HOME | DOWNLOAD | DOCUMENTATION | FAQ |
> Home > Documentation > Python > Spherical Harmonic Transformations
MakeGridPoint
Evaluate a function expressed in spherical harmonics at a single point.
Usage
value
= pyshtools.MakeGridPoint (cilm
, lat
, lon
, [lmax
, norm
, csphase
, dealloc
])
Returns
value
: float- Value of the function at (
lat
,lon
).
Parameters
cilm
: float, dimension (2,lmaxin
+1,lmaxin
+1)- The real spherical harmonic coefficients of the function. The coefficients
C0lm
andC1lm
refer to the cosine (Clm
) and sine (Slm
) coefficients, respectively, withClm=cilm[0,1,m]
andSlm=cilm[1,l,m]
. lat
: float- The latitude of the point in DEGREES.
lon
: float- The longitude of the point in DEGREES.
lmax
: optional, integer, default =lmaxin
- The maximum spherical harmonic degree used in evaluating the function.
norm
: optional, integer, default = 1- 1 (default) = Geodesy 4-pi normalized harmonics; 2 = Schmidt semi-normalized harmonics; 3 = unnormalized harmonics; 4 = orthonormal harmonics.
csphase
: optional, integer, default = 1- 1 (default) = do not apply the Condon-Shortley phase factor to the associated Legendre functions; -1 = append the Condon-Shortley phase factor of (-1)^m to the associated Legendre functions.
dealloc
: optional, integer, default = 0- 0 (default) = Save variables used in the external Legendre function calls. (1) Deallocate this memory at the end of the funcion call.
Description
MakeGridPoint
will expand a function expressed in spherical harmonics at a single point. The input latitude and longitude are in degrees, and the maximum degree used in evaluating the function is the smaller of lmaxin
and lmax
. The employed spherical harmonic normalization and Condon-Shortley phase convention can be set by the optional arguments norm
and csphase
; if not set, the default is to use geodesy 4-pi normalized harmonics that exclude the Condon-Shortley phase of (-1)^m.
See also
makegriddh
, makegriddhc
, makegridglq
, makegridglqc
> Home > Documentation > Python > Spherical Harmonic Transformations
Institut de Physique du Globe de Paris | University of Sorbonne Paris Cité | © 2016 SHTOOLS |