, 137, 62), 0.7:

— (253, 219, 121), 0O0.2: (150, 150, 150), 0.9: (129, 202, 78), 0.4: (247, 247, 247)},

'"ELEMENT_MIN_ABUNDANCE'' : 0.001,

"FIXED_LABEL_ISOTOPE_ENRICHMENT LEVELS'' : {'2H': 0.994, '13C': 0.996, '15N': |
—~0.994},

"INTENSITY TRANSFORMATION_FACTOR'' : 100000.0,

"INTERNAL_PRECISION'' : 1000,

"LOWER_MZ_LIMIT'' : 150,

'"MACHINE_OFFSET_IN_PPM'' : 0.0,

'"MAX_MOLECULES_PER_MATCH_BIN'' : 20,

"MINIMUM_NUMBER_OF_MATCHED_ISOTOPOLOGUES'' : 2,

"MIN_REL_PEAK_INTENSITY FOR_MATCHING'' : 0.01,

'MZ_SCORE_PERCENTILE'' : 0.4,

"MZ_TRANSFORMATION_FACTOR'' : 10000,

'"M_SCORE_THRESHOLD'' : 0.5,

"PERCENTILE_FORMAT_STRING'' : {0:.3f},

"REL_I_RANGE'' : 0.2,

'REL_MZ_RANGE'' : 5e-06,

"REQUIRED_PERCENTILE_PEAK_OVERLAP'' : 0.5,

"SILAC_AAS_LOCKED_IN_EXPERIMENT'' : None,

"UPPER_MZ_LIMIT'' : 2000,

3.6.1 Descriptions
REQUIRED_PERCENTILE_PEAK_OVERLAP

Defines the percentile how many theoretical and measured peaks must overlap so that the match is considered further.
E.g. 0.5 dictates, that 2 of 4 peaks must ovelap

Default value: 0.5
ELEMENT_MIN_ABUNDANCE

Defines the minimum abundance of an element to be considered for the calculation of the isotopologue(s)

Default value: 0.001

3.6. Parameters 37



pyQms Documentation, Release 0.5.0-beta

MIN_REL_PEAK_INTENSITY_FOR_MATCHING

Defines the relative minimum peak intensity within an isotopologue to be considered for matching

Default value: 0.01

REL_I_RANGE

Defines the relative intensity error range. Represents the relative error to the most intense peak.

Default value: 0.2

REL_MZ_RANGE
Defines the relative m/z error range or the measuring precision of the used mass spectrometer. Is equal to the precision
of the used machine in parts per million (ppm)

Default value: 5e-06

MZ_SCORE_PERCENTILE
Defines the weighting between the m/z error and the intensity error for the total score. This weighting can be adjusted
for different mass spectrometers, depending on whether m/z or intensity can be measured more accurately

Default value: 0.4

MINIMUM_NUMBER_OF_MATCHED_ISOTOPOLOGUES

Number of isotopologue peaks that are required to yield a mScore. Very small molecules may yield only one isotope
peak (monoisotopic peak) or the non-monoisotopic peaks have a very low abundance, so that they ware not considered
for macthing

Default value: 2

UPPER_MZ_LIMIT

Defines the maximum m/z value to be considered by pyQms. Can be adjusted for better performance of pyQms or to
limit for the measuring range of the used mass spectrometer

Default value: 2000

LOWER_MZ_LIMIT

Defines the minimum m/z value to be considered by pyQms. Can be adjusted for better performance of pyQms or to
limit for the measuring range of the used mass spectrometer

Default value: 150

38 Chapter 3. Contents



pyQms Documentation, Release 0.5.0-beta

MACHINE_OFFSET_IN_PPM

A mass spectrometer measuring error (constant machine/calibration dependent mass or m/z offset) can be defined here
in parts per million (ppm)

Default value: 0.0
M_SCORE_THRESHOLD

The minimum mScore, which should be reported. Typically a mScore above 0.7 yields a FDR below 1%. Lower
mScore thresholds can be used to check for machine errors or to optimize matching of pulse-chase samples

Default value: 0.5
SILAC_AAS LOCKED_IN_EXPERIMENT

These aminoacids have always the defined fixed SILCA modification and their atoms are not considered when calcu-
lating a partially labeling percentile

Default value: None
PERCENTILE_FORMAT _STRING

Defines the standard format string when formatting labeling percentile float. Standard format considers three floating
points

Default value: {0:.3f}

INTERNAL_PRECISION

Defines the internal precision for float to int conversion

Default value: 1000

MAX_MOLECULES PER_MATCH_BIN

Defines the number of molecules per match bin. Influences the matching speed
Default value: 20

MZ_TRANSFORMATION_FACTOR

All m/z values are transformed by this factor This value will be multiplied with m/z values before converted to integer.
This means that values with a difference of 0.1 ppm @ 1000 m/z won’t be distinguishable

Default value: 10000

INTENSITY_TRANSFORMATION_FACTOR

All intensities are transformed with this factor

Default value: 100000.0

3.6. Parameters 39



pyQms Documentation, Release 0.5.0-beta

BUILD_RESULT_INDEX

The results are indexed for faster access

Default value: True

3.7 Frequently asked questions

3.7.1 Q: What are the hardware requirements for pyQms?

A: pyQms can be run on any (more or less up to date) computer supporting macOS, Linux or Windows and Python
version 3.4+. Fast access to spectra is beneficial for the overall performance (e.g. mzML files stored on SSDs). In
our experience, slow HDDs (also reading multiple files at the same time from the same HDD or network resource) are
most of the time the limiting factor during large scale quantification.

Please consider that the RAM usage dependens on the number of input molecules, charges and labeling percentiles.
Some examples are given below.

Molecules # | Charge | label percentiles RAM [GB]
1000 1-5 None 0.13
10000 1-5 None 0.92
20000 1-5 None 1.76
30000 1-5 None 2.62
10000 1-5 15N 0.0, 0.99 1.90
100 1-5 15N 0.0-0.99, 0.01 steps | 1.78

3.7.2 Q: What data/file formats are accepted by pyQms?

A: pyQms accepts simple peak lists consisting of m/z and intensity pairs. E.g.

peak_list = [
( mz_1, intensity_1 ),
( mz_2, intensity_2 ),
( mz_n, intensity_n ),

]

Depending on the reader/access to the file format, any input format can be used (mzML, mzXML, RAW, mgf, dta,
...). pyQms comes with pymzML as a dependency, as access to the standard format for mass spectrometry, mzML.
It is beneficial, if apart from the peak list also the retention time and the spectrum ID can be provided to pyQms to
make data processing and evaluation more straightforward for the user. pyQms comes also with an adaptor to Ursgal
(Ursgal) identification csv files, for automated parsing of peptides and modifications.

3.7.3 Q: Does the input data need to be processed?

A: We leave data pre-processing completely on the user side. However, spectra data needs to be centroided. In the
example scripts we use pymzML for data centroiding, if the spectra were not already centroided by e.g. Proteome
Discoverer or msconvert implemented in Proteowizard.

40 Chapter 3. Contents



https://github.com/ursgal/ursgal

pyQms Documentation, Release 0.5.0-beta

3.7.4 Q: How should my (input) molecules look like?
A: pyQms accepts different formats of input molecules. Please refer to the documentation of the pygms.
IsotopologueLibrary for further details.

Input molecules can be plain peptides (also with modifications in unimod style) or molecular formulas. Please provide
multiple molecules in a Python list:

'PEPTIDE'

'PEPTIDE+HPO3"
'PEPTIDE#Oxidation:1;Phospho:4"
'+H20'

3.7.5 Q: Is high resolution and low resolution data supported?

A: Since resolved isotope patterns are required, only high resolution data can be processed. The precision can be
adjusted in the parameters (REL_MZ_RANGE). As default, 5 ppm are used (See: Parameters).

3.7.6 Q: Why should | use pyQms to analyze my data?

A: pyQms offers a unique way to quantify all kind of mass spectrometry data including metabolomics, lipidomics
and proteomics. All kind of labelings (even completely novel) can be defined and quantified. In contrast to many
other algorithms, pyQms will report a score directly reflecting the quanlity of the match, providing the user with
useful information and enabling the calculation of FDRs. As a rule-of-thumb, an mScore of 0.7 yields an FDR <= 1%
for standard approaches (e.g. label-free or metabolic labeling with 15N). Further, pulse chase data can be analyzed
and evaluated. Last but not least, pyQms compares favourably to other popular quantification algorithms in terms of
accuracy and sensitivity.

