TU DORTMUND

MASTER THESIS

Anomaly Detection using an

Ensemble with Simple Sub-models

First Reviewer:
Prof Dr. Philipp Doebler

Second Reviewer:

M. Sc. Simon Kliittermann

Vanlal Peka

May 8, 2024

Contents

1 Introduction

1.1 Definition of an Anomaly
1.2 Different Labelling, Different Settings
1.3 Types of Anomaly Detection Algorithms

1.4 Challenges in Anomaly Detection
1.5 Thesis Motivation

1.6 Organization

Deep Ensemble Anomaly Detection (DEAN)

Premise of the Thesis

3.1 Objective
3.2 Datasets

3.3 Performance Measure

3.4 Competitors for Benchmarking
3.5 Source Code

4 Methodology

4.1 Pre-processing
4.1.1 Normalization
4.1.2 Standardization
4.1.3 Grayscalingo
4.1.4 Contrast Limited Adaptive Histogram Equalization (CLAHE)
4.1.5 Gaussian Filter for Noise Reduction
4.1.6 Canny Filter for Edge Detection
4.1.7 Image Augmentation L.
4.1.8 Skeletonization L

4.2 Feature Selection
4.2.1 Principal Component Analysis (PCA).
4.2.2 Independent Component Analysis (ICA)
4.2.3 Non-negative Matrix Factorization (NMF)
4.2.4 t-distributed Stochastic Neighbor Embedding (t-SNE)
4.2.5 Autoencoders

4.2.6 Zero-phase component analysis (ZCA) pre-whitening and Restricted

Boltzmann Machine (RBM) 31

4.3 Feature Bagging 32
4.4 Ensemble 32
4.4.1 Linear Regression oo 34

4.4.2 LASSO 35

4.43 Omne-Class SVM 36

4.44 ElasticNet 37

5 Experiments 38
5.1 Satellite 40
5.2 Credit Card Fraud 44
5.3 MNIST 47
54 CIFAR-10 e 62
6 Benchmarking 75
7 Conclusion 77
Bibliography 79

ii

1 Introduction

Anomaly detection has been effectively used in financial fraud detection(Hilal et al.,
2022), cybersecurity threat detection (Jeffrey et al., 2023), industrial equipment mon-
itoring (Chatterjee and Ahmed, 2022), early disease detection (Fernando et al., 2021),
and so on. The discipline of anomaly detection has a long history of research as well
(Edgeworth, 1887), and the methods to identify anomalies are getting all the more com-
plicated as technologies progressed and data generation exploded in the past decades!.
The algorithms have grown from simple static threshold-based methods to more compli-
cated user-defined threshold-based methods based on deep learning. As the algorithms
get more complicated, it is getting slower and also getting harder to explain the inner
workings of the algorithms. This thesis attempts to devise an algorithm that is easy to

interpret without compromising on performance.

1.1 Definition of an Anomaly

Although anomaly detection as a discipline has been expanding into several domains
and the detection accuracy has been improving, a concrete definition of an anomaly is
still elusive because what is considered an anomaly depends on the domain. On top of
that, new technologies bring new types of data (e.g. video, spatial, time series, etc.),

which makes it harder to have an overarching definition.

In a broad sense, we may define anomalies as observations that fall outside a well-
defined notion of normal observations. This then begs the question: what are normal
observations? The answer to that, although unsatisfying, is - it depends. Additionally,
some researchers differentiate an anomaly from noise or novelty: noise may be defined
as unwanted data that hinders data analysis, and common options are to remove it
before analyzing the data or make accommodations for it; novelty may be defined as a
pattern that is new to the model but is not anomalous, and is usually incorporated into
the normal pattern. Moreover, there is no consensus on whether to call it "anomaly’ or
‘outlier’. Older publications used the term ’outlier’ more, while newer publications used

"anomaly’ more (Olteanu et al., 2023). We stuck to calling it ’anomaly’ in this thesis.

To add structure to this kind of topic, Chandola et al. (2009) defined three types of

anomalies: point anomaly, contextual anomaly, and collective anomaly. A point anomaly

Thttps://www.statista.com/statistics /871513 /worldwide-data-created

is a single observation, from a dataset of independent observations, that is different from
the majority. Credit card fraud detection using the amount spent is an example of a
point anomaly. A contextual anomaly is an observation that may not be an anomaly
when considered as a single observation but turned out to be an anomaly under a given
context, using time or location or others. Say, the amount spent on a credit card purchase
is within the threshold limit so it is not identified as a point anomaly, but that may be
identified as a contextual anomaly should the purchase be made in a different country.
Collective anomalies are a set of observations that look normal when viewed one by one

but exhibit anomalous patterns as a group.

In addition to the three mentioned above, Ruff et al. (2021) defined two types of anoma-
lies to address the hierarchical structure of the features: low-level sensory anomalies and
high-level semantic anomalies. These two types are more relevant in high dimensions.
Suppose we are trying to identify an anomaly from a dataset of pet images, the low-
level sensory anomalies will be identified by comparing pixel values, and the high-level

semantic anomalies will be identified by differentiating, say, a cat from a dog.

1.2 Different Labelling, Different Settings

Depending on the availability of labels in the training set, anomaly detection algorithms
may be classified into three settings: supervised, unsupervised, and semi-supervised
(Chandola et al., 2009). A supervised algorithm assumes the normal observations and
the anomalies in the training set are labeled, while an unsupervised algorithm assumes
there exists no training data or the training set is not labeled. Between supervised
and unsupervised, we have a semi-supervised algorithm that assumes only the normal
observations in the training set are labeled and the anomalies in the training set are not
labeled. The training sets for this thesis have only normal (unlabelled) observations, so
the concept of a semi-supervised algorithm is not applicable to our experiments, and our

algorithm falls under the unsupervised algorithms.

1.3 Types of Anomaly Detection Algorithms

There are several anomaly detection algorithms and the number is growing. These al-
gorithms can be grouped into the following types: density estimation and probabilistic
methods like Boltzmann Machines, classification methods like One-Class SVM, recon-

struction methods like Autoencoders, nearest neighbor methods like k-Nearest Neighbor,

clustering methods like DBSCAN, spectral methods like Principal Component Analysis
(PCA), and statistical methods like Gaussian Mixture Model (GMM)(Chandola et al.,
2009).

The performance of the algorithms depends on the dataset characteristics. Nearest
neighbor and clustering-based methods suffer from the "curse of dimensionality" i.e. the
distance measures in high dimensions cannot differentiate an anomaly from normal ob-
servations. Spectral methods map from a higher dimension to a lower dimension, so they
address the high-dimension problem, but this is only useful if the anomalous observa-
tion is separable from normal observations in the low-dimension projection. Statistical
methods are only effective for low-dimension data and when the statistical assumptions
hold. These show that there may not be an anomaly detection algorithm that has high

performance across any kind of dataset.

However, an interesting point is that there is a shared underlying philosophy i.e. "Vir-
tually all outlier detection algorithms create a model of the normal patterns in the data,
and then compute an outlier score of a given data point based on the deviations from
these patterns. (Aggarwal, 2016)". Unsurprisingly, our anomaly detection algorithm fol-
lows the same philosophy: the model is trained on a set with only normal observations,
and an outlier score is calculated for each of the observations in the test set, which is a

mix of normal and anomalous observations.

1.4 Challenges in Anomaly Detection

Data has been growing not only in size but also in complexity. Most of the time, but
not always, new data types and new domains require a new way of detecting anomalies.
Additionally, as briefly pointed out in Section 1.1, the concept of what constitutes an
anomaly expands with the advent of high dimensional data. In that section, we also
explained that to identify an anomaly, we must first define what is normal, and that is
not as simple as it sounds because the boundary between "normal" and "anomaly" is not
always clear cut. This challenge can be complicated to address because in some domains,
like fraud detection, what is considered "normal" evolves as the algorithms incorporate
the novelty observations in their pipeline. The dimensionality of the data adds another
layer of complications because the larger the data dimension the harder it is to learn the

normal representation.

There are also domain-specific challenges. Different domains have different levels of tol-
erance for misidentification as well as different levels of "tightness" in defining what is
normal. In medical research, the preference is to minimize false negatives because the
cost of classifying an anomaly as normal can be very high, which may not be the case in
analyzing stock prices, for instance. In sentiment analysis, text datasets are sparse and
have high dimensions, complicating the boundary that separates normal observations
and anomalies; moreover, the documents in a single category can have large variations.
In credit card fraud detection and sensor networks, anomaly detection techniques are
required to operate online so the algorithms have to be lightweight. Then there are
challenges due to imbalanced class distribution, that is, classical machine learning algo-
rithms are biased towards the majority class. In domains like fraud detection, the class
imbalance i.e. the anomaly: normal ratio could range from 1:100 to 1:5000 (Krawczyk,
2016). Because of all these, we used a variety of datasets (Section 3.2) to gauge the

algorithm performance.

1.5 Thesis Motivation

Existing unsupervised anomaly detection algorithms like One-Class Support Vector Ma-
chine (OC-SVM) (Bounsiar and Madden, 2014), local outlier factor (LOF) (Breunig
et al., 2000), and other algorithms based on nearest neighbor methods are already quite
powerful in low dimension. However, the performance of these algorithms is limited
in high-dimension because they struggle to learn the increasingly complex separations.
This challenge has been addressed with considerable success using Autoencoder-based
models (Borghesi et al., 2019), but the latent space dimensions of Autoencoders are

difficult to optimize.

On the other hand, we have Deep Ensemble Anomaly Detection (DEAN), an ensemble-
based unsupervised anomaly detection algorithm (Klittermann and Miiller, 2022; Boing
et al., 2022). The algorithm is scalable, has deep sub-models, has high variance among
the predictions of the sub-models, and has a consistent anomaly score. The algorithm
showed better performance (ROC-AUC) when benchmarked against DeepSVDD (Ruff
et al., 2018), RandNet (Chawla and Wang, 2017), and Isolation Forest (Liu et al., 2008)
on CIFAR-10 (Krizhevsky, 2009) dataset.

This thesis is motivated using DEAN, and the goal is to explore the performance of

an ensemble-based unsupervised anomaly detection algorithm, but with shallow ho-

mogenous submodels. Another motivation is that there are some researches where the
classical machine learning algorithms outperformed deep learning models across a range
of anomaly types (Rewicki et al., 2023). To that end, we used the same loss function and
anomaly score calculation from DEAN but implemented them using shallow submodels.
We would call our algorithm SEAN i.e. a shallow version of DEAN.

1.6 Organization

Section 2 explains the DEAN algorithm in more detail. Section 3 highlights the motiva-
tions for carrying over the concepts from DEAN, and also explains the datasets we used
for training and the benchmarking process we followed. Section 4 explains the building
blocks of our algorithm starting from the preprocessing steps, all the way to the ensem-
ble of weak models. Section 5 walks through the setup of the experiments, shows the
results and interpretations, and then compares the performance with the competitors.

Finally, Section 7 summarizes the thesis and closes with further research directions.

2 Deep Ensemble Anomaly Detection (DEAN)

This section explains the components of the DEAN algorithm and their impact on the
characteristics of the algorithm. We will start with the three key equations that pin the
algorithm.

o The loss function of a (DEAN) submodel:

Lppan = Y. (f(@) —g(2))? (1)

TEXtrain

where f(Z) is a neural network that is learned from the test data, and feature
bagging is used to ensure each submodel learns a different representation; g(z) is
an arbitrary function or a constant that f(Z) is compared with. A large value of

Lprean implies the observation # is anomalous.

o The equation to calculate the anomaly score of the ith submodel:

S =

f(Xtest> — Inean (f(Xtrain)>‘ (2)

where f (.) is a prediction function learned using the Lpgay loss function in Equa-

tion 1.

o The anomaly score of the ensemble of N submodels:

F=+35, (3)

1

N=
The ¢(Z) function in Equation 1 affects the flexibility of the (neural network) submodels.
For instance, Autoencoders can be imagined as a DEAN model where ¢(Z) = 7 i.e.
learning the identity function. We can also simplify g(Z) to improve model performance.
However, an oversimplified function like g(Z) = 0 learns a trivial solution. Therefore,
the experiments in the DEAN paper were run with g(Z) = 1, so the loss function of a

submodel essentially simplifies to,

Lppan = Y (f(@)—-1) (4)

zTe Xtrain

The simplified loss function in Equation 4 has several benefits. First, it is easier to
optimize, using a neural network, when compared with a more complicated ¢(Z). Second,
it results in fewer local minima, and the local minima, if they appear, can be noticed
easily. Third, ¢g(Z) = 1 does not add hyperparameters to the ensemble, simplifying
training. Fourth, it has less bias because g(#) = 1 does not change with the observations.
Finally, the simplified loss function combined with feature bagging in each submodel
enables the ensemble to scale well (with high dimension). (Klittermann and Miiller,
2022)

3 Premise of the Thesis

This section explains in detail the objective of the thesis, the processes we followed to

measure the model performance, and the reasons for following the processes.

3.1 Objective

As mentioned in Section 1.5, this thesis was motivated by the DEAN algorithm to build

an ensemble of homogeneous shallow submodels. To that end, we replaced the neural

network submodels of DEAN with simpler submodels, and our submodels use the same
DEAN equations from Section 2. The thinking is that using these equations, albeit in
shallow submodels, will allow us to reap the benefits of the DEAN model.

e The submodel loss function has the same notations:

Lppan = (f(@—1)° (5)

feXtTain
where Xy, 18 a training set with no anomaly, and f(Z) is a shallow submodel, as

opposed to a neural network submodel in DEAN.

o The equation for the ith submodel anomaly score remains the same as DEAN:

Si=

f (Xtest) — Inean (f(Xt’/‘ain)>‘ (6)
where X,. contains normal observations and anomalies.

o The equation for the anomaly score of the ensemble of N submodels also remains

the same:

F=3Ys, (7

Our experiments also incorporate the various combinations of the ’building blocks’ listed
in Section 4. The homogeneous weak submodels were 'bagged’ to form an ensemble, and
an anomaly score and an AUROC were calculated (Please refer to Section 4.4 for different
methods that can be used to combine the submodels). The model was then benchmarked
against DEAN, Isolation Forest, KNN, and CBLOF.

From the list of anomaly types explained in Section 1.3, this thesis focused on point
anomalies for tabular datasets and high-level semantic anomalies for image datasets.
We also used different types of datasets to mitigate challenges mentioned in Section 1.4
i.e. the challenges coming from the normal-anomaly boundary and the class distribution
imbalance. The anomalies in some of our datasets are human experts labeled, but in some
datasets, we labeled the anomalies ourselves to have a more balanced class distribution.
Finally, all of our trainings were done with no anomalies. Section 3.2 explained the

datasets and the criteria used in each dataset to label anomalies.

3.2 Datasets

To address the challenges mentioned in Section 1.4 and to get a better picture of the
anomaly detection robustness, it is a usual practice to use different types of datasets.
Ruff et al. (2021) grouped the popular benchmarking datasets into three types depending

on why observations are labeled as anomalies:

 k-classes-out: A programmer (not necessarily a domain expert) sets which obser-
vations are anomalies or normal. For example, labeling a picture of an airplane in
the CIFAR-10 dataset as a normal class and the others as anomalies. Out of the
three, these datasets, and the anomaly labeling approach may be the least effective

in identifying out-of-distribution data.

o Synthetic?: Anomalies are synthetically generated from the original datasets e.g.
MNIST-C dataset, which is a corrupted version of the standard MNIST dataset.
These datasets may give us a better benchmark than the k-classes-out datasets,

but they still does not give us the characteristics of true anomalies.

» Real-world: The anomalies are labeled by a human expert e.g. Credit-card Fraud
dataset. Out of the three types, these datasets are the best benchmarks to check

if an algorithm learns the characteristics of the true anomalies.

In light of the types of datasets listed above, we used the following datasets to get a

benchmark on out-of-distribution robustness in our model and in the competitors:

o MNIST (LeCun et al., 2010): This dataset is a collection of 70,000 28x28 grayscaled
images of handwritten digits from 0 to 9. There are 10 classes i.e. each digit is a
class. There are a total of 60,000 training images i.e. 6,000 training images per
class, and 10,000 test images i.e. 1,000 test images per class. For the experiments,

an arbitrary class will be set as normal and the remaining class as anomalies.

o CIFAR-10 (Krizhevsky, 2009): This dataset is a collection 60,000 32x32 colored
images of 10 classes. The 10 different classes represent airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. There are 50,000 training images i.e.
5,000 training images per class, and 10,000 test images i.e. 1,000 test images per
clags. Similar to MNIST, in our experiments, an arbitrary class was set as normal

and the remaining class as anomalies.

2The algorithm was not run on synthetic dataset due to schedule constraints.

o Credit card fraud (Pozzolo et al., 2015): This dataset has two days’ credit card
transactions of European cardholders in September 2013. It has 284,807 transac-
tions and 492 are frauds i.e. 0.172% anomaly.

o Satellite (Goldstein and Uchida, 2016): A dataset of 36 features extracted from
satellite observations. The dataset has 5025 normal observations and 75 randomly

sampled anomalies i.e. 1.49% anomaly.

Dataset Type Classes Observations Features Anomaly
CIFAR-10 Image 10 60,000 32x32 50%
MNIST Image 10 70,000 28x28 50%
Credit Card Tabular 2 (Fraud, 284,807 30 0.172%
Fraud Non-Fraud)

Satellite Tabular 2 (Normal, 5,100 36 1.49%

Soil Quality Anomaly)

Table 1: Summary of Datasets

3.3 Performance Measure

There are two popular measures to evaluate the performance of classification algorithms:
area under the Receiver Operating Characteristic (ROC) curve, and area under the
Precision-Recall (PR) curve. These measures also apply to the anomaly detection algo-
rithms since we classify normal and anomalous classes, similar to the general classifica-

tion problems.