3.7.7 Q: How can i adjust pyQms parameters to my mass spectrometer?

A: Genereally, now extensive adjustements are required. It is normally sufficient to use the default parameters. For
further specifications please refer to the Parameters section. Most importantly the REL_MZ RANGE has to be set
according to the mass spectrometer’s accuracy.

3.7.8 Q: Where can | find my final peptide and protein abundances of my LC-MS/MS
runs?

A: In pyQms, we offer, on purpose however, no direct estimation of peptide or even protein abundances. We be-
lieve, that the user should use the raw quantification data provided by pyQms and determine the abundance with own
functions. However, pyQms offers adaptors to read in peptide identification results and use this information to set
RT windows and determine e.g. the maximum intensity within this window. Please refer to the Example Scripts and
Adaptors sections for further information and usage examples. We want to keep pyQms open for programmers and
tailor the abundance estimation to their needs.

3.7.9 Q: Are there any known issues/problems etc. ?

A: So far, no crucial issues or problems were reported. If you encounter any problem feel free to add an issue at
GitHub (https://github.com/pyQms/pyqms).

3.7. Frequently asked questions 41



https://github.com/pyQms/pyqms

pyQms Documentation, Release 0.5.0-beta

3.7.10 Q: What are the benefits of using pyQms?

A: Besides using a very accurate quantification tool, which is freely available and universally applicable, you and your
data will benefit from the concept of the mScore, which adds a new layer of quality assurance to your data analysis.

3.7.11 Q: How does the scoring work? How is the mScore determined?

A: Please refer to the documentation of pygms. IsotopologueLibrary and the publicationfor details on the
scoring. The figure below highlights the principle of the mScore and the final score determination originating from the
m/z and intensity accuracy scoring.

measured m/

k Rel.l mz_error [ppm] sij-mz calculated m/z
u 1 1.0000 1.946E-08 0.9961 | 443.711274 443.711265
E 2 0.4459 -5.711E-07 0.8858 | 444.212484 444212737
3 0.1296 -9.780E-07 0.8044 | 444.713849 444.714284
4 0.0281 -1.101E-06 0.7797 | 445.215335 445.215826

R

SMZ: 0.9461
calculated

matched £=04 mScore: 0.9607
measured

| | S: 0.9703

1234(’

k  Rel.I =

%]

sij-i measured I calcu}ated calculated I
*scaling I

1 |1.0000 |5.159E-03 |0.9742 2517650.0 |2530706.6 |62091.00000
2 |0.4459 |2.448E-02 0.9675 1156173.8 |1128549.0 |27689.00000
3 0.1296 |2.558E-02 |0.9761 336327.0 |327939.1 |8046.00000
4 10.0281 |1.754E-01 |0.8503 58547.1 71000.5 1742.00000

intensity .

3.7.12 Q: How can | contribute to the further development of pyQms?
A: Feel free to clone or fork pyQms from GitHub (https://github.com/pyQms/pygms) and place pull request for your

adjustements/improvements/recommendations! Another way is to open an issue at GitHub and let us try to fix it and
help you.

3.7.13 Q: I have a problem/issue regarding py@Qms, where can | find help?

You can mail us or open an issue at GitHub (https://github.com/pyQms/pyqms) describing your problem/question etc.!
We will try to help you.

42 Chapter 3. Contents


https://github.com/pyQms/pyqms
https://github.com/pyQms/pyqms

CHAPTER
FOUR

EXAMPLES

4.1 Example Scripts

pyQms comes with mupltiple example script which can be used to test the fucntionality and can be used as templates
for own scripts.

4.1.1 Example Scripts

General and quick start

Get the BSA example mzML file

get_example_BSA_file.main ()
Downloads the BSA.mzML example file also used in openMS and Ursgal.

This file is ideally suited for the use with the example scripts to test pyQms.
Will download the BSA1.mzML to the data folder ( ../data/BSA1.mzML )
Usage:

Jget_example_BSA_file.py

#!/usr/bin/env python3
# encoding: utf-8

mmwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

Leufken,
Niehues,
Sarin, L.
Hippler,
Leidel, S.A.
Fufezan, C.

S

%% % % % %

mwn

43




pyQms Documentation, Release 0.5.0-beta

import sys

from urllib import request as request
import os

import shutil

def main () :

mmn

Downloads the BSA.mzML example file also used in openMS and Ursgal.

This file is ideally suited for the use with the example scripts to test
pyQOms.

wWill download the BSAl.mzML to the data folder ( ../data/BSAl.mzML )
Usage:

./get_example BSA file.py

mmn

mzML_file = os.path.join(
os.pardir,
'data',
'BSAl.mzML'

)

if os.path.exists (mzML_file) is False:

http_url = 'http://sourceforge.net/p/open-ms/code/HEAD/tree/OpenMS/share/
—OpenMS/examples/BSA/BSALl.mzML? format=raw'
basename = os.path.basename (http_url) .replace('?',"'") #Win compatible

output_path = os.path.join( os.path.dirname (mzML_file), basename)
with open( output_path, 'wb') as ooo:
local_filename, headers
http_url,
filename = output_path

request.urlretrieve (

try:
shutil.move (
"{0}?format=raw'.format (mzML_file),
mzML_file
)
except:

shutil.move (
'"{0}format=raw'.format (mzML_file),

mzML_file
)
print (
'Saved file as {0}'.format (
mzML_file,
)
)
return
if name_ == '_ _main__':
main ()

44 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

Basic usage

Parse ident file and quantify

parse_ident_file_and_quantify.main (ident_file=None, mzml_file=None)
Script to automatically parse Ursgal result files and quantify it via pyQms. Please refer to Documenation of
Adaptors for further information.

Ursgal result files or files in mzTab format are read in and used for quantification of the BSA example file.

Note: Use e.g. the BSAl.mzML example file. Please download it first using ‘get_example_BSA_file.py’.
Evidence files can also be found in the data folder ‘BSAl1_omssa_2_1_9_ unified.csv’ or
‘BSA1_omssa_2_1_9.mztab’

Usage:

Jparse_ident_file_and_quantify.py <ident_file> <mzml_file>

#!/usr/bin/env python3
# encoding: utf-8

mown

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

+ Leufken,
* Niehues,
* Sarin, L.
* Hippler,
* Leidel, S.A.
* Fufezan, C.

RN

mmn

import pygms

import sys

import pymzml

import pickle

import os

import pygms.adaptors

def main (ident_file=None, mzml_file=None) :

mon

Script to automatically parse ‘Ursgal _ result files and quantify it via
pyOms. Please refer to Documenation of :doc: adaptors’ for further
information.

‘Ursgal ' _ result files or files in "mzTab ' format are read in and used for

quantification of the BSA example file.

Note:

4.1. Example Scripts 45



https://github.com/ursgal/ursgal
https://github.com/ursgal/ursgal

pyQms Documentation, Release 0.5.0-beta

Use e.g. the BSAIl.mzML example file. Please download it first using
'get_example BSA_file.py'. Evidence files can also be found in the

data folder 'BSAl_omssa_ 2 1_9 unified.csv' or 'BSAl_omssa_Z2_1_9.mztab'

Usage:
./parse_ident_file_and_quantify.py <ident_file> <mzml_file>

_Ursgal:
https://github.com/ursgal/ursgal

_mzTab:
http://www.psidev.info/mztab

mmn

if ident_file.upper () .endswith ('MZTABR") :

evidence_score_field = 'search_engine_score[l]"'
else:
# this is the default value in the adaptor
evidence_score_field = 'PEP'
print (
'Evidence score field "{0}" will be used.'.format (

evidence_score_field

fixed_labels, evidences, molecules = pygms.adaptors.parse_evidence (
fixed_labels = None,
evidence_files = [ ident_file 7],
evidence_score_field = evidence_score_field

params = {
'molecules' : molecules,
'charges' : [, 2, 3, 4, 5],
'metabolic_labels' : {'15N' : [0]},
'fixed_labels' : fixed_labels,
'verbose' : True,
'evidences' : evidences

1lib = pygms.Isotopologuelibrary( **params )

run = pymzml.run.Reader (
mzml_file,
extraAccessions = [
('"MS:1000016"', ['value', 'unitName'])
J 14

obo_version = '1.1.0"'
)
out_folder = os.path.dirname (mzml_file)
mzml_file_basename = os.path.basename (mzml_file)
results = None
for spectrum in run:
scan_time, unit = spectrum.get ('scan time', (None, None ))
if unit == 'second':

46 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

time_div_factor = 60.0
# convert seconds to minutes...
else:
time_div_factor = 1
if spectrum['ms level'] == 1:
results = lib.match_all(
mz_i_list = spectrum.centroidedPeaks,
file_name = mzml_file_basename,
spec_id = spectrum['id'],
spec_rt = scan_time / time_div_factor,
results = results

)
pickle.dump (
results,
open (
os.path. join(
out_folder,
"{0}_pyOms_results.pkl'.format (
mzml_file basename

)y

Twb !
)
)
return
if name == '_ _main_ ':
if len( sys.argv ) < 3:
print (main. doc_ )
else:
main (
ident_file = sys.argv[l],
mzml_file = sys.argv[2]

Simple match on peak list

basic_quantification_example.main (mzml=None)
Example script as template for most basic usage of quantification using pyQms.

Use spectrum 1165 of the BSA1.mzML example file. A subrange of the spectrum from m/z 400 to 500 is used.

Usage: ./basic_quantification_example.py

Note: This example does not require a reader to access ms spectra, since a simnple peak liost is used.

#!/usr/bin/env python3
# encoding: utf-8

mmwn

Python module for fast and accurate mass spectrometry data quantification

4.1. Example Scripts a7




pyQms Documentation, Release 0.5.0-beta

mmon

:license: MIT, see LICENSE.txt for more details

Authors:

*

Leufken, J.
Niehues, A.
Sarin, L.P.
Hippler, M.
Leidel, S.A.
Fufezan, C.

* %k % %

*

import pygms
import sys
import pickle
import os
import pprint

def main( mzml=None) :

mmn

Example script as template for most basic usage of quantification using
pyoms.

Use spectrum 1165 of the BSAl.mzML example file. A subrange of the spectrum
from m/z 400 to 500 is used.

Usage:
./basic_quantification_example.py

Note:
This example does not require a reader to access ms spectra, since a
simnple peak liost is used.

mmn

peak_list = [
(404.2492407565097, 2652.905029296875),
(405.3003310237508, 4831.56103515625),
(408.8403673369115, 23153.7109375),
(409.17476109421705, 10182.2822265625),
(409.5098740355617, 4770.97412109375),
(411.17196124490727, 3454.364013671875),
(413.26627826402705, 6861.84912109375),
(419.3157903165357, 90201.5625),
(420.2440507067882, 11098.4716796875),
(420.31917273788645, 22288.9140625),
(420.73825281590496, 8159.7099609375),
(421.2406187369968, 3768.656494140625),
(427.3787652898548, 5680.43212890625),
(433.3316647490907, 8430.30859375),
(434.705984428002, 25924.38671875),
(435.2080179219357, 11041.2060546875),
(443.6708762397708, 4081.282470703125),
(443.69049198141124, 5107.13330078125),
(443.6974813419733, 9135.3125),
(443.7112735313511, 2517650.0),

48

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

(443.7282222289076, 5571.26025390625),
(443.7379762316008, 5227.4033203125),
(444.1998579474954, 3021.341796875),
(444.21248374593875, 1156173.75),
(444.71384916266277, 336326.96875),
(445.21533524843596, 58547.0703125),
(445.71700965093, 4182.04345703125),
(446.1200302053469, 93216.3359375),
(447.09963627699824, 3806.537109375),
(447.1169242266495, 59846.37109375),
(447.3464079857604, 13170.9541015625),
(448.11566395552086, 9294.5107421875),
(448.3500303628631, 3213.052490234375),
(452.1123280000919, 5092.0869140625),
(461.1934526664677, 4022.537353515625),
(462.1463969367603, 99732.5),
(463.14561508666384, 24247.015625),
(464.1433022096936, 20417.041015625),
(465.1421080732791, 3222.4052734375),
(470.1669593722212, 8621.81640625),
(475.23989190282134, 3369.073974609375),
(493.27465300375036, 2725.885986328125),
(496.0077303201583, 8604.0830078125),

]

print ('{0:-7100}"'.format ('Library generation'))

1lib = pyagms.IsotopologuelLibrary (

molecules = [ 'DDSPDLPK' ],
charges =021,
metabolic_labels = None,
fixed_labels = None,

verbose = True

)
print ('{0:-"100}"'.format ('Library generation'))

results = lib.match_all(
mz_1i_list = peak_list,

file_name = 'BSA_test',
spec_id = 1165,
spec_rt = 29.10,
results = None

)

print ()

print ('{0:-7100}"'.format ('Results summary'))
for key in results.keys():
peptide = results.lookup['formula to molecule'] [key.formula] [0]
print (
'For Peptide {0} with formula {1} and charge {2} the following match,
—could be made:'.format (
peptide,
key.formula,
key.charge

)
for match in resultslkey]['data']:
print (
"\tAmount {0:1.2f} (scaling_factor) was detected with a matching,
—score of {1:1.2f}'.format (
match.scaling_factor,

4.1. Example Scripts 49




pyQms Documentation, Release 0.5.0-beta

match.score

)
print (
'"\tThe follwowing peaks have been matched:'
)
for measured_mz, measured_intensity, relative_i, calculated_mz,
—calculated_intensity in match.peaks:
print (
"\t\t{0:1.6f} m/z @ {1:1.2e} intensity'.format (
measured_mz,
measured_intensity

)
print ('{0:-"7100}".format ('Results summary'))

return

if name == '_ _main

main ()

View result pkl stats

view_result_pkl_stats.main (result_pkl=None)
usage: ./view_result_pkl_stats.py <Path2ResultPkl>

This script will show the stats of a result pkl file. Can be used to query the number of quantified formulas and
charge states etc.

#!/usr/bin/env python3
# encoding: utf-8

mwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken, J.
* Niehues, A.
* Sarin, L.P.
* Hippler, M.
+ Leidel, S.A.
* Fufezan, C.

mrmmn
import pickle
import sys

def main(result_pkl=None) :

rro

50 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

usage:
./view_result_pkl_stats.py <PathZ2ResultPkl>

This script will show the stats of a result pkl file. Can be used to query
the number of quantified formulas and charge states etc.

rr

results_class = pickle.load(
open (
result_pkl,
lrb'

)
print ('Result pkl file holds the following information:')
print ()
for key, value in results_class.index.items () :
print (
'"Number of {0: <20}: {1}'.format (
key,
len (value)

)

print ('\tExample values (up to 5): {0}'.format (list (value) [:5]))

print ()

if _ name_ == "

if len( sys.argv ) < 2:
C

else:
main (
result_pkl = sys.argv[l],

Access the result class

access_result_class.main (result_pkl=None)
usage: ./access_result_class.py <Path2ResultPkI>

This script will produce a dictionary with all summed up peptide amounts. The main idea is to show how to
access the result pkl and loop over the data structure.

Note: Since no filters (score, RT windows, etc.) are applied, this script should not be used to estimate the actual
amount of the quantified molecules in the results pkl.

#!/usr/bin/env python3
# encoding: utf-8

mrmmn
Python module for fast and accurate mass spectrometry data quantification

:license: MIT, see LICENSE.txt for more details

4.1. Example Scripts 51




pyQms Documentation, Release 0.5.0-beta

Authors:

* Leufken, J.
* Niehues, A.
* Sarin, L.P.
* Hippler, M.
* Leidel, S.A.
* Fufezan, C.

mmn

import pickle
import sys
import pprint

def main(result_pkl=None):

rro

usage:
./access_result_class.py <Path2ResultPkl>

This script will produce a dictionary with all summed up peptide amounts.
The main idea is to show how to access the result pkl and loop over the
data structure.