To explain the two curves, let’s start with a confusion matrix (Figure 2). The values in
the confusion matrix i.e. true positive, false positive, false negative, and true negative
are the number of anomalies correctly predicted as anomalies, observations predicted as
anomalies but are normal, the observations predicted as normal but are anomalies, and

normal observations correctly predicted as normal, respectively.

Ground Truth

Positive (Anomaly) Negative (Normal)
E Positive True Positive (TP) False Positive (FP) | Precision = T];Z—%
2| (Anomaly)
FGS" Negative False Negative (FN) True Negative (TN)
- (Normal)
True Positive Rate (TPR)
or, Recall = TPZ%

Table 2: The confusion matrix highlights the terms for ROC and PR curves. Recall is
also called True Positive Rate or Sensitivity. False Positive Rate is calculated
as (1-Precision), and Precision is also called Specificity or True Negative Rate.

The ROC curve is a plot of the True Positive Rate (TPR) against the False Positive
Rate (FPR=1 - Precision); plotted with the False Positive Rate on the X-axis, and the
True Positive Rate on the Y-axis. AUC-ROC ranges from 0 to 1, where 0.5 corresponds

to random chance, and 1 represents a perfect classifier.

The PR curve is a plot of Precision against Recall; plotted with Recall on the X-axis,
and Precision on the Y-axis. Precision measures the accuracy of anomaly predictions,

while Recall gauges the ability to capture all anomalies.

For a binary classification task with class imbalance, a popular perspective is that the PR
curve is a better option than the ROC curve for model comparison. A closer inspection,
however, showed that the PR curve is no better than the ROC curve in those situations
(McDermott et al., 2024).

3.4 Competitors for Benchmarking

We compared the model performance with a deep algorithm (DEAN), an ensemble en-
semble algorithm (Isolation Forest), a nearest-neighbor algorithm (KNN), and a cluster-
based algorithm (CBLOF). DEAN is explained in Section 2 above so we do not expand

on that here, but we briefly expand on the other algorithms below:

» Isolation Forest: The algorithm begins with a decision tree that isolates anomalies
by defining a path from the root to a leaf node. The assumption is that anomalies
have shorter paths, therefore, they are easier to isolate. The final model is an

ensemble of these decision trees, and the anomaly score of an observation is cal-

10

culated by averaging its path lengths in all of the trees. Isolation Forest scales in
linear time with the size of the dataset, and it performed quite well in high dimen-
sions. However, because the decision boundaries are either vertical or horizontal,
there can be regions where these boundaries cross each other, and these regions
are then assumed to be normal regions, which may result in misleading anomaly

scores for the sparse observations in these regions.

 k-Nearest Neighbors (KNN): The KNN algorithm can be used for both supervised
and unsupervised tasks. This thesis used the unsupervised ’variety’. Unlike su-
pervised KNN, where the goal is to classify data points based on labeled training
examples, unsupervised KNN aims to partition data into clusters based solely on
the input features without any predefined labels. KNN is a non-parametric algo-
rithm, easy to implement and interpret, and doesn’t require a training phase; it
simply stores the training data and performs computations during the prediction
phase. However, the algorithm does not scale well with larger datasets or higher
dimensions (it suffers from the curse of dimensionality). It is sensitive to noise,

and it is also sensitive to the value of K’ i.e. the number of nearest neighbors.

o Cluster-Based Local Outlier Factor (CBLOF): The CBLOF algorithm combines
aspects of both clustering and density-based methods. It aims to identify local
outliers by considering the density of clusters in the feature space. It starts by
creating clusters and assigning the observations to one of the clusters, and then
the density of each cluster is calculated. The anomaly score of an observation is
calculated based on its distance to the centroid and the cluster’s density. CBLOF is
quite effective in datasets with varying densities, it is also computationally efficient,
especially if the clustering algorithm used is scalable. On the other hand, it suffers
from the curse of dimensionality as a consequence of the distance-based anomaly
score calculation, and the performance is also dependent on the clustering method

used.

3.5 Source Code

The code is available at https://github.com/vanlalpeka/thesis. It is written in Python
3 (Van Rossum and Drake, 2009), and in addition to numpy library (Harris et al., 2020),
"imgaug" package is used for image pre-processing, scikit-learn (Pedregosa et al., 2011)

for feature selection, features bagging, and the submodels.

11

4 Methodology

Our algorithm has four stages: pre-processing, feature selection, feature bagging, and
the ensemble. The following sub-sections explain the stages in detail, including the

configuration options at each stage.

4.1 Pre-processing

Normalization and standardization options are available for both the image and the tab-
ular datasets. In addition, there are six pre-processing options for the image datasets i.e.
grayscaling, contrast enhancement, noise reduction, edge detection, data augmentation,

and skeletonization.

4.1.1 Normalization

Normalization transforms the (numerical) values of features, or columns in the dataset,
into a specific range, for instance, a [0,1] range as we do in this thesis. This is done
to ensure that different features of a dataset are on a similar scale, preventing certain
features from dominating others in machine learning algorithms that are sensitive to the
scale of input features. For instance, algorithms that use distance-based metrics (e.g., k-
nearest neighbors) or optimization algorithms (e.g., gradient descent) are sensitive to the
scale of input features, and training time increases when different features have different
ranges so normalizing the features improves the performance and training stability of

the machine learning models.

Normalization is a good choice if the data is approximately uniformly distributed in the

given range and if there are few extreme values (or none).

For a given feature X that has a minimum value of X,,;, and a maximum value of X,

the normalized feature is calculated as:

X o X — Xmin
normalized —
X

maxr Xmin

(8)

4.1.2 Standardization

Standardization, also known as Z-score normalization, is a process of rescaling the (nu-

merical) features of a dataset so that they have the properties of a standard normal

12

distribution with a mean (x) of 0 and a standard deviation (o) of 1. Similar to normal-
ization, the features are standardized to prevent certain features from dominating the
other features. Also similar to normalization, standardization is a good choice if there
are few extreme values (or none at all). However, standardization is more robust to

extreme values.

For a given feature X that has a mean of ux and a variance of ox, the standardized

feature is calculated as:

X — px

(9)

Xstandardized =
Ox

4.1.3 Grayscaling

Grayscaling converts the images from three channels (red, green, and blue) to a single
channel. This significantly reduces the total features of the images and therefore reduces

the training time.

There are several grayscale conversion methods: Gleam, Intensity, Luminance, Luma,
etc., but the consensus is that the type of grayscale conversion has little impact on image

recognition performance so we chose a version of the Luma grayscale conversion that is
used in high-definition televisions (HDTVs) (Jack, 2007).

Suppose R, G, and B represent red, green, and blue channels respectively; then, the

Luma grayscale conversion function G is given as:

G = 0.2126R + 0.7152G + 0.0722B (10)

4.1.4 Contrast Limited Adaptive Histogram Equalization (CLAHE)

A histogram of an image gives us information on the distribution of pixels in terms of
their brightness, where darker pixels are on the left side of the histogram and brighter
pixels are on the right. If an image is too bright, the histogram will be squeezed to
the right i.e. high values. If the image is too dark, it will be squeezed to the left. A
technique to increase contrast in these situations is to spread the histogram across the

pixel intensity range i.e. 0 to 255. Histogram Equalization is such a technique.

The downside of Histogram Equalization is that it performs global equalization of the

histogram, which introduces noise. Contrast Limited Adaptive Histogram Equalization

13

Original Image Grayscale Image

Figure 1: An image before and after applying the grayscale conversion following Equa-
tion 10.

(CLAHE) builds on Histogram Equalization but instead of global histogram equaliza-
tion, it performs the equalization locally and limits the amplification of noise. This
noise-limiting characteristic is why we chose CLAHE over other contrast enhancement
methods.

CLAHE takes two parameters: contrast limiting threshold and (local) tile size. The
algorithm involves three key steps: local enhancements, limited contrast, and inter-
polation. First, CLAHE divides the image into smaller tiles or patches and performs
histogram equalization independently on each of these tiles. This local adaptation pre-
vents over-amplification of intensities in the presence of noise, which can occur with
global histogram equalization. Second, CLAHE introduces a contrast limit parameter
to prevent excessive amplification of local contrasts. If a pixel value surpasses this limit
after the local histogram equalization, the pixel values are redistributed (not clipped) to
limit the enhancement. This ensures a controlled and balanced improvement in contrast.
Third, as the local enhancements are performed independently on each tile, there might
be noticeable separations between adjacent tiles. CLAHE uses an interpolation method

that smoothens these transitions, providing a visually cohesive result (Figure 2).

4.1.5 Gaussian Filter for Noise Reduction

Noise in images can lengthen training duration and reduce prediction accuracy. There-
fore, noise reduction is important to improve model performance. There are several
methods for noise reduction. Popular amongst them are convolution-based filters like
mean filter, medial filter, and Gaussian filter. A mean filter takes the average of all the

pixels surrounding a given center pixel. Although this makes the calculation simple and

14

Low Contrast Image Image after CLAHE

Figure 2: An image before and after applying CLAHE. The image contrast is improved
after CLAHE.

quick, the filtered images are blurry around the details where dark and bright pixels
are next to each other. A median filter takes the median of the pixels surrounding the
center pixel instead of their mean. This prevents blurring but the computations are
more expensive when compared to the mean filter. A Gaussian filter is similar to the
mean filter but instead of taking the simple average, the pixels are weighted in a nor-
mal distribution (Figure 3) with the mean of the distribution coinciding with the center
pixel. This makes the Gaussian-filtered images less blurry than mean-filtered images,
and also the computation cost is less compared to the median filter, which is why we

chose to use the Gaussian filter.

A Gaussian filter is characterized by a kernel, which is essentially a matrix of weights.

The weights are determined using a Gaussian function. For instance, a 5x5 Gaussian

10
filter kernel with o = [O 1] is given by:

1 4 7 4 1

) 4 16 26 16 4
73 X |7 26 41 26 7
4 16 26 16 4

1 4 7 4 1

The filter moves over each pixel in the image, and for each pixel, it calculates a weighted
average of its neighboring pixels. The Gaussian function determines the weights, with
higher weights given to pixels closer to the center. The weighted average is computed

by performing a convolution operation between the image and the Gaussian kernel. The

15

resulting value at each pixel location is a smoothed version of the original pixel value.
Since the Gaussian filter gives more importance to nearby pixels, high-frequency noise

(spikes or variations) tends to get averaged out, leading to a smoother image.
0.2
015

0.1

Giix.y)

005

Figure 3: 2-D Gaussian distribution with p = [8] and o = Ll) (1)]

4.1.6 Canny Filter for Edge Detection

Edge detection is important in image processing because the edges provide crucial cues
for the subsequent processing steps. There are different varieties of edge detection meth-
ods: differentiation based, anisotropic diffusion based, active contour based, fuzzy logic
based, spatial-frequency based, statistics based, sub-pixel interpolation based, and deep
learning based methods. Among these methods, the deep learning based methods have
the highest accuracy but the highest computational complexity (Jing et al., 2022). Out
of the many edge detection methods, we chose Canny’s criteria (Canny, 1986) because it
localizes edges fairly well, is also robust against noise, and is computationally lightweight.

It is also based on a first-order derivative.

The Canny filtering works in five steps and the algorithm contains a few parameters: the
size of the Gaussian filter, and the minimum and the maximum threshold for the last
step i.e. hysteris thresholding. First, noise reduction is done using Gaussian smoothing
to minimize the impact of noise on the edge detection process. Second, gradients are
calculated using a Sobel filter, for instance. The gradient magnitude is computed as
the square root of the sum of squares of the horizontal and vertical gradients. Third,
non-maximum suppression is used to thin the edges, or in other words, to keep only
the local maxima in the gradient magnitude along the direction of the gradient. This

process helps in preserving only the most significant edges and suppressing weaker,

16

less important ones. Fourth, double thresholding is performed to classify edge pixels
into three categories: strong edges, weak edges, and non-edges. Pixels with gradient
magnitudes above a high threshold are classified as strong edges, and those below a low
threshold are classified as non-edges. Pixels with gradient magnitudes between the high
and low thresholds are classified as weak edges. Finally, hysteris thresholding is used to
build continuous edges i.e. connecting weak edges to strong edges. If a weak edge pixel
is connected to a strong edge pixel, it is considered part of the edge. The idea is to trace
a path along the edges by accepting weak edges that are part of the same edge structure
as strong edges. The final result is a binary image with white pixels representing edges

and black pixels representing non-edges as shown in Figure 4.

Original Image

Canny Edge Detection

Figure 4: An image before and after applying the Canny filter for edge detection.

4.1.7 Image Augmentation

Image augmentation is a technique widely used in machine learning to artificially increase
the diversity of a dataset by applying various transformations to the existing images. In-
troducing diversity to the training dataset minimizes the risk of overfitting and improves
the model’s generalization to unseen images. In addition, augmented images expose the
model to different variations, making it more robust to changes in lighting conditions,

viewpoints, and other factors present in real-world scenarios.

There may be several motivations for augmenting images, for instance, model overfit-
ting, domain shifts between train and test datasets, basic variations like brightness and
contrast, class imbalance, and too few images (per class). In this thesis, we split the
CIFAR-10 and the MNIST images such that domain shifts and class imbalance are not
the main concerns. The datasets also have a good amount of images per class so there

is less concern regarding having too few images. Therefore, our main motivations for

17

augmenting images in this thesis are to prevent overfitting and to train a model that is

more robust to the basic image variations.

Deep learning models like Generative Adversarial Network (GAN) can be used to aug-
ment images but they consume almost 3X more computation time than traditional
augmentations, and on top of that, the performance is not so much better than the
traditional methods (Perez and Wang, 2017). Therefore, we opted for the traditional
methods in this thesis (Figure 5) and utilized random combinations of the following

augmentation techniques:

1. Flipping and Rotation: Images can be horizontally or vertically flipped and rotated

to simulate different viewpoints and orientations.

2. Translation: Shifting the image horizontally or vertically helps the model become

invariant to changes in position.

3. Zooming: Scaling in or out provides the model with variations in the size of objects

in the image.

4. Shearing: Shearing involves tilting the image along one of its axes, introducing

distortion.

5. Crop: Cropping allows the model to focus on a specific area within an image and

simulate different scales and positions of objects within an image.

Although image augmentation is a powerful technique for enhancing the performance
and generalization of machine learning models, excessive augmentation might lead to
overfitting, so careful selection and customization of augmentation techniques are essen-

tial for achieving optimal results.

4.1.8 Skeletonization

The goal of image skeletonization is to reduce the shape of objects within an image to
a simplified, one-pixel-wide representation known as the "skeleton'. Skeletons are useful
for recognizing and classifying shapes. The simplified representation allows for efficient

and robust shape matching.
The various methods to "skeletonize" images are listed below:

1. Sequential Thinning: Algorithms iteratively remove pixels from the boundary of

the objects until a one-pixel-wide skeleton is obtained (Zhang and Suen, 1984).

18

Original Image Augmented 1 Augmented 2 Augmented 3

Augmented 4 Augmented5 Augmented 6 Augmented 7

¥ > w

Figure 5: The original image is a random image of an airplane from the CIFAR-10
dataset. The other images are the augmented images of the original. The
augmentations are done using random combinations of the traditional aug-
mentation methods.

2. Medial Axis Transform: Skeletons can be derived from the distance transform,

where the medial axis represents the center-lines of objects.

3. Morphological Operations: Morphological operations like hit-or-miss transform

can be employed for skeletonization.

Among the skeletonization methods above, this thesis used the scikit implementation

that follows the sequential thinning method.

4.2 Feature Selection

High-dimensional data causes regression-based algorithms to overfit easily.

The feature selections explored in this thesis are Principal Component Analysis (PCA),
Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF), t-
distributed Stochastic Neighbor Embedding (t-SNE), autoencoder, and a combination of

19

a) Original Image

10

15

20

b) Skeletonization (Zhang)
0

c) Morphological thinning d) Medial axis skeletonization
0 0

5
10
15

20

25

25

20

20 0

10

20 0 10

0 10

20 0

10

Figure 6: The various skeletonization methods in action: The original image is a random
image (28x28 pixels) from the MNIST dataset.

Zero-phase component analysis (ZCA) pre-whitening and Restricted Boltzmann Machine
(RBM). In each of these options, we set the default percentage of selected features to be
20% of the original features, except for t-SNE where we selected three features regardless

of the number of the original features.

4.2.1 Principal Component Analysis (PCA)

The fundamental concept behind PCA is to reduce the features of a dataset while cap-
turing the maximum information by finding the so-called "principal components" of the
data, which are linear combinations of the original features. In other words, the goal is
to identify the first k£ principal components that explain the most amount of variance
in the data (Fig. 8). Geometrically, this is akin to trying to find a new feature space
(principal axes) to project the data from the original feature space such that the new

feature space best explains the variance in the data.

Suppose we have a dataset X with n observations (samples) and p features (variables).

i1 Ti2 T1p

X To21 T22 Tap
(n,p) —

Tn1 Tn2 xnp

One way to solve a PCA problem is using singular value decomposition of the data

matrix X,), as listed below:

1. Standardize each feature of the data so that high variance features do not dominate

the other features: Z; = Xi—t

ag;)

where ¢ = 1, ..., p, i; and o; are mean and variance

of the ith feature respectively.