Note:

Since no filters (score, RT windows, etc.) are applied, this script
should not be used to estimate the actual amount of the quantified
molecules in the results pkl.

rrr

results_class = pickle.load(
open (
result_pkl,
lrbl

amount_collector = {}

for key, value in results_class.items():
peptide = results_class.lookup['formula to molecule'] [key.formula] [0]
if peptide not in amount_collector.keys():
amount_collector|[ peptide ] = {
'amount' : O
}
for matched_spectrum in value['data']:
amount_collector[peptide] ['amount'] += matched_spectrum.scaling_factor

pprint.pprint (
amount_collector

if name == '__main__':

if len( sys.argv ) < 2:

52 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

print (main. doc_ )
else:
main (
result_pkl = sys.argv[l],

Generate quant summary file

generate_quant_summary_file.main (result_pkl=None)
usage: ./generate_quant_summary_file.py <Path2ResultPkl>

This script will produce quant summary file with all according evidence information which are stored in the
result pkl file. Amounts (maxI) will be calculated if possible.

Note: Make sure, an evidence lookup is provided in the results class, so that retention time windows can be
defined. Otherwise no meaningful amounts can be calculated.

Warning: Can take very long depending on pkl size!

#!/usr/bin/env python3
# encoding: utf-8

mmwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken, J.
* Niehues, A.
* Sarin, L.P.
* Hippler, M.
+ Leidel, S.A.
* Fufezan, C.

mwn

import pickle
import sys

def main(result_pkl=None):

rrr

usage:
./generate_quant_summary_file.py <Path2ResultPkl>

This script will produce quant summary file with all according evidence
information which are stored in the result pkl file. Amounts (maxI) will be
calculated if possible.

4.1. Example Scripts 53



pyQms Documentation, Release 0.5.0-beta

Note:
Make sure, an evidence lookup is provided in the results class, so that

retention time windows can be defined. Otherwise no meaningful amounts
can be calculated.

Warning:

Can take very long depending on pkl size!

rro

results_class = pickle.load(

open (
result_pkl,
"’
)
)
rt_border_tolerance = 1
# quant_summary_file = '{0)}_quant_summary.csv'.format (result_pkl)
quant_summary_file = '{0}_quant_summary.xlsx'.format (result_pkl)
results_class.write_rt_info_file(
output_file = quant_summary_file,
list_of csvdicts = None,
trivial_name_lookup = None,
rt_border_tolerance = rt_border_tolerance,
update = True

)

results_class.calc_amounts_from_ rt_info_file(

rt_info_file = quant_summary_file,
rt_border_tolerance = rt_border_tolerance,
calc_amount_function = None
)
return
if _ name_ == '_ _main__ ':

if len( sys.argv ) < 2:
print (main. doc_ )
else:
main (
result_pkl = sys.argv[l],

Write raw quant results as csv

write_raw_result_csv.main (result_pkl=None)
usage: ./write_raw_result_csv.py <Path2ResultPkl>

Will write all results of a result pkl into a .csv file. Please refer to Documentation of Result Class for further
information.

Warning: The resulting .csv files can become very large depending on the provided pkl file!

54 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

Keys in csv:

¢ Formula : molecular formula of the molecule (str)

¢ Molecule : molecule or trivial name (str)

» Charge : charge of the molecule (int)

e ScanlD : ScanID of the quantified spectrum (int)

» Label Percentiles : Labeling percentile ( (element, enrichment in %), )

¢« Amount : the determined amount of the molecule

¢ Retention Time : retetention time of the ScanID

* mScore : score of the isotopologue match

* Filename : filename of spectrum input files

#!/usr/bin/env python3

# encoding: utf-8

mmwn

Python module for fast and accurate mass spectrometry data quantification

:license: MIT,
Authors:

* Leufken,
* Niehues,
* Sarin, L.
+ Hippler,

* Leidel, S.

* Fufezan,

mwn

import pickle
import sys

def main (result_pkl=None) :

rrr

usage:

i v SR

see LICENSE.txt for more details

./write_raw_result_csv.py <Path2ResultPkl>

Will write all results of a result pkl into a .csv file. Please refer to

Documentation of :doc: results' for further information.

Warning:

The resulting .csv files can become very large depending on the provided

pkl file!

Keys in csv:

* Formula
* Molecule

molecular formula of the molecule (str)
molecule or trivial name (str)

4.1. Example Scripts

55




pyQms Documentation, Release 0.5.0-beta

* Charge : charge of the molecule (int)

* ScanID : ScanID of the quantified spectrum (int)

* Label Percentiles : Labeling percentile ( (element, enrichment in %), )
* Amount : the determined amount of the molecule

* Retention Time : retetention time of the ScanlID

* mScore : score of the isotopologue match

* Filename : filename of spectrum input files

rrr

results_class = pickle.load(
open (
result_pkl,
lrbl

results_class.write_result_csv(
output_file_name= '{0}_raw_results.csv'.format (result_pkl)

v v,

if _ name_ == '_ main_
if len( sys.argv ) < 2:
print (main. doc )
else:
main (
result_pkl = sys.argv[1l],

Write results as mzTab

write_mztab_result.main (result_pkl=None)
usage: ./write_mztab_results.py <Path2ResultPkl>

Will write all results of a result pkl into a .mztab file. Please refer to Documentation of Result Class for further
information.

Note: Please note that the ouput in mzTab format is still in beta stage. Since pyQms is a raw quantification
tool, some meta data has to be passed/set manually by the user.

#!/usr/bin/env python3
# encoding: utf-8

mmn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken,

J.
* Niehues, A.
* Sarin, L.P.

56 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

mown

import pickle
import sys

def main(result_pkl=None):

if

* Hippler, M.
* Leidel, S.A.
* Fufezan, C.

rrr

usage:
./write_mztab_results.py <PathZ2ResultPkl>

Will write all results of a result pkl into a .mztab file. Please refer to
Documentation of :doc: ' results’' for further information.

Note:

Please note that the ouput in mzTab format is still in beta stage.
Since pyQOms 1s a raw quantification tool, some meta data has to be
passed/set manually by the user.

rro

results_class = pickle.load(
open (
result_pkl,
lrb'

results_class.write_result_mztab (
output_file_name = '{0}_results.mztab'.format (result_pkl)

name == '__main__ ':

if len( sys.argv ) < 2:
print (main. doc_ )
else:
main (
result_pkl = sys.argv[l],

Write results as mzTab (BSA example)

write_BSA_mztab_results.main (result_pkl=None)

usage: ./write_mztab_results.py <Path2ResultPkl>

Will write all results of a result pkl into a .mztab file. Please refer to Documentation of Result Class for further
information.

Warning: This example script is specifically for the BSA1.mzML quantification results, since file specific
meta data is passed. Please use ‘write_mztab_results.py’ for a more general script to produce mzTab results.

4.1. Example Scripts 57



pyQms Documentation, Release 0.5.0-beta

Note: Please note that the ouput in mzTab format is still in beta stage. Since pyQms is a raw quantification
tool, some meta data has to be passed/set manually by the user.

#!/usr/bin/env python3
# encoding: utf-8

mwn

mmwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken, J.
* Niehues, A.
* Sarin, L.P.
* Hippler, M.
* Leidel, S.A.
* Fufezan, C.

import pickle
import sys

def main (result_pkl=None) :

rrr

usage:
./write_mztab_results.py <Path2ResultPkl>

will write all results of a result pkl into a .mztab file. Please refer to
Documentation of :doc: results’ for further information.

Warning:

This example script is specifically for the BSAl.mzML quantification
results, since file specific meta data is passed. Please use
'write_mztab_ results.py' for a more general script to produce mzTab
results.

Note:

Please note that the ouput in mzTab format is still in beta stage.
Since pyQOms 1is a raw quantification tool, some meta data has to be
passed/set manually by the user.

rro

results_class = pickle.load(
open (
result_pkl,
lrbl

58

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

# provide meta data as lists of mztab specific formats. Pass directly
# mztab correct format.

mztab_meta_info = {
'protein_search_engine_score' [1,
'psm_search_engine_score' ['[MS,MS:1001475,0MSSA:evalue, 1'1,
'fixed_mod' : ['[UNIMOD, UNIMOD:4, Carbamidomethyl, 1'],
'variable_mod' : ['[UNIMOD, UNIMOD:35, Oxidation, ]'],
'study_variable-description' ['Standard BSA measurement'],
[

'ms_run-location' 'BSA]l.mzML'],

results_class.lookup['mztab_meta_info'] = mztab_meta_info

results_class.write_result_mztab (
output_file_name = '{0}_results.mztab'.format (result_pkl)

if name_ == '_ _main__ ':

if len( sys.argv ) < 2:
print (main. doc_ )
else:
main (
result_pkl = sys.argvl[l],

Advanced usage

Parse ident file and quantify (with CAM)

parse_ident_file_and_quantify_with_carbamidomethylation.main (ident_file=None,
mzml_file=None)
Script to automatically parse Ursgal result files and quantify it via pyQm:s.

For evidence files with molecules with Caramidomethylation as fixed modification. These mode will be stripped
from the molecules. This is important if an metabolic label (like 15N) is applied. This ensures that the nitrogens
pools of the peptides (which are 15N labeled) do not mix up with the nitrogen pool of the Carbamidomethy-
lation (14N since intriduced during sample preparation). Please refer to Documenation of Adaptors for further
information.

Ursgal result files or files in mzTab format are read in and used for quantification of the BSA example file.

Note: Use e.g. the BSAl.mzML example file. Please download it first using ‘get_example_BSA_file.py’.
Evidence files can also be found in the data folder ‘BSAl_omssa_2_ 1_9_unified.csv’ or
‘BSA1_omssa_2_1_9.mztab’

Usage:

Jparse_ident_file_and_quantify_with_carbamidomethylation.py <ident_file> <mzml_file>

#!/usr/bin/env python3
# encoding: utf-8

mmwn

pyQOms

4.1. Example Scripts 59



https://github.com/ursgal/ursgal
https://github.com/ursgal/ursgal

pyQms Documentation, Release 0.5.0-beta

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details

Authors:

*

Leufken, J.
Niehues, A.
Sarin, L.P.
Hippler, M.
Leidel, S.A.
Fufezan, C.

Xk % %

*

import pygms

import sys

import pymzml

import pickle

import os

import pygms.adaptors

def main (ident_file=None, mzml_file=None) :

rro

Script to automatically parse ‘Ursgal'_ result files and quantify it via
pryoms.

For evidence files with molecules with Caramidomethylation as fixed
modification. These mode will be stripped from the molecules. This is
important if an metabolic label (like 15N) is applied. This ensures that the
nitrogens pools of the peptides (which are 15N labeled) do not mix up with
the nitrogen pool of the Carbamidomethylation (14N since intriduced during
sample preparation). Please refer to Documenation of :doc: adaptors’ for
further information.

‘Ursgal _ result files or files in "mzTab  format are read in and used for
quantification of the BSA example file.

Note:

Use e.g. the BSAIl.mzML example file. Please download it first using
'get_example BSA file.py'. Evidence files can also be found in the
data folder 'BSAIl _omssa_2 1 9 unified.csv' or 'BSAIl _omssa_2_ 1 9.mztab'

Usage:

./parse_ident_file_and_quantify with_carbamidomethylation.py <ident_file>
—<mzml_file>

_Ursgal:
https://github.com/ursgal/ursgal

_mzTab:
http://www.psidev.info/mztab

60 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

# define the fixed label for Caramidomethyl
tmp_fixed_ labels {
'Cl H [

{ro': 1, 'H': '14N": 'C':

'Carbamidomethyl’

'element_composition' 3, 1, 2},

'evidence_mod_name':

by

formatted_fixed_labels, molecule_list pyams.adaptors.parse_
—evidence (
fixed_labels

evidence_files

evidence_lookup,

= tmp_fixed_labels,
= [ ident_file 7,

params = {
'molecules' molecule_list,
'charges' [, 2, 3, 4, 571,
'metabolic_labels' {'15N" [0, 1},
'fixed_labels' formatted_fixed_labels,
'verbose' True,
'evidences' evidence_lookup

1lib pyams.Isotopologuelibrary ( **params )

= pymzml.run.Reader (

mzml_file,

extraAccessions = [
('MS:1000016",

run

['value', 'unitName'])

i

obo_version

'1.1.0"

)

out_folder = os.path.dirname (mzml_file)
mzml_file_basename = os.path.basename (mzml_file)
results = None
for spectrum in run:
spec_id = spectrum['id"]
scan_time, unit = spectrum.get ('MS:1000016', (None, None ))
if unit == 'second':

time_div_factor 60.0

# convert seconds to minutes...
else:

time_div_factor

1

if spectrum['ms level'] == 1:
results lib.match_all (
mz_3i_list = spectrum.centroidedPeaks,

file name mzml_file_ basename,

spec_id = spectrum['id'],
spec_rt = scan_time / time_div_factor,
results = results

pickle.dump (

4.1. Example Scripts 61




pyQms Documentation, Release 0.5.0-beta

results,
open (
os.path. join(
out_folder,
'"{0}_pyOms_results.pkl'.format (
mzml_file_basename
)
)I
"wb'
)
)

return

if name == '__main__ ':

if len( sys.argv ) < 3:

print (main. doc_ )
else:
main (
ident_file = sys.argv[l],
mzml_file = sys.argv[2]

Complete quantification - from identification csv to peptide abundances

complete_BSA_quantification.main (ident_file=None, mzml_file=None)
Examples script to demonstrate a (example) workflow from mzML files to peptide abundances. Will plot for ev-
ery quantified peptide a matched isotopologue chromatogram (MIC). The plots include RT windows, maximum
amount in RT window and identification RT(s).

Ursgal result files or files in mzTab format are read in and used for quantification of the BSA example file.

Note: Use e.g. the BSAl.mzML example file. Please download it first using ‘get_example_BSA_file.py’.
Evidence files can also be found in the data folder ‘BSAl1_omssa_2_1_9_ unified.csv’ or
‘BSA1_omssa_2_1_9.mztab’

Usage:

Jcomplete_BSA_quantification.py <ident_file> <mzml_file>

Note: rpy?2 is required for all plotting

#!/usr/bin/env python3
# encoding: utf-8

mmn
Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details

Authors:

62 Chapter 4. Examples



https://github.com/ursgal/ursgal

pyQms Documentation, Release 0.5.0-beta

* Leufken, J.
+ Niehues, A.
* Sarin, L.P.
* Hippler, M.
* Leidel, S.A.

* Fufezan, C.

import pydgms

import sys

import pymzml

import pickle

import os

import pygms.adaptors

def main(ident_file = None, mzml_file = None):
rrr
Examples script to demonstrate a (example) workflow from mzML files to
peptide abundances. Will plot for every quantified peptide a matched
isotopologue chromatogram (MIC). The plots include RT windows, maximum
amount 1in RT window and identification RT(s).

‘Ursgal’ ' _ result files or files in "mzTab' format are read in and used for
quantification of the BSA example file.

Note:
Use e.g. the BSAl.mzML example file. Please download it first using
'get_example BSA file.py'. Evidence files can also be found in the
data folder 'BSAIl _omssa_2 1_9 unified.csv' or 'BSAIl _omssa_Z2 1 _9.mztab'
Usage:

./complete_BSA_quantification.py <ident_file> <mzml_file>

_Ursgal:
https://github.com/ursgal/ursgal

_mzTab:
http://www.psidev.info/mztab

Note:
rpy2 is required for all plotting

# define the fixed label for Carbamidomethyl
tmp_fixed_ labels = {
'C' : [

'element_composition' : {'O': 1, 'H': 3, '1l4N': 1, 'C': 2},
'evidence_mod_name': 'Carbamidomethyl'

s

}
if ident_file.upper () .endswith ('MZTAB") :

4.1. Example Scripts

63




pyQms Documentation, Release 0.5.0-beta

evidence_score_field =
else:

# this is the default value in the adaptor

evidence_score_field = 'PEP'

'search_engine_score[1l]"

print (
'Evidence score field "{O0}"

evidence_score_field

will be used.'.format (

)
formatted_fixed_labels,
—evidence (
fixed_labels = tmp_fixed_ labels,
evidence_files = [ ident_file 1],
evidence_score_field = evidence_score_field

evidence_lookup, molecule_list =

params = {
'molecules' molecule_list,
'charges' [, 2, 3, 4, 51,
'metabolic_labels' {"15N" [0, 1%,
'fixed_labels' formatted_fixed_labels,
'verbose' True,
'evidences' evidence_lookup

1lib = pyagms.IsotopologuelLibrary( **params )
run =
mzml_file,
extralAccessions = [
('MS:1000016",

pymzml.run.Reader (

['value', 'unitName'l])
] r
obo_version = '"1.1.0'
)
out_folder = os.path.dirname (mzml_file)
mzml_file_basename = os.path.basename (mzml_file)
results = None
for spectrum in run:
spec_id = spectrum['id']
scan_time, spectrum.get ('MS:1000016",
if unit == 'second':

unit = (None, None
time_div_factor = 60.0
# convert seconds to minutes...