20

2. Perform Singular Value Decomposition (SVD) on Z,) i.e.

Znp) = Unp) X(p,p) V(g,m

where U,) is called the right singular vectors of Z(,,) and the columns are or-
thogonal unit vectors of length n; ¥,) is called the singular values of Z, ;) and it
is an n-by-p diagonal matrix of the square roots of the eigenvalues; V) is called
the right singular vectors of Z(,,) and it is a p-by-p matrix whose columns are
orthogonal unit vectors of length p, these p vectors are the principal axes i.e. the

new coordinate system.

3. Calculate the first k& principal components using the equation:

Py = Utnie) Xk)

where Uy,) is the first & columns of U,), and X) is the (k, k) upper-left part
of ¥(pp). The k principal components are uncorrelated (orthogonal) to each other
and the first principal component corresponds to the axis of the highest variance.
Fig. 7 shows the principal components from the MNIST dataset projected onto

the original features.

Algorithm 1: PCA algorithm to determine the principal components

Input: Number of desired principal components: £
Input: Dataset: X,)
Output: Principal Components: P, x)

1 Standardize: Z; = XU;“

2 Solve using SVD: Z,) = U(n,p)E(pyp)V(z;p)
8 Py = Uy Xi)

Besides SVD, the PCA problem can also be solved using eigen-decomposition of the
covariance of the standardized data matrix, C' = ﬁZTZ . Mathematically, there is
no difference between the two approaches. However, there are efficient algorithms for
SVD that avoid the calculation of the covariance matrix C', and these calculations are
more stable compared to the eigen-decomposition method. Therefore, SVD is now the

standard method to solve the PCA problem. We are using PCA implementation in

21

scikit, where SVD is solved using using LAPACK ("Linear Algebra Package") (Halko
et al., 2010).

Although solving for the principal components (using SVD) is quite efficient, the draw-
back of PCA is that the principal components are not interpretable. The principal
components are linear combinations of the original features so they are entirely different
from the original features, making it difficult to interpret the principal components and
to identify which of the original features are important. Other drawbacks of PCA are
that the data is assumed to be normal along the features, and also that the features are

assumed to be linearly related; both of which may not always apply.

PC1 PC2 PC 3 PC 4 PC5

Figure 7: MNIST 'eigendigits": Principal components in the original feature space, rep-
resenting the directions (vectors) of maximum variance in the MNIST data.

The leftmost principal component explained the most amount of variance in
the data.

100 ~

80 ~

Explained Variance (in %)

0 200 400 600 800
Count of Principal Components
Figure 8: Variance of the MNIST training data explained by the principal components:
157 principal components, which is roughly 20% of the total original features

(28x28=784), explained 81.42% of the variance in the MNIST training data
(60K images).

22

4.2.2 Independent Component Analysis (ICA)

Let’s briefly juxtapose Independent Component Analysis (ICA) with PCA for clarity:
first, the goal of PCA is to find the principal components that are uncorrelated (orthogo-
nal) to each other, while the goal of ICA is to find the components that are (statistically)
independent; second, the principal components in PCA are linear combinations of the
original features, while the components in ICA are the (assumed) independent latent
features that generated the original features; third, PCA assumes normality of the data,
while ICA assumes non-normality (to be specific, the components in ICA can still be
identified if only one independent component is Gaussian, but the components can not
be identified if more than one component is Gaussian); fourth, PCA may be thought of
as ‘compressing’ the information along the principal components, while ICA ’separates’
the information; finally, PCA determines the order of magnitude and the variance of
the principal components, while ICA cannot determine these two for the (independent)

components.

Now, suppose we have a dataset X with n observations (samples) and p features (vari-

ables).

Tr11 T2 ... Tip

X To1p T2 ... T2p
(np) =

Tn1 Tp2 .. Tpp

The ICA problem can be written in a matrix presentation as below:
Xinp) = Awn)Snp)

where A is the mixing matrix, and S is the independent components matrix. The
challenge then is to calculate A, ,) and S(,,) while observing X, only. This can be

achieved by assuming non-Gaussian statistically independent components.

Suppose we estimated the the mixing matrix A, we can take its inverse, say, W, and

calculate the independent components as:

Stnp) = Winm) Xnp)

23

There are several algorithms to solve for ICA e.g. infomax, FastICA, JADE, and kernel-
independent component analysis. We are using the FastICA? implementation in scikit

(Hyvérinen and Oja, 2000).

The Central Limit Theory (CLT) implies the sum of multiple random variables is more
Gaussian than the random variables themselves. In other words, CLT implies the original
features in our datasets are more Gaussian than the independent latent features. With
that in mind, there are two approaches to identifying the latent features: minimizing
the mutual information of the components or, maximizing the non-Gaussianity of the
components. FastICA follows the second approach, which we explain below and also
highlighted in Algorithm 2.

To solve the ICA problem and to identify the independent components, we have to find
a weight vector w such that the projection w? X (n,p) Maximizes the non-Gaussianity. This
is achieved by performing Newton’s optimization on the non-linear function G(w’ X,) =

logcosh(w' X).

3FastICA convergence speed is cubic, whereas ICA algorithms based on (stochastic) gradient descent
methods have only linear convergence.

24

Algorithm 2: FastICA algorithm to determine the independent components
Input: Number of desired independent components: k

Input: Input dataset: X, p
Output: Independent Components: S) = W(:,Z’k)X(n’p)

=

Center® X,) Ty = T — %22:1 Tpj, LEN,JED
2 Whiten® using eigenvalue decomposition on the covariance matrix of the centered
-1
Xing) Xnp = D2 E" Xy
3 Initialize the weight matrix: W,) =0
4 for i<+ 1to k do

5 Create a random vector of weight w; of size n
6 Perform a Newton iteration on w;. Approximately:
w; = E[X () G' (W] Xnp))] — E[G" (0] X n)) |wi
7 Perform a deflationary orthogonalization on w; using the current W:
wi = w; — YLy (W] Wy)W,
8 Normalize w; i.e. w; = Wq‘u’—zn
9 if w is still changing then
10 ‘ Go back to step 6
11 end
12 else
13 ‘ W myli] = w;
14 end
15 end

16 Return S,y = ngvk)X(n,p)

“This is required because we need E(X(, X (:';l 7p)) = I for FastICA to work

D is the diagonal matrix of eigenvalues and E is the matrix of eigenvectors

4.2.3 Non-negative Matrix Factorization (NMF)

NMF approximates a matrix X, ,) with n observations and p features such that X,) ~
WinkyH k), where W and H are low-ranked non-negative matrices, and £ << n and
k << p. Geometrically, X (Tn’p) is projected onto a new subspace defined by the k& columns
of Wiy, and then Hy) is the low-dimension equivalent of the high-dimension dataset
X (Tmp) in the new subspace. Say, X is a dataset of facial images where a row is a flattened
image, then W is a matrix of parts of the face like an eye, an ear, and a nose; and H is a

matrix that specifies which parts of the face are present in an image. This interpretability

25

is the reason NMF has become quite popular, for instance, in image processing (Gillis,
2020).

Let Vipn) = X (j;w) for ease of notation, then the NMF problem is to find W and H that

minimizes the Frobenius norm:
||V - WHH%’Tobenius st. W > O’ H=>0 (11)

Other divergence measures can be used for the NMF problem formulation but the Frobe-
nius norm is quite commonly used because it corresponds to i.i.d. Gaussian noise as-

sumption and it leads to smooth optimization.

Unlike PCA, NMF does not require the transformed features to be orthogonal to each
other. However, there are two challenges with NMF": first, the problem is NP-hard in
general, and second, the solution is not unique. Therefore, it can be computationally

expensive, especially for large datasets.

We are using a scikit implementation that solves the Frobenius norm in Eqn. 11 with a
two-block coordinate descent method, which works by minimizing one coordinate (ma-
trix) at a time. To this end, the method minimizes W first and then H, and repeats
to find a local minimum, as such, there is no guarantee of finding global minima. Since
NMF is an NP-hard optimization problem, the iterative algorithm is sensitive to the ini-
tial value of W and H. A common random initialization is to use a uniform distribution

in the range [0,1].

26

Algorithm 3: Two-block coordinate descent algorithm to solve the NMF problem
Input: Number of desired independent components: k

Input: Input dataset: V)
Output: Non-negative Matrix of Rank-k ~W , 1) H (i n), where W >0, H > 0
1 Randomly initialize the matrices s.t. W(© >0, H® >0
2 fori+1,2,...do
3 | WO =update(V, WD HO1) gt
1V = WOHER s < NV = WEDHEDR, i
4 HO" = update(VT, WO HEDT gt
1V = WOHO R ppenius < NV = WOHDR i
5 if Stopping Criteria is met * then
6 ‘ break;

7 end

8 end

Return W, H

©

%A stopping criteria can be an upper bound on iteration, or runtime, or if there is no significant change
in W and H between the iterations

ol7]51/]e

Figure 9: Plot of NMF components i.e. the matrix W in Eqn. 11 for MNIST dataset
and £ = 5. Each image corresponds to a column in W. Notice the plot of the
components resemble digits more than the PCA components in Fig. 7.

4.2.4 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE(van der Maaten and Hinton, 2008) is a t-distributed variant of Stochastic Neigh-
bor Embedding (SNE) (Hinton and Roweis, 2002). It is primarily used for dimensionality
reduction and visualization of high-dimensional data in a lower-dimensional space, typ-
ically 2D or 3D. It learns a non-parametric mapping and is inherently stochastic due to
its probabilistic nature so different runs of t-SNE on the same data may produce slightly
different representations. Since a t-distribution is a log-tailed distribution, t-SNE pre-

vents the crowding problem, which is one disadvantage of SNE.

27

The key idea behind t-SNE is to model pairwise similarities between data points in the
high-dimensional space and then map these similarities to a lower-dimensional space. It
does so by constructing probability distributions over pairs of points in both the original
high-dimensional space and the lower-dimensional embedding space. It then minimizes
the Kullback-Leibler divergence between these distributions, effectively optimizing the

embedding to reflect the similarities in the original data as closely as possible.

One crucial parameter in t-SNE is perplexity, which controls the number of effective
neighbors (observations) considered during the optimization process. Perplexity can be
seen as a rough measure of the number of close neighbors for each data point. Choosing
an appropriate perplexity value is important, as it can significantly affect the resulting
embedding. Furthermore, t-SNE is sensitive to the scale of the input features. Therefore,
it is essential to scale the data appropriately before applying t-SNE to ensure that fea-
tures with larger magnitudes do not dominate the optimization process. Standardization

is a common preprocessing step for t-SNE.

Unlike linear techniques such as PCA (Principal Component Analysis), t-SNE is nonlin-
ear. It preserves the local (topological) structure of the data by modeling the pairwise
similarities between data points in the high-dimensional space and mapping them to a
lower-dimensional space. This makes it particularly useful for capturing complex rela-
tionships within the data. In addition, t-SNE focuses on preserving the local structure
of the data, meaning that nearby points in the original high-dimensional space are likely
to remain close in the lower-dimensional embedding. This property makes it well-suited

for visualizing clusters and identifying patterns in the data.

However, the distances between points in the t-SNE plot do not directly correspond
to distances in the original high-dimensional space. Therefore, qualitative rather than
quantitative interpretations should be made based on the relative positions of points
and clusters. On top of this, t-SNE can be computationally intensive, especially for
large datasets. The algorithm has a time complexity of approximately O(N?) for the
pairwise distance computation between points and O(NlogN) for optimization, where
N is the number of data points. For very large datasets, approximate versions of t-SNE

or techniques like Barnes-Hut t-SNE may be used to reduce the computational effort.

28

t-SNE Visualization of MNIST Dataset

100 4 rﬂ
8
‘ K
50 A
' 6
™~
o
3 L5
& i *
£
=] 07 ‘
o 4
- | o
L
-
3
_50 -
' F2
- [1.
—100 4
T T T T T 0
—100 —50 0 50 100

t-SME Component 1

Figure 10: t-SNE visualization of the MNIST dataset. The numbers 0 to 9 in the legend
correspond to the digits.

4.2.5 Autoencoders

Autoencoders are a type of neural network used for unsupervised learning. They are
quite popular in the realm of dimensionality reduction and data compression. They’ve

gained significant attention due to their ability to learn efficient representations of data.

An autoencoder consists of two main parts: an encoder and a decoder. The encoder com-
presses the input data into a latent-space representation, while the decoder reconstructs
the original input from this representation. The goal is to ensure that the reconstruc-
tion closely matches the original input. Autoencoders can be undercomplete (where the
dimensionality of the latent space is lower than the input) or overcomplete (where it’s
higher). Undercomplete autoencoders are primarily used for dimensionality reduction,

while overcomplete ones can learn more complex representations.

29

The choice of loss function plays a crucial role in training autoencoders. Mean Squared
Error (MSE) loss is commonly used for reconstruction tasks, but other loss functions
like Binary Cross-Entropy or Kullback-Leibler Divergence are employed for specific pur-
poses, such as in variational autoencoders (VAEs). VAEs are a type of generative model
that extends the basic autoencoder framework. They incorporate probabilistic concepts,
allowing for generating new data samples. VAEs learn a distribution in the latent space,

enabling them to generate diverse outputs.

We are using a basic autoencoder, which is a neural network with an encoder and a
decoder, with multiple hidden layers in between. There are no probabilistic concepts
involved as in the VAEs. We fed the latent space to the next stage in our algorithm,

which is the ensemble of simple submodels.

Input Latent Output
Representation

Encoder Decoder

Layer Layer

Figure 11: (Basic) Autoencoder with one hidden layer each for the encoder and the
decoder. Dimensionality reduction does not require the decoder and the
output layer.

30

4.2.6 Zero-phase component analysis (ZCA) pre-whitening and Restricted
Boltzmann Machine (RBM)

The idea behind sequencing ZCA and RBM is that ZCA Whitening will be used to
remove correlation between nearby pixels i.e. two-way correlation, which will allow us

to focus on higher-order correlations, and then RBM will be used for feature extraction.

Zero-phase Component Analysis, often abbreviated as ZCA, is a powerful technique
used for whitening data, particularly images. It aims to decorrelate the pixel values of
images while preserving their original structure and important features. By doing so,
ZCA reduces redundancy in the data and enhances the efficiency of subsequent learning
algorithms. ZCA is different from ICA and PCA in that a ZCA-ed image still looks like
the original image, while an ICA-ed image or a PCA-ed image no longer looks like the

original image.
The process of ZCA involves several steps:

1. Normalization: Initially, the pixel values of the images are normalized to have zero
mean and unit variance. This step ensures that the data is centered around zero

and has a consistent scale, facilitating further processing.

2. Covariance Matrix Calculation: Next, the covariance matrix of the normalized
data is computed. This matrix captures the relationships between different pixel

values in the images.

3. Eigen-Decomposition: The covariance matrix is then decomposed into its con-
stituent eigenvectors and eigenvalues. These eigenvectors represent the principal
components of the data, while the eigenvalues indicate their importance or vari-

ance.

4. Whitening Transformation: Using the eigenvectors and eigenvalues, the data is
transformed to a new space where the dimensions are decorrelated and scaled ap-
propriately. This transformation effectively whitens the data, making the features

more independent and uniformly distributed.

5. Reconstruction: Finally, the whitened data can be reconstructed back to the orig-
inal space if necessary, preserving the essential information while removing redun-

dancies.

Restricted Boltzmann Machines, or RBMs, belong to the family of generative neural

networks and are widely used for unsupervised learning tasks such as feature learning,

31

dimensionality reduction, and collaborative filtering. RBMs consist of two layers of
neurons: visible units, which represent the input data, and hidden units, which capture

higher-level abstractions or features.
The training of RBMs involves two main steps:

1. Contrastive Divergence (CD): This algorithm is used to update the weights between
the visible and hidden units iteratively. During training, the model is presented
with input data, and the activations of the hidden units are computed using a
probabilistic approach based on the current weights. These activations are then
used to reconstruct the visible units, and the difference between the actual and

reconstructed data is minimized through weight updates.

2. Gibbs Sampling: In the Gibbs sampling process, the states of the visible and hidden
units are sampled alternately to generate new configurations of the network. This
sampling process allows the RBM to explore the probability distribution of the

input data and learn meaningful representations in an unsupervised manner.

4.3 Feature Bagging

Feature bagging is a technique used in machine learning to improve the performance
and robustness of models. The idea is to train several models on a subset of the original
features to capture different aspects of the dataset. The expectation is that the results
of these models have high variance, and taking an average of those results will help

minimize overfitting, especially in high-dimension feature spaces.

We used the PolynomialFeatures() function in scikit library with no bias-term and only
interaction-terms for feature bagging i.e. if a dataset has two features a and b, the new
set of features will include {a,b, ab}, but exclude {a? b?} and the intercept. The total
amount of features generated from PolynomialFeatures() is further filtered to reduce
wall-clock runtime. First, the feature set is reduced to a given percentage of the original
feature size. If this still generates too many features, the resulting feature set is further

reduced to a fixed maximum size.

4.4 Ensemble

In machine learning, bias and variance of a model are considered complementary to

each other, that is, if the bias increases then the variance will decrease, and vice versa.

32

A good model ought to balance the so-called "bias-variance tradeoftf'. A model with
high bias means the model did not learn the data well enough that the predictions are
unrelated to the data, and a model with high variance means the model learned the data
too well that the predictions vary with each observation. An individual model tends to
have either high bias or high variance. Ensemble learning attempts to mitigate this
problem by combining multiple models to reduce the bias or the variance, as applicable.
Specifically, the thinking is that an ensemble will have lower variance if each sub-model

has high variance and low bias, or have lower bias if each sub-model has low variance
and high bias.

The individual sub-models can be combined to form an ensemble using one of the meth-

ods below?:

o Bagging: This method reduces the variance of the individual sub-models. The
ensemble is a collection of homogeneous weak sub-models trained in parallel, in-
dependent of each other, and then the output of each sub-model is aggregated
using majority voting or averaging. Random Forest is an example of the bagging
method, combining several individual decision trees to make an ensemble model.

The resulting ensemble has lower variance when compared to a single decision tree.

e Boosting: This method reduces the bias of the individual sub-models. The en-
semble is a a collection of homogeneous weak sub-models trained in sequence such
that a sub-model output is fed to the next sub-model and this subsequent sub-
model improves its performance using the errors from the previous sub-model.
The sub-models are aggregated at each step, not at the end. This means the en-
semble output is the output of the last sub-model. The weighted average method
aggregates the output from each stage (sub-model).

o Stacking: This method increases the predictive accuracy of the sub-models. The
ensemble is a collection of heterogeneous strong sub-models trained in parallel,
independent of each other. These sub-models utilize the initial training dataset to
predict a new training dataset, and a meta-model is trained using the new training
dataset. The predictions from the meta-model are aggregated using the weighted

average method.

We experimented with four submodels: Linear Regression, LASSO, One-Class SVM,

and ElasticNet. The submodels are briefly explained in the following subsections.

4The ensembles in this thesis were combined using the bagging method, as mentioned in Section 3.1

33

4.4.1 Linear Regression

Linear Regression is a statistical method to model the relationship between a dependent
feature and one or more independent features. The relationship is assumed to be linear,
meaning that changes in the independent variables are associated with proportional

changes in the dependent variable.

Suppose we have N observations and p features, the design matrix X of the independent

features is given as:

1 11 ... Tip
1 T921 i)
R D
X =
I @y o0 Ty

Then, a simple Linear Regression model can be expressed as:
Y =Xp+e¢ (12)

where ¢ is the error term.

Equation 12 has a closed form solution for the coefficients estimate B , given below:
B=(X"X)"XTy
Then, the dependent variable y can be estimated from the coefficient estimates:
§=Xp

The (classical) Linear Regression has the following underlying assumptions:

1. Linearity: The relationship between the dependent and independent variables is
assumed to be linear. If this assumption is violated, the model may produce biased

or unreliable estimates.

2. Independence of Errors: The errors (residuals) should be independent of each other
and have constant variance (homoscedasticity). Violations of this assumption can

lead to inefficient or biased estimates.

34

3. Normality of Errors: The errors are assumed to be normally distributed. While the
central limit theorem suggests that this assumption may not be critical for large
sample sizes, departures from normality can still affect the accuracy of confidence

intervals and hypothesis tests.

4. No Perfect Multicollinearity: The independent variables should not be highly cor-
related with each other. Multicollinearity can lead to unstable estimates and dif-

ficulty in interpreting the coefficients.

4.4.2 LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) regression is a powerful tool
for variable selection and regularization. It is also called L1 regularization. At its core,
LASSO regression is a Linear Regression technique that incorporates a penalty term,
enforcing sparsity in the coefficient estimates. This penalty term, often denoted as A,
constrains the sum of the absolute values of the coefficients, shrinking some coefficients
towards zero. This action of shrinking coefficients (to zero) which essentially performs
variable selection is what distinguishes LASSO from traditional Linear Regression meth-

ods. This (feature) sparsity makes the resulting model easier to interpret.

Suppose we have N observations with p features and a single outcome y, then the LASSO

objective is to solve the following equation:

N
min { Z (yi — By — mfﬁf} subject to i 18| < t.

Po.B | i1 =

where ¢ is a user-defined constant that determines the degree of regularization.

The regularization parameter A controls the trade-off between model complexity and
goodness of fit. Techniques such as cross-validation can be employed to automatically

tune this parameter, ensuring optimal model performance.

Although there is only one hyperparameter (\) to tune, choosing the appropriate value
can be challenging, and improper tuning may lead to suboptimal models. LASSO also
gets computationally prohibitive for large datasets, necessitating specialized algorithms

or distributed computing frameworks in those cases.

35

4.4.3 One-Class SVM

Support Vector Machine (SVM) is a powerful tool in machine learning, primarily used for
classification tasks. However, traditional SVMs require labeled data with instances from
multiple classes for training. In many real-world scenarios, however, obtaining labeled
data from all classes can be challenging or even impossible. This is where One-Class
SVMs come into play. One-Class SVM is a variant of the traditional SVM designed
to tackle the problem of anomaly detection, where only one class (normal instances) is

present during training.

A One-Class SVM is a machine learning algorithm that learns a decision boundary
around the normal data points in a dataset. It classifies new instances as either normal
or anomalies based on their proximity to this decision boundary. Unlike traditional
SVMs, which aim to find the optimal hyperplane that maximizes the margin between
different classes, One-Class SVM aims to encapsulate the normal instances within a

region of feature space.

One-Class SVM works by mapping the input data into a high-dimensional feature space
using a kernel function, typically a radial basis function (RBF) kernel. Then, it tries
to find the hyperplane (decision boundary) that best separates the normal instances
from the origin in this feature space. This hyperplane is determined by minimizing the
margin violations, i.e., instances that fall on the wrong side of the decision boundary. The
hyperplane is positioned to encompass the majority of normal instances while minimizing

the outliers.

One-Class SVM is particularly well-suited for anomaly detection tasks where only normal
data is available during training. It can identify outliers or anomalies in unseen data
based on their deviation from the learned normal behavior. It can also handle high-

dimensional data efficiently.

One-Class SVM assumes that the majority of instances in the dataset are normal, so the
performance of the model may be affected if the dataset is highly imbalanced. More-
over, like many machine learning algorithms, One-Class SVM requires careful selection
of hyperparameters such as the kernel function and its parameters. Improper parameter
tuning can lead to suboptimal performance or overfitting. Finally, the decision bound-
ary learned by One-Class SVM may not always be interpretable, especially in high-
dimensional feature spaces, which can make it challenging to understand the model’s

behavior.

36

4.4.4 ElasticNet

Although LASSO simultaneously generates sparse feature space and performs feature
selection, it has two noticeable shortcomings: the number of selected features is bounded
by the number of observations, and it also tends to select only one (or a few) features
from a subset of correlated features and shrinks the rest to zero (Zou and Hastie, 2005).

This is where ElasticNet comes into the picture.

ElasticNet blends the penalties of Lasso (L1) and Ridge (L2) regression to offer a solu-
tion to the challenges of feature selection, multicollinearity, and model flexibility. The

objective function of ElasticNet regression can be expressed as follows:

mﬁm{||y—Xﬁ||3+A1||@||1 mmu%}

where, y is a vector of the outcomes, X is the design matrix, /3 is a vector of coefficients,
and \; and)y are the regularization parameters controlling the strength of the L1 and

L2 penalties, respectively.

Through the tuning of \; and A, ElasticNet provides users with the flexibility to adjust
the balance between L1 and L2 regularization, and address the two shortcomings of
LASSO mentioned above.

37

Preprocessing

For both image and

tabular datasets:

1. Normalization

2. Standardization | [Feature Selection
) Ensemble
For images only: 1. PCA
Feat Baggi 1. Li
1. Grayscale 2. ICA ea. Hre Dassime meat
No intercept. Regression
2. Contrast 7 3. NMF = Interaction-terms]
2. LASSO
enhancement only. Feature reduc-
(CLAHE) 4 -5NE tion., 3. OC-SVM
) 5. AE
3. Gaussian 4. ElasticNet
smoothing 6. ZCA + RBM
(filtering)

4. Canny filter

5. Image

augmentation

6. Skeletonization

Figure 12: Summarization of the algorithm.

5 Experiments

First, an ensemble size of 3000 is selected so that the results are comparable to the DEAN
experiment results. Second, a 10-minute computation budget (per configuration®) is set

to prevent certain configurations from running too long. Third, each configuration is

5For instance, one configuration can be a normalized dataset with PCA feature selection followed with
a feature bagging step and with an ensemble of Linear Regression submodels; another configuration
may be the same setup except for standardized dataset instead of normalized.

38

run 10 times and the average AUROC of those 10 runs is taken as the result of that

configuration.

There are 72 configurations for tabular datasets and 4608 configurations for image
datasets. We ran all 72 configurations for the tabular datasets, but only 504 config-
urations for the image datasets because it will take too long to run the entire 4608
configurations®. The 504 configurations are the sum of the 72 ’core’ configurations and
the 432 ’main effects’ configurations like 'norm-grayscale’ preprocessing. Table 3 lists

some of the configurations for clarity.

Pre-Processing Feature Extraction Submodel Type Number of Submodels

Normalize Autoencoder OC-SVM 3000
Normalize ZCA + RBM Linear Regression 3000
Normalize ZCA + RBM ELasticNet 3000
Normalize ZCA + RBM LASSO 3000
Normalize ICA OC-SVM 3000
Standardize ZCA + RBM OC-SVM 3000
Standardize ZCA + RBM LASSO 3000
Standardize ICA OC-SVM 3000
Standardize ICA Linear Regression 3000
Standardize ICA ELasticNet 3000
Standardize ICA LASSO 3000
None Autoencoder OC-SVM 3000
None Autoencoder Linear Regression 3000
None PCA ELasticNet 3000
None PCA LASSO 3000
None None OC-SVM 3000
None None Linear Regression 3000

Table 3: Some of the configurations used to run the jobs. One row represents one con-
figuration. For instance, the first configuration on the list is where the data is
normalized first, followed by feature extraction using Autoencoder, and finally
an ensemble of 3000 OC-SVM.

6Imagine 10 runs for each of the 10 classes in the image datasets, even with each run having a 10-minute
computation budget, the total runtimes can grow significantly.

39

5.1 Satellite

The experiment results (AUROC) for the Satellite dataset are shown in Table 4 below.
Each AUROC shown is the average of 10 runs. For instance, the AUROC of 0.8035 on
the top-left corner is the average of 10 runs of the same configuration: no preprocessing,

features selection using Autoencoder, and ElasticNet submodels.

The best-performing configuration (AUROC = 0.9684) is to normalize the data, per-
form no feature selection, and then use LASSO submodels. For normalized data and no
feature selection, ElasticNet and Linear Regression submodels also showed competitive
AUROCs. All in all, regardless of the preprocessing and the feature selection options,
LASSO and Linear Regression submodels performed fairly well, while OC-SVM per-

formed worst on average.

40

AVERAGE of AUROC Ensemble

Preprocess Selection elastic lasso lin oc-svm
none ae 0.8035 0.7979 0.8582 0.5000
ica 0.9140 0.8809 0.9243 0.4318
none 0.7438 0.7444 0.8953 0.5000
pca 0.9073 0.8912 0.8990 0.7492
zca + rbm 0.4556 0.4544 0.4623 0.5000
tsne 0.6174 0.5599 0.5983 0.7591
norm ae 0.9075 0.9377 0.9175 0.5000
ica 0.9121 0.9397 0.9283 0.4817
none 0.9683 0.9684 0.9672 0.5793
pca 0.5000 0.5000 0.9200 0.8432
zca + rbm 0.3778 0.3753 0.3646 0.5000
tsne 0.6325 0.6053 0.6143 0.7890
std ae 0.8969 0.9007 0.9056 0.5000
ica 0.9250 0.9056 0.9383 0.4393
none 0.9070 0.9070 0.9125 0.6602
pca 0.6349 0.5000 0.9109 0.8069
zca + rbm 0.3359 0.3268 0.3451 0.5000
tsne 0.5894 0.5879 0.5966 0.6994

Table 4: AUROCs for Satellite dataset. Each value is the average of 10 runs. The
highlighted cells are the top 10% highest AUROCs. The best-performing con-
figuration of 0.9684 AUROC is normalized data and a LASSO submodel but

with no feature selection.

Regardless of the preprocessing and the feature selection options, Linear Regression and
OC-SVM submodels ran quicker than ElasticNet and LASSO submodels. In fact, the
fastest configurations are the ones with Linear Regression submodel. The wallclock

runtimes in seconds are shown in Table 5.

41

AVERAGE of Runtime (sec) Ensemble

Preprocess Selection elastic lasso lin oc-svm

none ae 255.8762 251.5797 19.6155 20.7705
ica 443.3754 450.7738 4.4386 8.9327
none 600.1985 600.1952 29.933 16.7359
pca 600.1914 600.1093 4.4311 70.7904
zca + rbm 266.3904 265.2003 5.1736 7.9466
tsne 546.7106 545.6989 325.0739 350.4549

norm ae 267.9164 278.3019 224142 229126
ica 468.903 457.6327 4.4746 8.8707
none 600.3472 600.2436 29.9491 16.6389
pca 234.2943 233.7825 4.4003 8.0973
zca + rbm 268.5004 267.5895 5.2173 7.8262
tsne 556.9002 552.8689 332.4173 354.7121

std ae 263.83 263.1137 21.7297 24.4521
ica 457.7685 453.0444 4.4422 8.8504
none 600.2496 600.3135 30.1164 16.9414
pca 282.2199 236.9244 4.4228 10.3045
zca + rbm 267.1621 267.1687 5.1355 7.8112
tsne 548.6326 549.1985 326.1366 352.3072

Table 5: Runtimes for the Satellite dataset. Each value is the average of 10 runs. Elas-
ticNet and LASSO run significantly longer compared to Linear Regression and
OC-SVM. The highlighted cells are the best 10% runtimes.

The ensemble size of 3000 ran to completion within the 10-minute budget for most con-

figurations, except for some configurations related to ElasticNet and LASSO submodels.

Table 6 showed the counts of submodels that ran within the 10-minute computation

budget. This table is complementary to the runtimes in Table 5.

42

AVERAGE of Count Ensemble

Preprocess Selection elastic lasso lin oc-svm
none ae 3000 3000 3000 3000
ica 3000 3000 3000 3000
none 1619 1618.3 3000 3000
pca 2309.4 2299.3 3000 3000
zca + rbm 3000 3000 3000 3000
tsne 3000 3000 3000 3000
norm ae 3000 3000 3000 3000
ica 3000 3000 3000 3000
none 1636.6 1745.2 3000 3000
pca 3000 3000 3000 3000
zca + rbm 3000 3000 3000 3000
tsne 3000 3000 3000 3000
std ae 3000 3000 3000 3000
ica 3000 3000 3000 3000
none 1253.7 1258.8 3000 3000
pca 3000 3000 3000 3000
zca + rbm 3000 3000 3000 3000
tsne 3000 3000 3000 3000

Table 6: Count of the submodels that were run within the 10-minute computation budget
for the Satellite dataset. Each value is the average of 10 runs. The highlighted
cells are the smallest 10%.

To validate the relationship between AUROC and ensemble size, several ensemble sizes
at a step of 100 were run for a particular configuration (normalized data, no feature
selection, and Linear Regression submodels) as shown in Figure 13. We can see that the
relationship between ensemble size and the AUROCS is neither linear nor logarithmic,

but rather almost like a sawtooth wave.

43

9.68x 1011

9.67 x 1071 1

AUROC

9.66 x 101 1

9.65 x 101 1

9,64 x 10711

T T T T T T
0 500 1000 1500 2000 2500 3000
Ensemble Size

Figure 13: AUROC vs. ensemble size of the Satellite dataset with normalized data, no
feature selection, and an ensemble of Linear Regression submodels.

5.2 Credit Card Fraud

The experiment results (AUROC) for the Credit Card Fraud dataset are shown in Table
7 below. The best-performing configuration (AUROC = 0.9567) is with normalized data,

no feature selection, and Linear Regression submodels.

Regarding feature selection, RBM and t-SNE perform lowest regardless of the prepro-
cessing and the submodel types; and not doing feature selection at all produces the
highest AUROCSs across the configurations.

44

AVERAGE of AUROC Ensemble

Preprocess Selection elastic lasso lin oc-svm
none ae 0.5055 0.5056 0.5511 0.5000
ica 0.7549 0.7467 0.7731 0.7151
none 0.8812 0.8665 0.9420 0.7544
pca 0.7246 0.7149 0.7650 0.5351
zca + rbm 0.4713 0.4699 0.4701 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
norm ae 0.6615 0.6928 0.7166 0.5000
ica 0.7696 0.7628 0.7812 0.5688
none 0.9512 0.9480 0.9567 0.5000
pca 0.5000 0.5000 0.7613 0.5030
zca + rbm 0.4687 0.4668 0.4677 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
std ae 0.8844 0.8686 0.8991 0.5000
ica 0.8592 0.8629 0.8639 0.6187
none 0.9365 0.9376 0.9399 0.9146
pca 0.6981 0.6092 0.8382 0.6099
zca + rbm 0.4718 0.4700 0.4701 0.5000
tsne 0.5000 0.5000 0.5000 0.5000

Table 7: AUROC:S for Credit Card Fraud dataset. Each value is the average of 10 runs.
The best-performing configuration of 0.9567 AUROC is normalized data and

Linear Regression submodels but with no feature selection. The highlighted
cells are the top 10% AUROCsS.

The wallclock runtimes in seconds are shown in Table 8. t-SNE feature selection in-
creased the runtimes by orders of magnitude irrespective of the other options. As a

whole, the Linear Regression submodel with ICA feature selection runs the fastest.