else:

time_div_factor = 1

if spectrum['ms level'] == 1:
results = lib.match_all(
mz_1i_list = spectrum.centroidedPeaks,

file_name = mzml_file_basename,

spec_id = spectrum['id'],
spec_rt = scan_time / time_div_factor,
results = results

out_folder = os.path.join(
os.path.dirname (ident_file),

))

pyams.adaptors.parse_

64

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

'complete_BSA_quantification'’

)

if os.path.exists (out_folder) is False:
os.mkdir (out_folder)

print ()
print ('All results go into folder: {0}'.format (out_folder))
rt_border_tolerance = 1

quant_summary_file os.path.join(
out_folder,
'complete_BSA_qgquantification_summary.xlsx',

)

results.write_rt_info_file(

output_file = quant_summary_file,
list_of_csvdicts = None,
trivial_name_lookup = None,
rt_border_tolerance = rt_border_tolerance,
update = True
)
calculated_amounts = results.calc_amounts_from rt_info_file(
rt_info_file = quant_summary_file,
rt_border_tolerance = rt_border_tolerance,
calc_amount_function = None, # calc _amount_function
)
formula_charge_to_quant_info = {}

for line_dict in calculated_amounts:
formula_charge_to_qgquant_info[ (line_dict['formula'], int(line_dict|['charge

="'1)) 1 = {|
'rt! : line_dict['max I in window (rt)'],
'amount' : line_dict['max I in window'],
'rt start’ : line_dict['start (min)'],
'rt stop' : line_dict(['stop (min) '],
'evidence_rts' : [],
}
if len(formula_charge_to_qgquant_info[ (line_dict['formula'], int(line_dict][
—'charge'])) 1['evidence_rts']) == 0:
for ev_string in line_dict|['evidences (min)'].split(';"):
formula_charge_to_qgquant_info[ (line_dict['formula'], int(line_dict]
—'charge'])) 1['evidence_rts'].append(
round( float( ev_string.split('@") [1] ), 2 )
)
import_ok = False
try:
import rpy2
import_ok = True
except:
pass

if import_ok:
print ('Plotting results plot including RT windows, abundances and,_,
—identifications"')
for key in results.keys():
short_key = ( key.formula, key.charge )

match_list = resultslkey]['data']
if len(match_list) < 15:
continue
file_name = os.path.join(
out_folder ,

4.1. Example Scripts 65




pyQms Documentation, Release 0.5.0-beta

'MIC_2D_{0}_{1}.
' .join(
results.
) 14

key.charge,

)

graphics, grdevices

ablines = {
key [

'V'
lltyl

v
lltyl
'col'

IVI
lltyl
'col'!

additional_legends =

pdf'.format (

lookup['formula to molecule'][ key.formula ]

= results.init_r_plot (file_name)

formula_charge_to_quant_info[short_key]['rt'],
2

formula_charge_to_quant_info[short_key]['rt start'],
2,
'blue'

formula_charge_to_quant_info[short_key]['rt stop'],
2,
'blue'

{

key : [
{
'x! formula_charge_to_qgquant_info[short_key]['rt'],
'y! formula_charge_to_quant_info[short_key] [ 'amount'],
'text' 'max intensity: {0:1.3e}'.format (
formula_charge_to_quant_info[short_key] ["'amount'],
) ’
'pos' 3 # above
} 14
{
'x! formula_charge_to_quant_infol[short_key]['rt start'],
'y formula_charge_to_quant_info[short_key] ['amount'] /_,
%2 7
'text' 'RT Window start',
'pos' 4, # right
'col! 'blue’
} 14
{
'x! formula_charge_to_quant_info[short_key]['rt stop'],
'y formula_charge_to_quant_info[short_key] ['amount'] /_,
2,
'text' 'RT window stop',
'pos' 2, # left,
'col'! 'blue'’
} 14
]
}
for evidence_rt in formula_charge_to_quant_info[short_key] ['evidence_rts
3
66 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

ablines[key] .append(
{

'v! : evidence_rt,
"lwd' : 0.5,
'col' : 'purple',

)
additional_legends[key] .append (

{

'x! : evidence_rt,

'y! : 0,

'lwd' : 0.5,

'col' : 'purple',

'text' : 'MS2 ident',

'pos' : 4,

'srt' : 45 # rotate label

results.plot_MICs_2D (

[key],

file name = None,

rt_window = None,

i_transform = None,

xlimits = [
formula_charge_to_qgquant_info[short_key] ['rt
formula_charge_to_qgquant_info[short_key] ['rt

1,
additional_legends = additional_legends,

title = None,
zlimits = None,
ablines = ablines,
graphics = graphics
)
print (

'Plottted {0} '.format (file_name)

return

if name == '_ _main

if len( sys.argv ) < 3:
print (main. doc_ )
else:
main (
ident_file sys.argv([l],
mzml_file = sys.argvl[2]

start']-0.05,
stop']+0.05,

Example plot including RT borders and identification information

Example plot for peptide ‘DDSPDLPK’ with charge 2 in the BSA1.mzML file.

4.1. Example Scripts




pyQms Documentation, Release 0.5.0-beta

Relative Abundance

o _ ' ' mBScore
LO 1 1
| | W 00
. S B 0.1
: max |men5|t*: 4.498e+01
! ) m 0.2
| : o 03
I : 0 04
! ! W 05
1 L] 1
8 ] 1 1 Eh 0.6
! ' ¢ 0 07
! ! m 0.8
| | @ 0.9
| . ! 0
o : : :
™ ] | L. |
1 1 1
L I _ !
1 RT Window start | RT window stop |
O | 1 1 ® 1
N | : :
l ° | |
1 1 [ ] 1
o _| | \ | I
— 1 1 1
1 1 ® 1
l . | |
I o I I
1 N 1 ® 1
l & |
o - : \Q@V : : ®
1 1 1
[ [ [ I 1
28.0 28.5 29.0 29.5 30.0

Retention Time [min]

Plotting and visualizattion

Plot example match

plot_match_examples.main (result_pkl=None)

usage: ./plot_match_examples.py <Path2ResultPkl>

Extracts the match information and plots one example isotopologue match into the ‘data’ folder. Uses the plot
function of pymzML (pymzML.plot). Use this script as template for annotating spectra with match information.

Note: Plots only one high scored formula (mScore >0.95) from the result pKkl. Use
e.g. with the ‘BSAl.mzML_pyQms_results.pkl’ obtained from e.g. example  script

68

Chapter 4. Examples


https://pymzml.github.io/plot.html

pyQms Documentation, Release 0.5.0-beta

parse_ident_file_and_quantify_with_carbamidomethylation.py to get example plotting data.

#!/usr/bin/env python3
# encoding: utf-8

mwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken,
* Niehues,
* Sarin, L.
* Hippler,
* Leidel, S.A.
* Fufezan, C.

R UG

import pickle
import sys

import pymzml.plot
import os

def main(result_pkl=None) :

rro

usage:
./plot_match _examples.py <PathZ2ResultPkl>

Extracts the match information and plots one example isotopologue match into
the 'data' folder. Uses the plot function of pymzML ( pymzML.plot _). Use
this script as template for annotating spectra with match information.

Note:

Plots only one high scored formula (mScore >0.95) from the result pkl.
Use e.g. with the 'BSAl.mzMI,_pyQOms_results.pkl' obtained from e.g.
example script parse_ident_file_and _quantify with carbamidomethylation.py
to get example plotting data.