45

AVERAGE of Runtime (sec) Ensemble

Preprocess Selection elastic lasso lin oc-svm

none ae 600.8602 601.1312 98.9414 311.7588
ica 603.604 601.4035 98.5179 381.5936
none 603.6166 603.7823 601.4229 605.9302
pca 601.5444 601.205 98.8311 614.8519
zca + rbm 601.3747 601.3187 541.4898 428.3078
tsne 30203.9222 30031.5495 29996.6158 41059.2288

norm ae 600.9412 600.7636 262.9384 441.2298
ica 602.356 601.6201 99.6406 602.3667
none 608.295 608.5644 601.0178 602.0415
pca 601.2456 602.0464 99.1412 378.9214
zca + rbm 601.1502 601.124 146.4145 424.4468
tsne 46178.7255 45849.5332 46664.729 46142.0382

std ae 600.9211 600.8541 336.4428 535.597
ica 601.5637 601.4412 98.7027 603.962
none 603.8183 605.2633 601.1035 600.9925
pca 601.9737 601.0422 244.9774 397.4282
zca + rbm 601.0975 601.1652 274.7261 602.3055
tsne 35875.9548 37322.5751 36279.8834 36343.0288

Table 8: Runtimes for the Credit Card Fraud dataset. Each value is the average of 10
runs. Regardless of the preprocessing and the submodel type, t-SNE feature
selection increased the runtimes by an order of magnitude. The highlighted
cells are the fastest 10%.

46

AVERAGE of Count Ensemble

Preprocess Selection elastic lasso lin oc-svm

none ae 552.6 515.3 3000 3000
ica 169.9 441.6 3000 3000
none 185.1 111.6 588.1 45.5
pca 299.4 309.4 3000 33.3
zca + rbm 430.4 427.6 3000 3000
tsne 0 0 0 0

norm ae 474.2 403.8 3000 3000
ica 263.9 430.1 3000 593.1
none 38.7 42 590.6 3024
pca 518.3 215.6 3000 3000
zca + rbm 430.9 428.5 3000 2971.4
tsne 0 0 0 0

std ae 355.9 250.9 2926.7 2787.4
ica 390 432.1 3000 1337.6
none 97.9 90.2 5659 747.7
pca 286 501.2 3000 3000
zca + rbm 427.2 431.2 3000 519.7
tsne 0 0 0 0

Table 9: Count of the submodels that were run within the 10-minute computation budget
for the Credit Card Fraud dataset. Each value is the average of 10 runs. The
highlighted cells i.e., configurations with t-SNE feature selection did not run
even one submodel within the 10-minute budget.

5.3 MNIST

Table 10 lists the AUROCSs for the 72 ’core’ configurations, and the top 10% are high-
lighted. The best-performing class mostly occurred for the digit "1’, which is not surpris-
ing considering the simplicity of the digit. Other high AUROCSs occurred for the digits
’57, 76, 7", and 9’ for Linear Regression and OC-SVM submodels. The configurations
with the most number of high AUROCsS is standardized data and OC-SVM submodel

but with no feature selection.

47

AVERAGE of AUROC Ensemble
Preprocess Selection Digit elastic lasso lin 0C-svVin
none ae 0 0.8173 0.8147 0.8907 0.5000
1 0.9545 0.9518 0.9825 0.5000
2 0.6781 0.6757 0.7584 0.5000
3 0.6831 0.6703 0.7605 0.5000
4 0.6738 0.6696 0.7834 0.5000
5 0.6368 0.6328 0.7287 0.5000
6 0.7589 0.7491 0.8517 0.5000
7 0.7179 0.7033 0.8139 0.5000
8 0.7459 0.7483 0.7882 0.5000
9 0.7275 0.7403 0.8310 0.5000
ae Average 0.7394 0.7356 0.8189 0.5000
ica 0 0.7987 0.8114 0.8298 0.5523
1 0.9629 0.9667 0.9814 0.6399
2 0.6524 0.6716 0.6666 0.5174
3 0.6265 0.6323 0.6587 0.5688
4 0.8042 0.8218 0.8063 0.5349
5 0.6538 0.6525 0.6621 0.5292
6 0.7895 0.7931 0.8268 0.5552
7 0.7331 0.7086 0.7547 0.5939
8 0.6139 0.6014 0.6127 0.5450
9 0.6816 0.6752 0.7336 0.5957
ica Average 0.7317 0.7335 0.7533 0.5632
none 0 0.8508 0.8513 0.9050 0.5000
1 0.9362 0.9369 0.9856 0.5000
2 0.6921 0.6920 0.7915 0.5000
3 0.7001 0.7013 0.7631 0.5000
4 0.7737 0.7721 0.8513 0.5000
5 0.6643 0.6656 0.7185 0.5000
6 0.7587 0.7582 0.9170 0.5000
7 0.7862 0.7850 0.8957 0.5000
8 0.7371 0.7392 0.7897 0.5000
9 0.7601 0.7607 0.8545 0.5000
none Average 0.7659 0.7662 0.8472 0.5000

48

Preprocess Selection Digit elastic lasso lin 0oc-svin
pca 0 0.7665 0.7683 0.9581 0.8443
1 0.9871 0.9866 0.9978 0.8251

2 0.5373 0.5927 0.8384 0.6354

3 0.7160 0.7045 0.8824 0.7397

4 0.7061 0.7040 0.9260 0.7406

5 0.6574 0.6477 0.8566 0.6925

6 0.6462 0.6844 0.9402 0.6949

7 0.8118 0.8199 0.9365 0.7511

8 0.6433 0.6460 0.8037 0.6679

9 0.7437 0.7664 0.9251 0.7774

pca Average 0.7215 0.7321 0.9065 0.7369
zca + rbm 0 0.5781 0.5781 0.5781 0.5000
1 0.6230 0.6227 0.6235 0.5000

2 0.5547 0.5547 0.5547 0.5000

3 0.5443 0.5444 0.5442 0.5000

4 0.5280 0.5283 0.5282 0.5000

5 0.5359 0.5359 0.5362 0.5000

6 0.6796 0.6800 0.6801 0.5000

7 0.6667 0.6665 0.6666 0.5000

8 0.5411 0.5418 0.5417 0.5000

9 0.6104 0.6108 0.6115 0.5000

zca + rbm Average 0.5862 0.5863 0.5865 0.5000
tsne 0 0.6248 0.6246 0.6149 0.5131
1 0.5000 0.5000 0.5000 0.5000

2 0.4360 0.4429 0.4616 0.4043

3 0.5562 0.5553 0.5933 0.4857

4 0.5212 0.5263 0.5160 0.5165

5 0.4695 0.4625 0.4615 0.4208

6 0.5196 0.5145 0.5246 0.4341

7 0.4501 0.4395 0.4436 0.3671

8 0.5477 0.5776 0.5619 0.5276

9 0.4776 0.4616 0.4632 0.4479

tsne Average 0.5103 0.5105 0.5141 0.4617
norm ae 0 0.9574 0.9614 0.9791 0.5000

49

Preprocess Selection Digit elastic lasso lin 0oc-svin
1 0.9919 0.9921 0.9961 0.5000

2 0.8083 0.8110 0.8663 0.5000

3 0.8381 0.8420 0.8964 0.5000

4 0.8665 0.8673 0.9144 0.5000

5 0.7965 0.7992 0.8539 0.5000

6 0.9333 0.9327 0.9640 0.5000

7 0.9091 0.9058 0.9367 0.5000

8 0.8635 0.8656 0.8985 0.5000

9 0.9043 0.9084 0.9398 0.5000

ae Average 0.8869 0.8886 0.9245 0.5000
ica’ 0 0.8177 0.8144 0.8324 0.4818
1 0.9809 0.9656 0.9951 0.9117

2 0.6765 0.6843 0.6915 0.5259

3 0.7546 0.7402 0.7573 0.5419

4 0.8006 0.8133 0.8160 0.5153

ica Average 0.8061 0.8035 0.8184 0.5953
none 0 0.8506 0.8522 0.9048 0.5000
1 0.9339 0.9391 0.9849 0.5000

2 0.6897 0.6948 0.7926 0.5000

3 0.7019 0.7028 0.7620 0.5000

4 0.7694 0.7738 0.8514 0.5000

5 0.6641 0.6675 0.7167 0.5000

6 0.7580 0.7625 0.9182 0.5000

7 0.8037 0.8089 0.8959 0.5000

8 0.7400 0.7431 0.7892 0.5000

9 0.7619 0.7665 0.8569 0.5000

none Average 0.7673 0.7711 0.8473 0.5000
pca 0 0.7865 0.8088 0.9734 0.8984
1 0.9801 0.9626 0.9975 0.8335

2 0.6136 0.5436 0.8421 0.6352

3 0.6618 0.6777 0.8941 0.7511

4 0.7315 0.7119 0.9258 0.7143

5 0.6064 0.5720 0.8221 0.6870

"FastICA failed to converge for digits 5 and up.

20

Preprocess Selection Digit elastic lasso lin 0oc-svin
6 0.6932 0.7170 0.9506 0.6800

7 0.7680 0.7669 0.9306 0.7864

8 0.6635 0.6773 0.8779 0.6604

9 0.7389 0.7984 0.9295 0.7769

pca Average 0.7243 0.7236 0.9144 0.7423
zca + rbm 0 0.5719 0.5719 0.5719 0.5000
1 0.5887 0.5887 0.5891 0.5000

2 0.5547 0.5547 0.5547 0.5000

3 0.5326 0.5326 0.5326 0.5000

4 0.5239 0.5239 0.5239 0.5000

5 0.5357 0.5357 0.5363 0.5000

6 0.6749 0.6749 0.6751 0.5000

7 0.6441 0.6446 0.6447 0.5000

8 0.5400 0.5400 0.5400 0.5000

9 0.6016 0.6017 0.6015 0.5000

zca + rbm Average 0.5768 0.5769 0.5770 0.5000
tsne 0 0.6124 0.6058 0.6059 0.5269
1 0.5000 0.5000 0.5000 0.5000

2 0.4620 0.4537 0.4706 0.4253

3 0.5672 0.5867 0.6099 0.5246

4 0.5135 0.5083 0.5281 0.5113

5 0.4705 0.4711 0.4474 0.4397

6 0.5230 0.5175 0.5208 0.4358

7 0.4388 0.4254 0.4308 0.3608

8 0.5672 0.5733 0.5520 0.5390

9 0.4847 0.4435 0.4504 0.4489

tsne Average 0.5139 0.5085 0.5116 0.4712
std ae 0 0.9512 0.9539 0.9571 0.5000
1 0.9894 0.9892 0.9895 0.5000

2 0.8397 0.8282 0.8455 0.5000

3 0.8215 0.8221 0.8265 0.5000

4 0.8594 0.8612 0.8619 0.5000

5 0.7937 0.7878 0.7961 0.5000

6 0.9476 0.9480 0.9516 0.5000

51

Preprocess Selection Digit elastic lasso lin 0oc-svin
7 0.9274 0.9259 0.9316 0.5000

8 0.7812 0.7771 0.7724 0.5000

9 0.9160 0.9119 0.9196 0.5000

ae Average 0.8827 0.8805 0.8852 0.5000
ica 0 0.7941 0.7908 0.8572 0.7615
1 0.7810 0.9044 0.9891 0.9550

2 0.6061 0.6559 0.7038 0.6354

3 0.6886 0.6909 0.7883 0.7055

4 0.7181 0.6897 0.8073 0.6381

5 0.6167 0.6193 0.6553 0.5906

6 0.7668 0.7954 0.8785 0.7688

7 0.7868 0.8248 0.8775 0.7143

8 0.6940 0.6815 0.7092 0.6028

9 0.7976 0.7760 0.8240 0.8043

ica Average 0.7250 0.7429 0.8090 0.7176
none 0 0.9486 0.9493 0.9490 0.9684
1 0.9921 0.9919 0.9907 0.9934

2 0.7877 0.7890 0.8091 0.8769

3 0.8115 0.8149 0.8188 0.9263

4 0.8913 0.8923 0.8961 0.8522

5 0.8003 0.8005 0.8033 0.9552

6 0.8908 0.8927 0.9231 0.9501

7 0.9143 0.9153 0.9267 0.9307

8 0.7466 0.7466 0.7592 0.7942

9 0.8809 0.8819 0.8910 0.9346

none Average 0.8664 0.8674 0.8767 0.9182
pca 0 0.9418 0.9462 0.9507 0.6382
1 0.9900 0.9899 0.9912 0.9771

2 0.7462 0.7421 0.7615 0.7281

3 0.7553 0.7506 0.7661 0.7292

4 0.8211 0.8215 0.8472 0.6167

5 0.6887 0.6890 0.6918 0.6350

6 0.9274 0.9218 0.9346 0.8805

7 0.9337 0.9287 0.9377 0.8498

52

Preprocess Selection Digit elastic lasso lin 0oc-svin
8 0.7330 0.7391 0.7501 0.7254

9 0.8730 0.8760 0.8899 0.8312

pca Average 0.8410 0.8405 0.8521 0.7611
zca + rbm 0 0.5700 0.5707 0.5706 0.5000
1 0.5943 0.5940 0.5970 0.5000

2 0.5547 0.5547 0.5547 0.5000

3 0.5275 0.5278 0.5279 0.5000

4 0.5219 0.5222 0.5221 0.5000

5 0.5362 0.5365 0.5362 0.5000

6 0.6723 0.6725 0.6727 0.5000

7 0.6641 0.6641 0.6643 0.5000

8 0.5390 0.5389 0.5391 0.5000

9 0.6016 0.6015 0.6024 0.5000

zca + rbm Average 0.5782 0.5783 0.5787 0.5000
tsne 0 0.5238 0.5222 0.5344 0.5024
1 0.3893 0.3628 0.3700 0.4858

2 0.5010 0.5293 0.4650 0.4764

3 0.5113 0.5344 0.5035 0.5146

4 0.4887 0.5022 0.4854 0.5404

5 0.5453 0.5488 0.5203 0.5272

6 0.5451 0.5435 0.5351 0.4092

7 0.5504 0.5430 0.5362 0.4602

8 0.6118 0.6162 0.6062 0.5536

9 0.5708 0.5508 0.5697 0.4358

tsne Average 0.5237 0.5253 0.5126 0.4905

Table 10: AUROC:S for the MNIST dataset. Each value is the average of 10 runs.

Table 11 lists the average AUROCs for the 72 ’core’ configurations and the 432 'main
effects’ configurations. Instead of listing the AUROCSs by the class (or by the digit),

each number in the table is the average of the 10 runs of the 10 classes for a given

configuration. The highlighted cells are the top 10% and we can see that the majority

of them fall in the configurations with Linear Regression and OC-SVM submodels. In
fact, the largest AUROC (0.9461) is from a "std,augment-none-SVM" configuration.

23

Among the preprocessing options of standardization, normalization, and no pre-preprocessing,
standardization seems to better the AUROCs more than the other two. For the image-
specific preprocessing options, augmentation, blurring, and CLAHE seem to improve

the AUROCs. When it comes to feature selection, Autoencoder, no feature selection,

and PCA contributed the most to increasing the AUROCs.

AVERAGE of AUROC Ensemble
Preprocess Selection elastic lasso lin oc-svm
none ae 0.7394 0.7356 0.8189 0.5000
ica 0.7317 0.7335 0.7533 0.5632
none 0.7659 0.7662 0.8472 0.5000
pca 0.7215 0.7321 0.9065 0.7369
zca + rbm 0.5862 0.5863 0.5865 0.5000
tsne 0.5103 0.5105 0.5141 0.4617
none,augment ae 0.6499 0.6486 0.6948 0.5000
ica 0.6899 0.6899 0.8012 0.7965
none 0.7248 0.7246 0.7325 0.5000
pca 0.6329 0.6269 0.8494 0.8139
zca + rbm 0.5094 0.5060 0.4985 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
none,blur ae 0.6823 0.6833 0.7754 0.5000
ica 0.7545 0.7550 0.8487 0.3350
none 0.8349 0.8347 0.8656 0.5000
pca 0.7080 0.7118 0.8756 0.1511
zca + rbm 0.5482 0.5484 0.5391 0.5000
tsne 0.5572 0.5540 0.5540 0.5278
none,canny ae 0.6493 0.6320 0.5268 0.5000
ica 0.5066 0.4907 0.4623 0.8464
none 0.6083 0.6079 0.7132 0.5000
pca 0.3020 0.2997 0.4261 0.8873
zca + rbm 0.4890 0.4891 0.4936 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
none,clahe ae 0.7368 0.7416 0.7775 0.5000
ica 0.7888 0.7767 0.8998 0.7671
none 0.7669 0.7662 0.8124 0.5000
pca 0.6976 0.7061 0.8919 0.7769

o4

Preprocess Selection elastic lasso lin oc-svm
zca + rbm 0.4939 0.4968 0.4913 0.5000
tsne 0.5191 0.5253 0.5289 0.5149
none,gray ae 0.5011 0.5004 0.5003 0.5000
ica 0.4996 0.4995 0.4996 0.4996
none 0.4999 0.4999 0.5001 0.5000
pca 0.4989 0.4987 0.4997 0.4996
zca + rbm 0.5009 0.5023 0.5016 0.5000
tsne 0.5082 0.5037 0.4992 0.4924
none,skel ae 0.5399 0.5331 0.4836 0.5000
ica 0.5182 0.5162 0.5327 0.4980
none 0.4523 0.4536 0.4799 0.5000
pca 0.4134 0.3913 0.5338 0.3536
zca + rbm 0.5523 0.5524 0.5527 0.5000
tsne 0.5498 0.5478 0.5545 0.5064
norm ae 0.8869 0.8886 0.9245 0.5000
ica 0.8061 0.8035 0.8184 0.5953
none 0.7673 0.7711 0.8473 0.5000
pca 0.7243 0.7236 0.9144 0.7423
zca + rbm 0.5768 0.5769 0.5770 0.5000
tsne 0.5139 0.5085 0.5116 0.4712
norm,augment ae 0.7782 0.7797 0.8278 0.5000
ica 0.6852 0.6921 0.8328 0.7947
none 0.7242 0.7268 0.7325 0.5000
pca 0.4765 0.4769 0.7864 0.8360
zca + rbm 0.5104 0.5053 0.4971 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
norm,blur ae 0.7954 0.7977 0.8329 0.5000
ica 0.7869 0.7702 0.8488 0.3504
none 0.8254 0.8438 0.8652 0.5000
pca 0.7075 0.7151 0.8675 0.1565
zca + rbm 0.5825 0.5807 0.5761 0.5000
tsne 0.5735 0.5678 0.5741 0.5386
norm,canny ae 0.1798 0.1835 0.2744 0.5000
ica 0.4907 0.4896 0.4616 0.8398

95

Preprocess Selection elastic lasso lin oc-svm
none 0.6577 0.6610 0.7267 0.5717
pca 0.4148 0.3994 0.4604 0.8775
zca + rbm 0.5289 0.5322 0.5341 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
norm,clahe ae 0.8704 0.8744 0.8972 0.5000
ica 0.8135 0.8125 0.8759 0.7706
none 0.7089 0.7383 0.7911 0.6513
pca 0.7764 0.7799 0.9032 0.6257
zca + rbm 0.6584 0.6586 0.6619 0.5000
tsne 0.5335 0.5453 0.5483 0.4760
norm,gray ae 0.5016 0.5012 0.5008 0.5000
ica 0.4997 0.4998 0.4996 0.4996
none 0.4999 0.4999 0.4997 0.5000
pca 0.5000 0.5000 0.4996 0.4996
zca + rbm 0.5026 0.5019 0.5036 0.5000
tsne 0.5106 0.4973 0.4846 0.5014
norm,skel ae 0.5486 0.5327 0.5969 0.5000
ica 0.5201 0.5075 0.5121 0.4906
none 0.4528 0.4526 0.4801 0.5000
pca 0.4333 0.3961 0.5288 0.3656
zca + rbm 0.5527 0.5526 0.5528 0.5000
tsne 0.5553 0.3803 0.5608 0.5051
std ae 0.8827 0.8805 0.8852 0.5000
ica 0.7250 0.7429 0.8090 0.7176
none 0.8664 0.8674 0.8767 0.9182
pca 0.8410 0.8405 0.8521 0.7611
zca + rbm 0.5782 0.5783 0.5787 0.5000
tsne 0.5237 0.5253 0.5126 0.4905
std,augment ae 0.7686 0.7679 0.7861 0.5000
ica 0.6196 0.6190 0.6522 0.8339
none 0.8508 0.8521 0.8754 0.9461
pca 0.4776 0.4675 0.7645 0.9039
zca + rbm 0.5288 0.5274 0.5219 0.5000
tsne 0.5000 0.5000 0.5000 0.5000

26

Preprocess Selection elastic lasso lin oc-svm
std,blur ae 0.8775 0.8723 0.8771 0.5000
ica 0.7477 0.7497 0.8005 0.5098
none 0.8394 0.8378 0.8420 0.9296
pca 0.7258 0.7328 0.8023 0.7230
zca + rbm 0.6166 0.6157 0.6182 0.5000
tsne 0.4856 0.4916 0.4890 0.4954
std,canny ae 0.4741 0.0863 0.0947 0.5000
ica 0.4249 0.4961 0.4603 = 0.8468
none 0.3746 0.3920 0.6547 0.5130
pca 0.3002 0.2910 0.4241 0.8850
zca + rbm 0.5907 0.5897 0.5891 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
std,clahe ae 0.8152 0.7329 0.7356 0.5000
ica 0.7717 0.8020 0.8672 0.7767
none 0.4486 0.5299 0.6421 0.7379
pca 0.7895 0.7872 0.8540 0.7691
zca + rbm 0.6392 0.6378 0.6384 0.5000
tsne 0.4948 0.5027 0.5083 0.5563
std,gray ae 0.5013 0.5016 0.5010 0.5000
ica 0.4999 0.4999 0.4999 0.4996
none 0.4996 0.4996 0.5009 0.4996
pca 0.4997 0.4997 0.4997 0.4996
zca + rbm 0.5031 0.5025 0.5018 0.5000
tsne 0.5015 0.4966 0.4993 0.4827
std,skel ae 0.3026 0.3041 0.3059 0.5000
ica 0.4995 0.5129 0.5051 0.5956
none 0.4020 0.4008 0.4068 0.6441
pca 0.4910 0.4914 0.4775 0.4303
zca + rbm 0.5405 0.5402 0.5408 0.5000
tsne 0.5341 0.5239 0.5426 0.4839

o7

Preprocess Selection elastic lasso lin oc-svm

Table 11: Average AUROCs of 10 classes for a given configuration for the MNIST
dataset. This table lists a combination of the 'main effects’ (432 configu-
rations) and the 72 configurations from Table 10 above, which totals to 504
configurations. The highlighted cells are the top 10% AUROCSs. The configu-
ration "std,augment-none-SVM" has the highest AUROC at 0.9461.

The sizes of the ensembles that were run in the 10-minute computation budget are listed
in Table 12. All of the configurations with zero ensemble size, or in other words ’the
slowest’, were with t-SNE feature selection, which is no different from what happened
in the Credit Card Fraud dataset in Table 9. However, for the Satellite dataset in Table
6, t-SNE did not perform the slowest. This implies the impact of t-SNE slowing down

the runs is more pronounced at higher-dimension datasets.

Without considering the preprocessing or the feature selection options, the configurations
with higher frequencies of small ensemble sizes i.e. configurations with longer runtimes
are the configurations with ElasticNet and LASSO submodels.

AVERAGE of Count Ensemble

Preprocess Selection elastic lasso lin oc-svm

none ae 2993 2996 3000 3000
ica 2998 2990 3000 3000
none 3000 3000 3000 3000
pca 551 552 3000 3000
zca + rbm 841 1032 3000 3000
tsne 525 609 2515 1875

none,augment ae 2658 2673 3000 3000
ica 778 861 3000 3000
none 2403 2381 3000 3000
pca 456 414 3000 1607
zca + rbm 547 593 3000 3000
tsne 0 0 0 0

none,blur ae 2984 2989 3000 3000
ica 1966 1869 3000 3000
none 2994 3000 3000 3000
pca 491 477 3000 3000

o8

Preprocess Selection elastic lasso lin 0C-sVIn
zca + rbm 869 1029 3000 3000
tsne 725 749 2612 2102
none,canny ae 2988 2991 3000 3000
ica 1050 1079 3000 3000
none 1091 1090 3000 3000
pca 418 473 3000 3000
zca + rbm 923 1038 3000 3000
tsne 0 0 0 0
none,clahe ae 2655 2637 3000 3000
ica 990 1013 3000 3000
none 1676 1389 3000 3000
pca 545 526 3000 3000
zca + rbm 951 1057 3000 3000
tsne 334 983 2958 2701
none,gray ae 3000 3000 3000 3000
ica 2997 3000 3000 3000
none 3000 2991 3000 3000
pca 2996 2998 3000 3000
zca + rbm 3000 3000 3000 3000
tsne 2992 2995 3000 3000
none,skel ae 1405 1381 3000 3000
ica 3000 3000 3000 3000
none 3000 3000 3000 3000
pca 703 2429 3000 3000
zca + rbm 875 1023 3000 3000
tsne 1012 982 3000 2516
norm ae 1248 1237 3000 3000
ica 2661 2702 3000 3000
none 3000 3000 3000 3000
pca 1027 1261 3000 3000
zca + rbm 895 1035 3000 3000
tsne 514 598 2564 1940
norm,augment ae 7T 792 3000 3000
ica 841 885 3000 3000

29

Preprocess Selection elastic lasso lin 0C-sVIn
none 2502 2463 3000 3000
pca 711 888 3000 3000
zca + rbm 552 594 3000 3000
tsne 0 0 0 0
norm,blur ae 1354 1382 3000 3000
ica 1807 2011 3000 3000
none 3000 3000 3000 3000
pca 1270 1587 3000 3000
zca + rbm 888 1035 3000 3000
tsne 811 832 2804 2515
norm,canny ae 2997 3000 3000 3000
ica 1148 1157 3000 3000
none 1036 1107 3000 3000
pca 1462 2054 3000 3000
zca + rbm 937 1036 3000 3000
tsne 0 0 0 0
norm,clahe ae 1620 1540 3000 3000
ica 1792 1974 3000 3000
none 1367 1674 3000 3000
pca 1977 2329 3000 3000
zca + rbm 919 1031 3000 3000
tsne 722 785 2274 1899
norm,gray ae 3000 3000 3000 3000
ica 3000 3000 3000 3000
none 3000 3000 3000 3000
pca 3000 3000 3000 3000
zca + rbm 3000 3000 3000 3000
tsne 3000 3000 3000 3000
norm,skel ae 1407 1401 3000 3000
ica 3000 2995 3000 3000
none 3000 3000 3000 3000
pca 733 2456 3000 3000
zca + rbm 889 1035 3000 3000
tsne 1041 1094 3000 2491

60

Preprocess Selection elastic lasso lin 0C-sVIn
std ae 2956 2946 3000 3000
ica 2520 2546 3000 3000
none 3000 3000 3000 3000
pca 349 328 3000 3000
zca + rbm 876 1038 3000 3000
tsne 746 747 3000 2457
std,augment ae 1746 1745 3000 3000
ica 1139 1286 3000 3000
none 2517 2538 3000 3000
pca 486 460 3000 3000
zca + rbm 539 581 3000 3000
tsne 0 0 0 0
std,blur ae 2880 2894 3000 3000
ica 1636 1931 3000 3000
none 2946 2928 3000 3000
pca 323 356 3000 3000
zca + rbm 894 1025 3000 3000
tsne 1278 1277 3000 2976
std,canny ae 2705 2656 3000 3000
ica 1056 1046 3000 3000
none 1014 1230 3000 3000
pca 406 833 3000 3000
zca + rbm 927 1037 3000 3000
tsne 0 0 0 0
std,clahe ae 2892 2927 3000 3000
ica 1015 996 3000 3000
none 1236 1702 3000 3000
pca 488 459 3000 3000
zca + rbm 926 1050 3000 3000
tsne 692 691 1800 1649
std,gray ae 3000 3000 3000 3000
ica 3000 3000 3000 3000
none 2983 2973 3000 3000
pca 2973 2972 3000 3000

61

Preprocess Selection elastic lasso lin oc-svm
zca + rbm 3000 3000 3000 3000
tsne 2994 2989 3000 3000

std,skel ae 2688 2783 3000 3000
ica 2988 2986 3000 3000
none 3000 3000 3000 3000
pca 367 320 3000 3000
zca + rbm 897 1021 3000 3000
tsne 1334 1343 3000 2954

Table 12: Average count (rounded-off to nearest decimal) of submodels in an ensemble
within the 10-minute computation budget. The highlighted cells are the lowest
10%. Feature selection using t-SNE has the most number of zero ensemble
sizes, which means t-SNE significantly slowed down the algorithm compared
to the other feature selection methods.

5.4 CIFAR-10

The average AUROCs for the CIFAR-10 dataset with the 72 'core’ configurations are
listed in Table 13. Out of the 10 classes of images, the higher AUROCs occurred most
frequently for deer and frog pictures. If we look at only the submodel types, Linear
Regression has the most amount of higher AUROCs. On the contrary, OC-SVM has the
least amount of higher AUROCs. OC-SVM also did not produce high AUROCS for the
deer and the frog pictures, which have high AUROCSs in other submodel types. A key
problem with CIFAR-10 dataset is that, if no feature selection is done, the algorithm

fails to run most of the time due to memory allocation issues.

AVERAGE of AUROC Ensemble

Preprocess Selection Class elastic lasso lin oc-svm

none ae Airplane 0.5611 0.5604 0.5787 0.5000
Automobile 0.5244 0.5255 0.5295 0.5000
Bird 0.4903 0.4929 0.5211 0.5000
Cat 0.5050 0.5046 0.5085 0.5000
Deer 0.5617 0.5596 0.5724 0.5000
Dog 0.5425 0.5427 0.5399 0.5000

62

Preprocess Selection Class one. elastic lasso lin 0oc-svin
Frog 0.5688 0.5717 0.5936 0.5000

Horse 0.5838 0.5796 0.5720 0.5000

Ship 0.5985 0.5979 0.6150 0.5000

Truck 0.5834 0.5840 0.5862 0.5000

ae Average 0.5520 0.5519 0.5617 0.5000
ica Airplane 0.6039 0.6097 0.6293 0.6063
Automobile 0.4221 0.4289 0.3933 0.5406

Bird 0.6287 0.6248 0.6485 0.5644

Cat 0.4665 0.4666 0.4724 0.4704

Deer 0.6820 0.6855 0.7238 0.5896

Dog 0.4357 0.4238 0.4331 0.4408

Frog 0.6771 0.6861 0.7288 0.5187

Horse 0.4487 0.4305 0.4262 0.5158

Ship 0.5966 0.5914 0.6182 0.5708

Truck 0.4454 0.4412 0.4190 0.4790

ica Average 0.5407 0.5389 0.5493 0.5296
pca Airplane 0.6117 0.6174 0.6105 0.6447
Automobile 0.4255 0.4335 0.4086 0.5361

Bird 0.6231 0.6223 0.6330 0.5604

Cat 0.4899 0.4892 0.4829 0.4287

Deer 0.6802 0.6848 0.7125 0.5812

Dog 0.4685 0.4580 0.4504 0.4387

Frog 0.7111 0.7113 0.6991 0.4595

Horse 0.4862 0.4839 0.4525 0.6165

Ship 0.6173 0.6063 0.6312 0.5648

Truck 0.4665 0.4610 0.4215 0.5019

pca Average 0.5580 0.5568 0.5502 0.5333
zca + rbm Airplane 0.3950 0.3885 0.3851 0.5000
Automobile 0.5429 0.5476 0.5478 0.5000

Bird 0.5058 0.5087 0.5055 0.5000

Cat 0.5329 0.5350 0.5373 0.5000

Deer 0.5743 0.5788 0.5798 0.5000

Dog 0.5204 0.5198 0.5193 0.5000

Frog 0.6010 0.6069 0.6076 0.5000

63

Preprocess Selection Class one. elastic lasso lin oc-svm
Horse 0.5395 0.5407 0.5384 0.5000

Ship 0.4621 0.4602 0.4580 0.5000

Truck 0.5322 0.5340 0.5296 0.5000

zca + rbm Average 0.5206 0.5220 0.5208 0.5000
tsne Airplane 0.5072 0.5043 0.5121 0.4984
Automobile 0.4329 0.4534 0.4312 0.5044

Bird 0.5931 0.5927 0.5888 0.5374

Cat 0.4711 0.4853 0.4991 0.4994

Deer 0.5755 0.5793 0.5616 0.5063

Dog 0.4871 0.4738 0.4747 0.4946

Frog 0.6058 0.5829 0.5866 0.5154

Horse 0.4889 0.4763 0.4775 0.4657

Ship 0.5140 0.5148 0.5061 0.4940

Truck 0.4814 0.4814 0.4772 0.5038

tsne Average 0.5157 0.5144 0.5115 0.5019
norm ae Airplane 0.5857 0.5781 0.5863 0.5000
Automobile 0.4755 0.4707 0.4649 0.5000

Bird 0.5825 0.5771 0.5801 0.5000

Cat 0.5061 0.5029 0.5041 0.5000

Deer 0.6199 0.6121 0.6173 0.5000

Dog 0.5334 0.5360 0.5266 0.5000

Frog 0.6723 0.6718 0.6757 0.5000

Horse 0.5379 0.5426 0.5373 0.5000

Ship 0.6719 0.6935 0.6921 0.5000

Truck 0.5496 0.5397 0.5490 0.5000

ae Average 0.5735 0.5724 0.5733 0.5000
ica Airplane 0.6113 0.6187 0.6526 0.6100
Automobile 0.4164 0.4142 0.3976 0.5254

Bird 0.6352 0.6192 0.6479 0.5632

Cat 0.4778 0.4662 0.4743 0.4760

Deer 0.6814 0.6771 0.7189 0.5852

Dog 0.4417 0.4389 0.4418 0.4380

Frog 0.6857 0.6859 0.7280 0.5234

Horse 0.4463 0.4863 0.4818 0.5304

64

Preprocess Selection Class one. elastic lasso lin 0oc-svin
Ship 0.5967 0.5736 0.6148 0.5632

Truck 0.4461 0.4458 0.4412 0.4885

ica Average 0.5439 0.5426 0.5599 0.5303
pca Airplane 0.6025 0.5938 0.6305 0.6507
Automobile 0.4360 0.4219 0.4061 0.5506

Bird 0.6113 0.6001 0.6238 0.5728

Cat 0.4880 0.4983 0.5111 0.4516

Deer 0.6659 0.6718 0.6992 0.6176

Dog 0.4640 0.4774 0.4665 0.4313

Frog 0.6762 0.6797 0.7260 0.5152

Horse 0.4806 0.4940 0.5098 0.6254

Ship 0.6103 0.6131 0.6059 0.5994

Truck 0.4771 0.4953 0.6129 0.5217

pca Average 0.5512 0.5545 0.5792 0.5536
zca + rbm Airplane 0.3889 0.3852 0.3838 0.5000
Automobile 0.5493 0.5511 0.5507 0.5000