_pymzML.plot:
https://pymzml.github.io/plot.html

rrr

results_class = pickle.load(
open (
result_pkl,
lrbl

for key, i, entry in results_class.extract_results():
if entry.score > 0.95:

4.1. Example Scripts

69




pyQms Documentation, Release 0.5.0-beta

p = pymzml.plot.Factory ()
label_x = []
measured_peaks = []
matched_peaks = []
for measured_mz, measured_intensity, relative_i, calculated_mz,
—calculated_intensity in entry.peaks:
if measured_mz is not None:
measured_peaks.append( (measured_mz, measured_intensity) )
matched_peaks.append( (calculated_mz, calculated_intensity =«
—entry.scaling_factor) )
label_x.append (
(
calculated_mz,
'"{0:5.3f} ppm'.format (

(measured_mz - calculated_mz) / ( measured_mz x le—6 )
)
)
)

mz_only = [ n[0] for n in measured_peaks ]
mz_range = [ min(mz_only)-1, max(mz_only)+1 ]
peptides = results_class.lookup['formula to molecule'] [key.formula]
if len(peptides) > 1:

continue
p.newPlot (

header = 'Formula: {0}; Peptide: {1}; Charge: {2}\n File: {3}; Scan:

—{4}; RT: {5:1.3f}\n Amount: {6:1.3f}; Score: {7:1.3f}'.format (
key.formula,
peptides[0],
key.charge,
key.file_name,
entry.spec_id,
entry.rt,
entry.scaling_factor,
entry.score

) r
mzRange = mz_range

p.add(
measured_peaks,
color = (0, 0O, 0),
style = 'sticks'

)

p.add(
matched_peaks,
color = (0, 200, 0),
style = 'triangles'

)

p.add(
label_x,
color = (0, 0, 255),
style = 'label_x'

)

plot_name = os.path.join(
os.pardir,
'data',

'"{0}_Peptide_{1}_Charge_{2}.xhtml'.format (

70 Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

key.file_name,
peptides[0],

key.charge
)
)
p.save (
filename = plot_name,
mzRange = mz_range
)
print (

'Plotted file {0}'.format (
plot_name

break

if  name_ == '_ _main__ ':
if len( sys.argv ) < 2:
print (main._ doc_ )
else:
main (
result_pkl = sys.argv[1l],

Example match plot

Formula: C(59)H(94)14N(1)N(15)0(24)S(1); Peptide: YICODNQDTISSK; Charge: 2
File: BSAl.mzML; Scan: 1193; RT: 29.855
Amount: 31.989; Score: 0.960

ooo gzl
000 ETL
000°FZL
000°SZL

4.1. Example Scripts 4




pyQms Documentation, Release 0.5.0-beta

MIC 3D plot

mic_3d_plot.main (pickle_file)
usage: ./mic_3d_plot.py <path_to_pickled_result_class>
Plots 3-dimensional matched isotope chromatograms (MICs) of pyQms quantification results.

Pickled result class can contain thousands of molecules therefore this example script stops plotting after 10
plotted MICs. Otherwise all quantified formula-charge-filename combinations will be plotted!

Use e.g. the BSA data example. Download via ‘get_example_BSA_file.py’ and quantify using
‘parse_ident_file_and_quantify_with_carbmidomethylation.py’.

Note: Installation of R and rpy?2 is required.

#!/usr/bin/env python3
# encoding: utf-8

mn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken, J.
* Niehues, A.
* Sarin, L.P.
* Hippler, M.
* Leidel, S.A.
* Fufezan, C.

mwn

import pickle
import sys
import os

try:
import rpy2
except:
print ('rpy2 is not installed but required for plotting, please install it and try,

—again')
print ('pip3.4 install rpy2'")

def main(pickle_file):

rrr

usage:
./mic_3d _plot.py <path to_pickled result_class>

Plots 3-dimensional matched isotope chromatograms (MICs) of pyQOms
quantification results.

Pickled result class can contain thousands of molecules therefore this

72 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

example script stops plotting after 10 plotted MICs. Otherwise all
quantified formula-charge—-filename combinations will be plotted!

Use e.g. the BSA data example. Download via 'get_example BSA _file.py' and
quantify using 'parse_ident_file_and_quantify_with_carbmidomethylation.py’'.

Note:

Installation of R and rpyZ2 1is required.

rro

results = pickle.load(
open( pickle_file, 'rb'")
)
out_folder = os.path.join(
os.path.dirname (pickle_file),
'plots’
)
if os.path.exists (out_folder) is False:
os.mkdir (out_folder)
print ('Plotting into folder: {0}'.format (out_folder))
if len( results.keys() ) > 10:
print (
rr
Result class should not hold more then 10 keys, to prevent plot overflow!
Will stop after 10 plots!

rro

)
# sys.exit ()
for n, key in enumerate (results.keys()):

if n > 10:
print ('Stopping after 10 plots!'")
exit ()

if len(resultslkey]['data']) <= 15:
continue

mzml_filename = key.file_name
if os.sep in mzml_filename:
mzml_filename = os.path.basename (mzml_filename)

file_name = os.path.join(
out_folder ,
'"MIC_3D_ {0} _{1}_{2}_{3}'.format (
'_'".join(
results.lookup['formula to molecule'][ key.formula ]

key.charge,
key.label_percentiles,
mzml_filename

)
results.plot_MIC_3D (
key,
file_name = file_name,

return

4.1. Example Scripts 73



pyQms Documentation, Release 0.5.0-beta

if name_ == '_ _main__ ':
if len(sys.argv) <= 1:
sys.exit (main._ doc

main( sys.argv[l] )

)

Example 3D plot

250000

20000086

(neel Apsulul

MIC 2D plot

mic_2d_plot .main (pickle_file)

DDSPDLPK*?

C37H59N9016

1200

mScore

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

pddOoOEO0OO0O0ODE D

74

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

usage: ./mic_2d_plot.py <path_to_pickled_result_class>
Plots 2-dimensional matched isotope chromatograms (MICs) of pyQms quantification results.

Pickled result class can contain thousands of molecules therefore this example script stops plotting after 10
plotted MICs. Otherwise all quantified formula-charge-filename combinations will be plotted!

Use e.g. the BSA data example. Download via ‘get_example_BSA_file.py’ and quantify using
‘parse_ident_file_and_quantify_with_carbmidomethylation.py’.

Note: Installation of R and rpy?2 is required.

#!/usr/bin/env python3
# encoding: utf-8

mwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken,
* Niehues,
* Sarin, L.
* Hippler,
* Leidel, S.A.
* Fufezan, C.

SRR

mon

import pickle
import sys
import os

try:

import rpy2
except:

print ('rpy2 is not installed but required for plotting, please install it and try,
—again')

print ('pip3.4 install rpy2')

def main(pickle_file):

rrr

usage:
./mic_2d _plot.py <path to_pickled result_class>

Plots 2-dimensional matched isotope chromatograms (MICs) of pyQOms
quantification results.

Pickled result class can contain thousands of molecules therefore this
example script stops plotting after 10 plotted MICs. Otherwise all

quantified formula-charge-filename combinations will be plotted!

Use e.g. the BSA data example. Download via 'get_example BSA file.py' and

4.1. Example Scripts 75



pyQms Documentation, Release 0.5.0-beta

quantify using 'parse_ident_file_and_quantify with carbmidomethylation.py'.

Note:
Installation of R and rpyZ2 is required.

rr

results = pickle.load(
open( pickle_file, 'rb'")

)

out_folder = os.path.join(
os.path.dirname (pickle_file),
'plots'

)

if os.path.exists (out_folder) is False:
os.mkdir (out_folder)

print ('Plotting into folder: {0}'.format (out_folder))

if len( results.keys() ) > 10:
print (

Result class should not hold more then 10 keys, to prevent plot overflow!
Will stop after 10 plots!

rro

)
# sys.exit ()
for n, key in enumerate (results.keys()):

if n > 10:
print ('Stopping after 10 plots!'")
exit ()
if len(results[key]['data']l) <= 15:
continue
mzml_filename = key.file_name
if os.sep in mzml_filename:
mzml_filename = os.path.basename (mzml_filename)
file_name = os.path.join(

out_folder ,
'MIC_2D_{0}_{1}_{2}_{3}.pdf'.format (

' '".join(

results.lookup['formula to molecule'][ key.formula ]

) 4

key.charge,

key.label_percentiles,

mzml_filename

)

graphics, grdevices = results.init_r plot (file_name)
results.plot_MICs_2D (
[keyl,
graphics = graphics
)
return
if name == '__main__ ':

if len(sys.argv) <= 1:

76 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

sys.exit (main. doc_ )
main( sys.argv[l] )

Example 2D plot

o _ mScore
Te)
Bl 0.0
B 0.1
. 3 0.2
» O 03
O 04
B 05
[ ]
? = 06
®
O 0.7
O 0.8
O 0.9
B 1.0
3
c o _|
© m
©
c
3
Q0
<
[«}]
2
s & \
5]
o
[ ]
[ ]
o _| )
- [ ]
®
[ ]
o - °

[ | [ |
28.5 29.0 29.5 30.0

Retention Time [min]

Determine m/z and intensity errors

determine_mz_and_i_error.main (result_pkl=None)

usage: ./determine_mz_and_i_error.py <Path2ResultPkI>

4.1. Example Scripts 77




pyQms Documentation, Release 0.5.0-beta

This script will determine the apparant mz and intensity error present in the quantifications for the given result
pkl.