Bird 0.5071 0.5049 0.5043 0.5000

Cat 0.5280 0.5353 0.5335 0.5000

Deer 0.5740 0.5822 0.5778 0.5000

Dog 0.5212 0.5204 0.5204 0.5000

Frog 0.5956 0.6015 0.6018 0.5000

Horse 0.5410 0.5418 0.5412 0.5000

Ship 0.4525 0.4545 0.4514 0.5000

Truck 0.5320 0.5316 0.5316 0.5000

zca + rbm Average 0.5190 0.5208 0.5196 0.5000
tsne Airplane 0.4878 0.5083 0.5093 0.5000
Automobile 0.4239 0.4491 0.4331 0.5204

Bird 0.5870 0.5842 0.5919 0.5094

Cat 0.4981 0.4810 0.4938 0.5283

Deer 0.5600 0.5633 0.5672 0.5047

Dog 0.4836 0.4883 0.4735 0.5213

Frog 0.5978 0.5982 0.5946 0.5195

Horse 0.4707 0.4749 0.4763 0.4868

Ship 0.5173 0.5044 0.5124 0.4946

65

Preprocess Selection Class one. elastic lasso lin 0oc-svin

Truck 0.4907 0.4790 0.4772 0.4873

tsne Average 0.5117 0.5131 0.5129 0.5072
std ae Airplane 0.5371 0.5396 0.5417 0.5000
Automobile 0.4949 0.4876 0.4936 0.5000

Bird 0.5574 0.5612 0.5651 0.5000

Cat 0.5137 0.5108 0.5076 0.5000

Deer 0.6357 0.6336 0.6387 0.5000

Dog 0.5070 0.5084 0.5100 0.5000

Frog 0.6710 0.6703 0.6732 0.5000

Horse 0.4997 0.4973 0.5085 0.5000

Ship 0.5724 0.5746 0.5735 0.5000

Truck 0.5404 0.5285 0.5251 0.5000

ae Average 0.5529 0.5512 0.5537 0.5000
ica Airplane 0.6333 0.6286 0.6370 0.6044
Automobile 0.4222 0.4160 0.3935 0.5313

Bird 0.6332 0.6212 0.6381 0.5571

Cat 0.4558 0.4715 0.4751 0.4789

Deer 0.6865 0.6897 0.7227 0.5976

Dog 0.4319 0.4355 0.4384 0.4490

Frog 0.7031 0.6993 0.7442 0.5341

Horse 0.4409 0.4200 0.4422 0.5398

Ship 0.6039 0.5798 0.6295 0.5585

Truck 0.4460 0.4238 0.4232 0.4905

ica Average 0.5457 0.5385 0.5544 0.5341
pca Airplane 0.6082 0.6100 0.6114 0.6296
Automobile 0.4239 0.4198 0.4059 0.5493

Bird 0.6232 0.6147 0.6281 0.5574

Cat 0.4942 0.5036 0.4884 0.4346

Deer 0.6805 0.6866 0.7135 0.5891

Dog 0.4597 0.4572 0.4547 0.4365

Frog 0.6995 0.7008 0.7071 0.4464

Horse 0.4867 0.5056 0.4619 0.6172

Ship 0.6015 0.6041 0.6318 0.5770

Truck 0.4516 0.4550 0.4168 0.5039

66

Preprocess Selection Class one. elastic lasso lin oc-svm

pca Average 0.5529 0.5557 0.5520 0.5341
zca + rbm Airplane 0.3931 0.3884 0.3821 0.5000
Automobile 0.5454 0.5462 0.5445 0.5000
Bird 0.5079 0.5063 0.5101 0.5000
Cat 0.5348 0.5361 0.5366 0.5000
Deer 0.5769 0.5795 0.5784 0.5000
Dog 0.5212 0.5223 0.5215 0.5000
Frog 0.5943 0.6031 0.6025 0.5000
Horse 0.5385 0.5386 0.5399 0.5000
Ship 0.4586 0.4558 0.4551 0.5000
Truck 0.5308 0.5302 0.5298 0.5000
zca + rbm Average 0.5202 0.5206 0.5201 0.5000
tsne Airplane 0.4956 0.5048 0.5057 0.5260
Automobile 0.4222 0.4297 0.4300 0.4971
Bird 0.5898 0.5767 0.5895 0.4944
Cat 0.4838 0.4896 0.4777 0.4934
Deer 0.5836 0.5875 0.5874 0.5165
Dog 0.4685 0.4785 0.4880 0.5019
Frog 0.6159 0.6028 0.5912 0.4890
Horse 0.4721 0.4712 0.4664 0.4833
Ship 0.5284 0.5056 0.5277 0.4672
Truck 0.4823 0.5116 0.4758 0.5145
tsne Average 0.5142 0.5158 0.5140 0.4983

Table 13: AUROCs for CIFAR-10 dataset, with no image related preprocessing. Each
value is the average of 10 runs. The highlighted cells are the top 10% highest
AUROC s, and the majority of them have Linear Regression submodels.

Table 14 lists the average AUROCs for the 72 ’core’ configurations and the 432 'main
effects’ configurations. Each cell is an average of 10 runs of the 10 classes for a given

configuration. The configuration "norm,augment-pca-lin" has the highest AUROC at
0.5867.

Among the preprocessing options of normalizing, standardizing, and no preprocessing,

normalizing the data seemed to have the most impact on AUROC. Image-specific prepro-

67

cessing like augmentation, blurring, and grayscaling also add to improve the AUROC:S.
This is more pronounced for normalized data. In feature selection, Autoencoder, no fea-
ture selection, and PCA contributed the most to increasing the AUROCs. Finally, if we
were to consider only the submodel types, Linear Regression has the highest frequency

of larger AUROCs among the submodel types.

AVERAGE of AUROC Ensemble
Preprocess Selection elastic lasso lin 0oc-svin
none ae 0.5520 0.5519 0.5617 0.5000
ica 0.5407 0.5389 0.5493 0.5296
pca 0.5580 0.5568 0.5502 0.5333
zca + rbm 0.5206 0.5220 0.5208 0.5000
tsne 0.5157 0.5144 0.5115 0.5019
none,augment ae 0.5447 0.5441 0.5539 0.5000
ica 0.5291 0.5268 0.5442 0.5740
pca 0.5494 0.5519 0.5436 0.5606
zca + rbm 0.5203 0.5199 0.5205 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
none,blur ae 0.5527 0.5518 0.5650 0.5000
ica 0.5316 0.5351 0.5465 0.4866
pca 0.5574 0.5579 0.5448 0.5309
zca + rbm 0.5292 0.5290 0.5284 0.5000
tsne 0.5097 0.5120 0.5133 0.5007
none,canny ae 0.5088 0.5084 0.5106 0.5000
ica 0.4922 0.4907 0.4961 0.5215
pca 0.4999 0.5011 0.5020 0.4909
zca + rbm 0.5141 0.5155 0.5152 0.5000
tsne 0.5151 0.5165 0.5247 0.4944
none,clahe ae 0.5147 0.5151 0.5187 0.5000
ica 0.5280 0.5240 0.5367 0.5209
pca 0.5295 0.5285 0.5461 0.5791
zca + rbm 0.5093 0.5084 0.5082 0.5000
tsne 0.5016 0.4998 0.5084 0.4959
none,gray ae 0.5397 0.5390 0.5477 0.5000
ica 0.5243 0.5269 0.5301 0.5065

68

Preprocess Selection elastic lasso lin 0C-sVIn
none 0.5556 0.5556 0.5594 0.5000
pca 0.5308 0.5313 0.5264 0.5320
zca + rbm 0.5197 0.5193 0.5202 0.5000
tsne 0.5078 0.5095 0.5078 0.4964
none,skel ae 0.5203 0.5225 0.5247 0.5000
ica 0.5339 0.5317 0.5415 0.5376
none 0.5348 0.5352 0.5394 0.5000
pca 0.5349 0.4983 0.5363 0.5162
zca + rbm 0.5111 0.5120 0.5114 0.5000
tsne 0.5201 0.5298 0.5216 0.5028
norm ae 0.5735 0.5724 0.5733 0.5000
ica 0.5439 0.5426 0.5599 0.5303
pca 0.5512 0.5545 0.5792 0.5536
zca + rbm 0.5190 0.5208 0.5196 0.5000
tsne 0.5117 0.5131 0.5129 0.5072
norm,augment ae 0.5832 0.5821 0.5851 0.5000
ica 0.5497 0.5454 0.5659 0.5695
pca 0.5489 0.5498 0.5867 0.5851
zca + rbm 0.5202 0.5206 0.5200 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
norm,blur ae 0.5686 0.5694 0.5648 0.5000
ica 0.5386 0.5421 0.5519 0.4875
pca 0.5439 0.5435 0.5582 0.5505
zca + rbm 0.5199 0.5211 0.5211 0.5000
tsne 0.5130 0.5107 0.5157 0.5004
norm,canny ae 0.5053 0.5064 0.5093 0.5000
ica 0.4935 0.4936 0.4973 0.5179
pca 0.4958 0.4983 0.4963 0.4855
zca + rbm 0.5152 0.5153 0.5155 0.5000
tsne 0.5163 0.5151 0.5212 0.4934
norm,clahe ae 0.4840 0.4781 0.4768 0.5000
ica 0.5280 0.5391 0.5411 0.5186
pca 0.5393 0.5299 0.5581 0.5619
zca + rbm 0.5090 0.5084 0.5082 0.5000

69

Preprocess Selection elastic lasso lin 0C-sVIn
tsne 0.5001 0.5029 0.5038 0.4960
norm,gray ae 0.5590 0.5580 0.5600 0.5000
ica 0.5328 0.5229 0.5306 0.5050
none 0.5567 0.5572 0.5594 0.5000
pca 0.5310 0.5297 0.5268 0.5488
zca + rbm 0.5192 0.5207 0.5202 0.5000
tsne 0.5090 0.5112 0.5114 0.5043
norm,skel ae 0.5255 0.5251 0.5284 0.5000
ica 0.5288 0.5310 0.5443 0.5335
none 0.5343 0.5342 0.5400 0.5000
pca 0.5325 0.5009 0.5365 0.5169
zca + rbm 0.5126 0.5115 0.5115 0.5000
tsne 0.5285 0.5245 0.5328 0.4984
std ae 0.5529 0.5512 0.5537 0.5000
ica 0.5457 0.5385 0.5544 0.5341
pca 0.5529 0.5557 0.5520 0.5341
zca + rbm 0.5202 0.5206 0.5201 0.5000
tsne 0.5142 0.5158 0.5140 0.4983
std,augment ae 0.5169 0.5179 0.5202 0.5000
ica 0.5277 0.5255 0.5400 0.5644
pca 0.5446 0.5471 0.5358 = 0.5650
zca + rbm 0.5186 0.5186 0.5199 0.5000
tsne 0.5000 0.5000 0.5000 0.5000
std,blur ae 0.5536 0.5522 0.5540 0.5000
ica 0.5339 0.5322 0.5467 0.4821
pca 0.5562 0.5570 0.5458 0.5341
zca + rbm 0.5258 0.5259 0.5266 0.5000
tsne 0.5261 0.5204 0.5195 0.4973
std,canny ae 0.4637 0.4612 0.4601 0.5000
ica 0.4899 0.4919 0.4957 0.5215
pca 0.5002 0.4943 0.5049 0.4873
zca + rbm 0.5149 0.5150 0.5155 0.5000
tsne 0.5202 0.5202 0.5229 0.4970
std,clahe ae 0.5345 0.5362 0.5390 0.5000

70

Preprocess Selection elastic lasso lin 0C-sVIn

ica 0.5314 0.5324 0.5421 0.5224
pca 0.5381 0.5354 0.5481 0.5739
zca + rbm 0.5096 0.5087 0.5089 0.5000
tsne 0.5070 0.4994 0.5002 0.4888
std,gray ae 0.5370 0.5403 0.5400 0.5000
ica 0.5277 0.5265 0.5268 0.5087
none 0.5473 0.5473 0.5491 0.4802
pca 0.5289 0.5326 0.5278 0.5376
zca + rbm 0.5203 0.5201 0.5198 0.5000
tsne 0.5059 0.5121 0.5050 0.4993
std,skel ae 0.5429 0.5428 0.5422 0.5000
ica 0.5380 0.5463 0.5464 0.5353
none 0.5353 0.5354 0.5363 0.5380
pca 0.5455 0.5445 0.5472 0.5333
zca + rbm 0.5007 0.5013 0.5007 0.5000
tsne 0.5244 0.5237 0.5231 0.4873

Table 14: AUROCs for CIFAR-10 dataset, including image-related preprocessing. Each
cell in this table is an average AUROC:Ss of 10 classes for a given configuration.
This table lists a combination of the 'main effects’ (432 configurations) and
the 72 ’core’ configurations from Table 13 above, which totals to 504 config-
urations. The configuration "norm,augment-pca-lin" has the highest AUROC
at 0.5867. The highlighted cells are the top 10% highest AUROCs. Image
augmentation appears to boost performance.

The average sizes of the ensembles that ran in the 10-minute computation budget for
the CIFAR-10 dataset are listed in Table 15. Similar to the other datasets above, the
ensemble with zero submodel count occurred only for t-SNE feature selection. Regardless
of the preprocessing and the feature selection options, ElasticNet and LASSO have the
highest frequency of small ensemble sizes among the submodel types i.e. they are slower
than Linear Regression and OC-SVM submodels.

AVERAGE of Count Ensemble
Preprocess Selection elastic lasso lin oc-svm
none ae 3000 3000 3000 3000

71

Preprocess Selection elastic lasso lin 0C-sVIn
ica 1035 1030 3000 3000
pca 527 557 3000 3000
zca + rbm 676 999 3000 3000
tsne 1452 1531 3000 2987
none,augment ae 2633 2607 3000 3000
ica 905 1020 3000 3000
pca 494 519 3000 2520
zca + rbm 233 313 3000 3000
tsne 0 0 0 0
none,blur ae 2999 2989 3000 3000
ica 1003 1110 3000 3000
pca 520 537 3000 3000
zca + rbm 692 1020 3000 3000
tsne 1296 1346 3000 2938
none,canny ae 3000 3000 3000 3000
ica 919 924 3000 3000
pca 460 433 3000 3000
zca + rbm 664 976 3000 3000
tsne 2774 2531 3000 3000
none,clahe ae 2998 3000 3000 3000
ica 935 1029 3000 3000
pca 561 564 3000 3000
zca + rbm 611 1084 3000 3000
tsne 1494 1507 2730 2647
none,gray ae 3000 2999 3000 3000
ica 1156 1131 3000 3000
none 1174 1185 3000 3000
pca 534 238 3000 3000
zca + rbm 1001 1167 3000 3000
tsne 1140 1182 2864 2393
none,skel ae 1720 1711 3000 3000
ica 1763 1727 3000 3000
none 3000 3000 3000 3000
pca 984 2803 3000 3000

72

Preprocess Selection elastic lasso lin 0C-sVIn
zca + rbm 944 1206 3000 3000
tsne 2783 2608 2730 2693
norm ae 3000 3000 3000 3000
ica 1110 1146 3000 3000
pca 770 898 3000 3000
zca + rbm 688 1007 3000 3000
tsne 1485 1350 3000 2996
norm,augment ae 3000 2975 3000 3000
ica 1065 1086 3000 3000
pca 753 844 3000 3000
zca + rbm 234 316 2981 3000
tsne 0 0 0 0
norm,blur ae 3000 3000 3000 3000
ica 1174 1182 3000 3000
pca 839 1000 3000 3000
zca + rbm 672 1033 3000 3000
tsne 1281 1272 3000 2949
norm,canny ae 3000 3000 3000 3000
ica 926 919 3000 3000
pca 1011 1179 3000 3000
zca + rbm 682 965 3000 3000
tsne 2612 2560 3000 3000
norm,clahe ae 3000 3000 3000 3000
ica 1069 1032 3000 3000
pca 798 947 3000 3000
zca + rbm 599 1090 3000 3000
tsne 1445 1500 2700 2676
norm,gray ae 3000 3000 3000 3000
ica 1176 1168 3000 3000
none 1120 1171 3000 3000
pca 872 1259 3000 3000
zca + rbm 989 1157 3000 3000
tsne 1144 1201 2861 2368
norm,skel ae 1657 1731 3000 3000

73

Preprocess Selection elastic lasso lin 0C-sVIn
ica 1753 1645 3000 3000
none 3000 3000 3000 3000
pca 937 2760 3000 3000
zca + rbm 952 1203 3000 3000
tsne 2575 2571 2790 2749
std ae 2902 2950 3000 3000
ica 939 1039 3000 3000
pca 529 546 3000 3000
zca + rbm 683 1006 3000 3000
tsne 1564 1498 3000 3000
std,augment ae 1808 1783 3000 3000
ica 880 967 3000 3000
pca 489 509 3000 2989
zca + rbm = 236 311 2977 3000
tsne 0 0 0 0
std,blur ae 2961 2981 3000 3000
ica 1079 1065 3000 3000
pca 517 535 3000 3000
zca + rbm 671 1025 3000 3000
tsne 1391 1411 3000 2994
std,canny ae 2792 2806 3000 3000
ica 892 850 3000 3000
pca 451 494 3000 3000
zca + rbm 673 933 3000 3000
tsne 2648 2672 3000 3000
std,clahe ae 3000 2996 3000 3000
ica 925 968 3000 3000
pca 547 561 3000 3000
zca + rbm 626 1075 3000 3000
tsne 1551 1546 2664 2527
std,gray ae 2726 2771 3000 3000
ica 1137 1129 3000 3000
none 2834 2823 3000 3000
pca 513 477 3000 3000

74

Preprocess Selection elastic lasso lin 0C-sVIn

zca + rbm 959 1162 3000 3000
tsne 1274 1339 3000 2667
std,skel ae 2924 2924 3000 3000
ica 1362 1362 3000 3000
none 2723 2647 3000 3000
pca 339 361 3000 3000
zca + rbm 970 1182 3000 3000
tsne 2399 2320 2610 2643

Table 15: Average count (rounded-off to nearest decimal) of submodels in an ensemble
within the 10-minute computation budget. The highlighted cells are the lowest
10%. ElasticNet and LASSO submodels have the highest frequency of small
ensemble size, which implies that the ensembles with these submodels took
the longest to run.

6 Benchmarking

Table 16 lists the AUROCSs of our best-performing configurations against CBLOF, KNN;,
Isolation Forest, and DEAN. For the Satellite dataset, the largest AUROC is normalized
data and LASSO submodel with no features selection; for Credit Card Fraud dataset it
is from normalized data and Linear Regression submodel with no feature selection; for
MNIST dataset it is standardized and augmented data, and OC-SVM submodel with no
feature selection; and for CIFAR-10 dataset it is normalized and augmented data with

feature selection using PCA and Linear Regression submodel.

Table 16 shows that for tabular datasets i.e. Satellite and Credit Card Fraud, our algo-
rithm performance is quite competitive and came in second only to KNN. However, for
high-dimension datasets such as MNIST and CIFAR-10 datasets, deep learning mod-
els, like DEAN, produced the highest AUROCs among the algorithms. For CIFAR-10
dataset, our algorithm performed the worst among the algorithms, but it came in a close
second position after DEAN for the MNIST dataset.

75

AVERAGE of AUROC Algorithm
Dataset Class CBLOF KNN IForest DEAN SEAN
CCFraud 0.9458 0.9656 0.9496 0.9567
CCFraud Average 0.9458 0.9656 0.9496 0.9567
Satellite 0.9534 0.9736 0.9511 0.9684
Satellite Average 0.9534 0.9736 0.9511 0.9684
MNIST 0 0.9780 0.9924 0.9626 0.9917 0.9923
1 0.9963 0.9982 0.9919 0.9988 0.9969
2 0.8682 0.9099 0.7302 0.9527 0.9318
3 0.8648 0.9073 0.7978 0.9625 0.9344
4 0.9003 0.9253 0.8510 0.9732 0.9204
5 0.8851 0.9321 0.6936 0.9660 0.9289
6 0.9667 0.9721 0.8362 0.9867 0.9778
7 0.9482 0.9619 0.8948 0.9743 0.9700
8 0.8507 0.8596 0.7039 0.9314 0.8612
9 0.9299 0.9508 0.8628 0.9680 0.9468
MNIST Average 0.9188 0.9409 0.8325 0.9705 0.9461
CIFAR-10 Airplane 0.6454 0.6693 0.6515 0.6863 0.5834
Automobile 0.4273 0.4376 0.4423 0.6267 0.4878
Bird 0.6599 0.6807 0.6503 0.5798 0.5579
Cat 0.5218 0.5192 0.5327 0.6357 0.5890
Deer 0.7680 0.7658 0.7507 0.6876 0.6798
Dog 0.5184 0.5021 0.5338 0.6299 0.5619
Frog 0.7378 0.7394 0.7308 0.7292 0.6171
Horse 0.5180 0.5065 0.5466 0.6291 0.5715
Ship 0.6946 0.6917 0.6918 0.7305 0.7000
Truck 0.4526 0.4269 0.5221 0.6989 0.5190
CIFAR-10 Average 0.5944 0.5939 0.6052 0.6634 0.5867

Table 16: Our best setups (parameter sets) compared with CBLOF, KNN, Isolation
Forest, and DEAN in each dataset. For Credit Card Fraud dataset our highest
AUROC is from a norm-none-Lin configuration, for Satellite dataset it is norm-
none-LASSO, for MNIST dataset it is std,aug-none-SVM, and for CIFAR-10
dataset it is norm,aug-pca-Lin. The AUROCs for DEAN are pulled from the
DEAN paper (Klittermann and Miiller, 2022).

76

100 - —— CBLOF
—— KNN

— |Forest
—— DEAN

—— 5EAN

AURDC

6x 10711

0
l_

2

3

4 4

5

6 -

7 -

g -
g 4
Airplane
Bird +
Cat
Deer -

Satellite
CCFraud -
MMNIST-avg -
Automobile 4
CIFAR-avg

]
[+1]
7]
]

Figure 14: Plot of the benchmark results from Table 16.

7 Conclusion

Motivated by the DEAN algorithm and the fact that there are some researches out there
with findings that say a deep learning based anomaly detection algorithm may be no
better than its shallow counterpart, this thesis explored the performance of an anomaly
detection algorithm built from an ensemble of simple submodels. The algorithm works
in four stages: pre-processing, feature selection, feature bagging, and an ensemble of
simple submodels, where each submodel of the ensemble uses the loss functions and the

anomaly scores from the DEAN algorithm.

The experiments were run on four datasets: satellite, credit card fraud, MNIST, and

CIFAR-10, and the finding is that there is no "one size fits all" configuration that performs

7

the best across all of the datasets, as mentioned in Section 6. For the satellite dataset,
LASSO and Linear Regression submodels produced the higher AUROCs on average,
and OC-SVM produced the worst average AUROCs. However, Linear Regression and
OC-SVM submodels ran quicker than ElasticNet and LASSO submodels. This suggests
choosing an ensemble of Linear Regression submodels to have a good balance between
AUROCSs and runtimes in lower-dimension datasets like the Satellite dataset. Similar
results were obtained from the Credit Card Fraud dataset, a slightly higher dimension
dataset, where Linear Regression submodel struck a good balance between high AUROCs
and short runtimes. This is the case for MNIST and CIFAR-10 datasets as well.

Pre-processing the dataset also had a significant impact on performance. Either nor-
malization or standardization improved the algorithm performance in all of the four
datasets. Adding image-specific preprocessing like augmentation or blurring or CLAHE
further improved the performance in MNIST and CIFAR-10 datasets. One key point
to mention is that the experiments did not cover the exhaustive combination of all the
preprocessing options due to scheduling constraints so exploring those options may be

an idea for further research experiments.

When it comes to the feature selection options, performing no feature selection produced
higher AUROCs in satellite, credit card fraud, and MNIST datasets. However, for
a higher dimension dataset like the CIFAR-10 dataset, there were memory allocation
failures if no feature selection was done; but if grayscaling or skeletonization was done

on the dataset, the jobs ran fine with no feature selection and produced competitive

AUROC:s.

In conclusion, we found from the experiments that the anomaly detection algorithm using
simple submodels produced competitive performance but lagged behind its deep-learning
counterpart, and preprocessing the dataset using either normalization or standardiza-
tion had a significant impact on performance, and an ensemble of Linear Regression

submodels struck a good balance between accuracy and runtime.

78

Bibliography

1]

2]

Charu C. Aggarwal. Qutlier Analysis. Springer Publishing Company, Incorporated,
2nd edition, 2016. ISBN 3319475770.

Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca
Benini. Anomaly detection using autoencoders in high performance computing
systems. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):
9428-9433, jul 2019. doi: 10.1609/aaai.v33i01.33019428. URL https://doi.org/
10.1609%2Faaai.v33101.33019428.

Abdenour Bounsiar and Michael G. Madden. One-class support vector machines

revisited. In 201/ International Conference on Information Science Applications

(ICISA), pages 1-4, 2014. doi: 10.1109/ICISA.2014.6847442.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof:
Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’00, page 93-104, New
York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132174.
doi: 10.1145/342009.335388. URL https://doi.org/10.1145/342009.335388.

Benedikt Boing, Simon Klittermann, and Emmanuel Miiller. Post-robustifying
deep anomaly detection ensembles by model selection. In 2022 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 861-866, 2022. doi: 10.1109/
ICDM54844.2022.00098.

John Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, (6):679-698, 1986.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3), jul 2009. ISSN 0360-0300. doi: 10.1145/
1541880.1541882. URL https://doi.org/10.1145/1541880.1541882.

Ayan Chatterjee and Bestoun S. Ahmed. Iot anomaly detection methods and ap-
plications: A survey. Internet of Things, 19:100568, 2022. ISSN 2542-6605. doi:
https://doi.org/10.1016/j.i0t.2022.100568. ~ URL https://www.sciencedirect.
com/science/article/pii/S2542660522000622.

79

[9]

[11]

[12]

[14]

Nitesh Chawla and Wei Wang. Proceedings of the 2017 SIAM International
Conference on Data Mining (SDM). Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974973. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611974973.

F.Y. Edgeworth. Xli. on discordant observations. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 23(143):364-375,
1887. doi: 10.1080/14786448708628471. URL https://doi.org/10.1080/
14786448708628471.

Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and
Clinton Fookes. Deep learning for medical anomaly detection — a survey. ACM
Comput. Surv., 54(7), jul 2021. ISSN 0360-0300. doi: 10.1145/3464423. URL
https://doi.org/10.1145/3464423.

Nicolas Gillis. Nonnegative Matrixz Factorization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2020. doi: 10.1137/1.9781611976410. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611976410.

Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data. PLOS ONE, 11(4):1-31,
04 2016. doi: 10.1371/journal.pone.0152173. URL https://doi.org/10.1371/
journal.pone.0152173.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decom-

positions, 2010.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357-362, September 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-
2.

80

[16]

[17]

[18]

[19]

[20]

[21]

Waleed Hilal, S. Andrew Gadsden, and John Yawney. Financial fraud: A re-
view of anomaly detection techniques and recent advances. FEzpert Systems with
Applications, 193:116429, 2022. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2021.116429. URL https://www.sciencedirect.com/science/article/
pii/S0957417421017164.

Geoffrey Hinton and Sam Roweis. Stochastic neighbor embedding. In Proceedings

of the 15th International Conference on Neural Information Processing Systems,

NIPS’02, page 857-864, Cambridge, MA, USA, 2002. MIT Press.

Aapo Hyvérinen and Erkki Oja. Independent component analysis: algorithms and
applications. Neural networks : the official journal of the International Neural
Network Society, 13 4-5:411-30, 2000. URL https://api.semanticscholar.org/
CorpusID:11959218.

Keith Jack. Video Demystified: A Handbook for the Digital Engineer. 2007. ISBN
9780750683951.

Nicholas Jeffrey, Qing Tan, and José R. Villar. A review of anomaly detection
strategies to detect threats to cyber-physical systems. FElectronics, 12(15), 2023.
ISSN 2079-9292. doi: 10.3390/electronics12153283. URL https://www.mdpi.com/
2079-9292/12/15/3283.

Junfeng Jing, Shenjuan Liu, Gang Wang, Weichuan Zhang, and Changming Sun.
Recent advances on image edge detection: A comprehensive review. Neuro-
computing, 503:259-271, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/].
neucom.2022.06.083. URL https://www.sciencedirect.com/science/article/
pii/S0925231222008141.

Simon Kliittermann and Emmanuel Miiller. Dean: Deep ensemble anomaly detec-
tion. 2022. URL https://github.com/KDD-0penSource/DEAN.

Bartosz Krawczyk. Learning from imbalanced data: open challenges and
future directions. Progress in Artificial Intelligence, 5(4):221 — 232, 2016.
doi: 10.1007/s13748-016-0094-0. URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85043605198&%d0i=10.1007%2fs13748-016-0094-
O&partnerID=40&md5=048d4390e4eb698c3b66bafbbc7e724c. Cited by: 1379; All
Open Access, Hybrid Gold Open Access.

81

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32—
33, 2009. URL https://www.cs.toronto.edu/~kriz/learning-features-2009-
TR. pdf.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.
ATT Labs [Online]. Available: hitp://yann.lecun.com/exdb/mnist, 2, 2010.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413-422, 2008. doi: 10.
1109/ICDM.2008.17.

Matthew B. A. McDermott, Lasse Hyldig Hansen, Haoran Zhang, Giovanni An-
gelotti, and Jack Gallifant. A closer look at auroc and auprc under class imbalance,
2024.

Madalina Olteanu, Fabrice Rossi, and Florian Yger. Meta-survey on out-
lier and anomaly detection. Neurocomputing, 555:126634, 2023. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2023.126634. URL https://www.
sciencedirect.com/science/article/pii/S0925231223007579.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

Luis Perez and Jason Wang. The effectiveness of data augmentation in image

classification using deep learning, 2017.

Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi.
Calibrating probability with undersampling for unbalanced classification. In 2015
IEEE Symposium Series on Computational Intelligence, pages 159-166, 2015. doi:
10.1109/SSCI.2015.33.

Ferdinand Rewicki, Joachim Denzler, and Julia Niebling. Is it worth it? comparing
six deep and classical methods for unsupervised anomaly detection in time series.
Applied Sciences, 13(3), 2023. ISSN 2076-3417. doi: 10.3390/app13031778. URL
https://www.mdpi.com/2076-3417/13/3/1778.

82

[33]

[34]

[38]

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Miller, and Marius Kloft. Deep one-
class classification. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4393-4402. PMLR, 10-15 Jul 2018. URL
https://proceedings.mlr.press/v80/ruffi18a.html.

Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon,
Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Miiller.
A unifying review of deep and shallow anomaly detection. Proceedings of the IEEFE,
109(5):756-795, 2021. doi: 10.1109/JPROC.2021.3052449.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Jour-
nal of Machine Learning Research, 9:2579-2605, 2008. URL http://www. jmlr.
org/papers/v9/vandermaaten08a.html.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

T. Y. Zhang and Ching Y. Suen. A fast parallel algorithm for thinning digital
patterns. Commun. ACM, 27(3):236-239, 1984. URL http://dblp.uni-trier.
de/db/journals/cacm/cacm27.html#ZhangS84.

Hui Zou and Trevor Hastie. Regularization and Variable Selection Via the Elastic
Net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67
(2):301-320, 03 2005. ISSN 1369-7412. doi: 10.1111/j.1467-9868.2005.00503.x. URL
https://doi.org/10.1111/4.1467-9868.2005.00503. .

83

Eidesstattliche Versicherung

(Affidavit)

Peka, Vanlal

231125

Name, Vorname
(surname, first name)

[] Bachelorarbeit
(Bachelor’s thesis)

Titel
(Title)

Matrikelnummer
(student ID number)

(W] Masterarbeit

(Master’s thesis)

Anomaly Detection using an Ensemble with Simple Sub-models

Ich versichere hiermit an Eides statt, dass ich die
vorliegende Abschlussarbeit mit dem oben genannten
Titel selbststandig und ohne unzuldssige fremde Hilfe
erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie
wortliche und sinngemalfe Zitate kenntlich gemacht.
Die Arbeit hat in gleicher oder ahnlicher Form noch
keiner Priifungsbehdrde vorgelegen.

| declare in lieu of oath that | have completed the
present thesis with the above-mentioned title
independently and without any unauthorized
assistance. | have not used any other sources or aids
than the ones listed and have documented quotations
and paraphrases as such. The thesis in its current or
similar version has not been submitted to an auditing
institution before.

Aizawl, 08.05.2024

Ort, Datum
(place, date)

Unterschrift
(signature)

Belehrung:

Wer vorsatzlich gegen eine die Té&uschung Uber
Prufungsleistungen betreffende Regelung einer
Hochschulprifungsordnung verstoft, handelt
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer
GeldbuRe von bis zu 50.000,00 € geahndet werden.
Zustandige Verwaltungsbehorde fir die Verfolgung
und Ahndung von Ordnungswidrigkeiten ist der
Kanzler/die Kanzlerin der Technischen Universitat
Dortmund. Im Falle eines mehrfachen oder sonstigen
schwerwiegenden Tauschungsversuches kann der
Prifling zudem exmatrikuliert werden. (8 63 Abs. 5
Hochschulgesetz - HG -).

Die Abgabe einer falschen Versicherung an Eides statt
wird mit Freiheitsstrafe bis zu 3 Jahren oder mit
Geldstrafe bestraft.

Die Technische Universitdt Dortmund wird ggf.
elektronische Vergleichswerkzeuge (wie z.B. die
Software ,turnitin®) zur Uberpriifung von Ordnungs-
widrigkeiten in Prufungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis
genommen:

Official notification:

Any person who intentionally breaches any regulation
of university examination regulations relating to
deception in examination performance is acting
improperly. This offense can be punished with a fine of
up to EUR 50,000.00. The competent administrative
authority for the pursuit and prosecution of offenses of
this type is the Chancellor of TU Dortmund University.
In the case of multiple or other serious attempts at
deception, the examinee can also be unenrolled,
Section 63 (5) North Rhine-Westphalia Higher
Education Act (Hochschulgesetz, HG).

The submission of a false affidavit will be punished
with a prison sentence of up to three years or a fine.

As may be necessary, TU Dortmund University will
make use of electronic plagiarism-prevention tools
(e.g. the "turnitin” service) in order to monitor violations
during the examination procedures.

| have taken note of the above official notification:*

Aizawl, 08.05.2024

Ort, Datum
(place, date)

Unterschrift
(signature)

*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung")
for the Bachelor’s/ Master’s thesis is the official and legally binding version.

GUEST

GUEST

	Eidesstattliche Versicherung (Affidavit)

	Name Vorname: Peka, Vanlal
	Matrikelnummer: 231125
	Bachelorarbeit: Off
	Masterarbeit: On
	Ort Datum: Aizawl, 08.05.2024
	Unterschrift:
	Ort Datum_2: Aizawl, 08.05.2024
	Unterschrift_2:
	3:
	2:
	1: Anomaly Detection using an Ensemble with Simple Sub-models