#!/usr/bin/env python3
# encoding: utf-8

mwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken,
* Niehues,
* Sarin, L.
* Hippler,
* Leidel, S.A.
* Fufezan, C.

R UG

import pickle
import sys
import os

def main(result_pkl=None) :

rro

usage:
./determine_mz_and_1i_error.py <PathZ2ResultPkl>

This script will determine the apparant mz and intensity error present
in the quantifications for the given result pkl.

rro

results_class = pickle.load(
open (
result_pkl,
lrbl

plot_name = os.path.join(
os.path.dirname (result_pkl),
'mz_and_intesnity_error_{0}.pdf'.format (
os.path.basename (result_pkl)

results_class._determine_measured_error (
score_threshold = None,

topX = 3,
filename = plot_name,
plot = True

78 Chapter 4. Examples



pyQms Documentation, Release 0.5.0-beta

if name == '_ _main

if len( sys.argv ) < 2:
print (main. doc_ )
else:
main (
result_pkl = sys.argv[1l],

Visualize errors on spectrum level

visualize_scoring_information.main (mzml=None)
Example script fort visualizing the m/z and intensity error, which is the basis for the scoring of the matches in

pyQms.
Use spectrum 1165 of the BSA1.mzML example file. A subrange of the spectrum from m/z 400 to 500 is used.

Usage: ./visualize_scoring_information.py

Note: This example does not require a reader to access MS spectra, since a simnple peak list is used.

#!/usr/bin/env python3
# encoding: utf-8

mwn

Python module for fast and accurate mass spectrometry data quantification
:license: MIT, see LICENSE.txt for more details
Authors:

* Leufken,
* Niehues,
* Sarin, L.
* Hippler,
+ Leidel, S.A.
* Fufezan, C.

= U oy

nwmn
import pygms

import sys

import pickle

import os

import pprint

import pymzml

from collections import defaultdict as ddict

def main( mzml=None) :
mmn

Example script fort visualizing the m/z and intensity error, which is the
basis for the scoring of the matches in pyQOms.

4.1. Example Scripts 79




pyQms Documentation, Release 0.5.0-beta

Use spectrum 1165 of the BSAl.mzML example file. A subrange of the spectrum
from m/z 400 to 500 is used.

Usage:
./visualize_scoring_information.py

Note:
This example does not require a reader to access MS spectra, since a
simnple peak list is used.

mmn

peak_list = [
(404.2492407565097, 2652.905029296875),
(405.3003310237508, 4831.56103515625),
(408.8403673369115, 23153.7109375),
(409.17476109421705, 10182.2822265625),
(409.5098740355617, 4770.97412109375),
(411.17196124490727, 3454.364013671875),
(413.26627826402705, 6861.84912109375),
(419.3157903165357, 90201.5625),
(420.2440507067882, 11098.4716796875),
(420.31917273788645, 22288.9140625),
(420.73825281590496, 8159.7099609375),
(421.2406187369968, 3768.656494140625),
(427.3787652898548, 5680.43212890625),
(433.3316647490907, 8430.30859375),
(434.705984428002, 25924.38671875),
(435.2080179219357, 11041.2060546875),
(443.6708762397708, 4081.282470703125),
(443.69049198141124, 5107.13330078125),
(443.6974813419733, 9135.3125),
(443.7112735313511, 2517650.0),
(443.7282222289076, 5571.26025390625),
(443.7379762316008, 5227.4033203125),
(444.1998579474954, 3021.341796875),
(444.21248374593875, 1156173.75),
(444.71384916266277, 336326.96875),
(445.21533524843596, 58547.0703125),
(445.71700965093, 4182.04345703125),
(446.1200302053469, 93216.3359375),
(447.09963627699824, 3806.537109375),
(447.1169242266495, 59846.37109375),
(447.3464079857604, 13170.9541015625),
(448.11566395552086, 9294.5107421875),
(448.3500303628631, 3213.052490234375),
(452.1123280000919, 5092.0869140625),
(461.1934526664677, 4022.537353515625),
(462.1463969367603, 99732.5),
(463.14561508666384, 24247.015625),
(464.1433022096936, 20417.041015625),
(465.1421080732791, 3222.4052734375),
(470.1669593722212, 8621.81640625),
(475.23989190282134, 3369.073974609375),
(493.27465300375036, 2725.885986328125),
(496.0077303201583, 8604.0830078125),

80

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

print ('{0:-7100}"'.format ('Library generation'))
1lib = pyagms.IsotopologuelLibrary (

molecules = [ 'DDSPDLPK' 1,
charges =021,
metabolic_labels = None,
fixed_labels = None,
verbose = True
)
print ('{0:-7100}"'.format ('Library generation'))

results = lib.match_all(
mz_1i_list = peak_list,

file_name = 'BSA_test',
spec_id = 1165,
spec_rt = 29.10,
results = None

for key, 1, entry in results.extract_results():
p = pymzml.plot.Factory ()
label _mz_error = []
label_i_error = []
measured_peaks
matched_peaks = []
peak_info = ddict(list)
# pprint.pprint (entry.peaks)
for measured_mz, measured_intensity, relative_i, calculated_mz, calculated_
—intensity in entry.peaks:
if measured_mz is not None:
measured_peaks.append (

(

measured_mz,
measured_intensity

)
matched_peaks.append (
(
calculated_mz,
calculated_intensity * entry.scaling_factor

)
mz_error = (measured_mz - calculated_mz) / ( measured_mz * le—6 )
label _mz_error.append (
(
calculated_mz,
"{0:5.3f} ppm m/z error'.format (
mz_error

)

scaled_intensity = calculated_intensity * entry.scaling_factor

rel_i_error = abs(measured_intensity - scaled_intensity) / scaled_
—intensity

peak_info['measured peaks'].append (measured_mz)
peak_info['theoretical peaks'].append(calculated_mz)
peak_info['relative intensity'].append(relative_i)
peak_info['scaled matched peaks'].append( calculated_intensity =

—entry.scaling_factor )

4.1. Example Scripts 81




pyQms Documentation, Release 0.5.0-beta

—Score:

peak_info['mz error'].append( mz_error)
peak_info['l error'].append( rel_i_error )

if rel_i_error > 1:
rel_i_error = 1

label_i_error.append (
(
calculated_mz,
'{0:5.3f} rel. intensity error'.format (
rel_i_error

mz_only = [ n[0] for n in measured_peaks ]
mz_range = [ min(mz_only)-1, max(mz_only)+1 ]
peptide = results.lookup['formula to molecule'] [key.formula] [0]
p.newPlot (
header = 'Formula: {0}; Peptide: {1}; Charge: {2}\n Amount: {3:1.3f};
{4:1.3f}".format (
key.formula,
peptide,
key.charge,
entry.scaling_factor,
entry.score
)I
mzRange = mz_range

p.add(
measured_peaks,
color = (0, 0, 0),
style = 'sticks'

p.add(
matched_peaks,
color = (0, 200, 0),
style = 'triangles'

p.add(
label_mz_error,
color = (255, 0, 0),
style = 'label_ x'

p.add(
label_i_error,
color = (255, 0, 0),
style = 'label x'

plot_name = os.path.join(
os.pardir,
'data’',
'Score_visualization_Peptide_{1}_Charge_{2}.xhtml'.format (
key.file_name,

82

Chapter 4. Examples




pyQms Documentation, Release 0.5.0-beta

peptide,
key.charge

)
p.save (

filename = plot_name,

mzRange = mz_range
)
print (

'Plotted file {0}'.format (
plot_name

)
# print (entry)
print ('Match info')
for key, value_list in sorted(peak_info.items()):

print (key)
print (' [{0}]".format (', '.Jjoin([str(n) for n in value_list])))
print ()
return
if name == '_ _main_ ':
main ()

4.1. Example Scripts

83




pyQms Documentation, Release 0.5.0-beta

84 Chapter 4. Examples



CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

85



