frplib Cheatsheet

C. Genovese
10 Sep 2024 v0.2.4 (frplib v0.2.4)

Interaction

The playground is an enhanced Python read-eval-print
loop (REPL). You can use any Python construct, and the
environment is preloaded with playground specific
functions and values.

You can use arrows (or Control-n and Control-p) to move
through your history, optionally modifying earlier
commands. Special keys: Arrow keys, Control-a
(beginning of line), Control-e (end of line), Control-k
delete rest of line, F3 see full history, F2 settings menu,
Control-r search history for pattern (type pattern and hit
enter to select).

Multi-line input is accepted; a blank line at the end will
enter the input.

Syntax errors will show up in a message at the bottom of
the screen, usually disallowing entering that input. Many
errors raised by code will show special
playground-specific error messages, but some errors will
show the full Python stack traces.

Kind Factories

All factories with arguments values. . . can take multiple
values as individual arguments, or an iterable, or an
implied sequence of the forma, b, ..., cina
positive or negative direction. (If a == c in this form, b
is ignored, giving a single value a.) Values can be numbers
or tuples and can contain symbols.

kind(spec) - constructs a Kind from a string, an FRP,
or another Kind.

conditional_kind(mapping) - constructs a
conditional Kind from a dictionary or function. (For the
latter, use argument codim=1 if the function wants a
scalar argument.) Can be used as a decorator or a function.
Kind. empty - the empty Kind

constant (v) - Kind of a constant FRP with value v
binary(p) - the Kind of a 0-1 FRP with weight p on 1

uniform(values. . .) - the Kind with specified

values and equal weights

either(a, b, ratio) - hasvalues a and b with
weights ratioand 1

weighted_as(values..., weights=[...])
— arbitrary weights associated with the given values, can
also accept a dictionary {value: weight, ...}

weighted_by — weights on values determined by a
general function

weighted pairs - aKind specified by a sequence of
(value, weight) pairs
symmetric(values.., around, weight_by)
- weights on values determined by a symmetric function
weight_by around a specified value around
geometric(values. .., 1) —weights on values
varying geometrically with ratio r
linear(values..., first=a, increment=b
— weights on values vary linearly from a changing by b
for each value.

evenly_ spaced - Kind of an FRP whose values
consist of evenly spaced numbers

integers - Kind with integer sequence as values
subsets,without_replacement,
permutations_of, ordered_samples - the
Kinds of combinatorial operations on sequences: all
subsets, samples of a given size without replacement,
permutations of a given size, and ordered samples without
replacement

arbitrary - the Kind with specified values and
symbolic (unspecified) weights

FRP Factories

frp(spec) - constructs an FRP from a Kind or clones
another FRP.

conditional_ frp(mapping) - constructsa
conditional Kind from a dict or function

shuffle(coll) - constructs an FRP whose value is a
random permutation of the collection coll
Kind and FRP Combinators

kf A statorstat(kf) - apply a statistic stat to
a Kind (or FRP) kf

kfl * kf2 - independent mixtures of kf1 and kf2,
either both Kinds or both FRPs

kf ** n - independent mixture power, for Kind or FRP
kf and natural number n

kf >> ckf - ageneral mixture for a (conditional) Kind
(or FRP) k£ and a conditional Kind (or conditional FRP)
ckf Returns a (conditional) Kind (or FRP).

kf | c - applies conditional constraint to update
Kind/FRP, k£ is a Kind or FRP and c is a condition.

m // k - conditioning on the Kind (or FRP) k, where m
is a conditional Kind (or conditional FRP).

psi@k | c - evaluate a statistic with context
fast_mixture_pow(stat, kind, n) -
efficiently computes mstat (kind ** n)
bin(scalar_kind, lower, width) - returnsa
Kind similar to that given but with values binned in
specified intervals

evolve(start, next_state, steps=1) -
evolves a system through a specified number of steps

bayes (observed_y, x, y_given_x) - applies
Bayes’s rule for Kinds or FRPs

Statistics Factories

statistic - Creates a statistic from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.

condition - Creates a condition from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.

scalar statistic -Like statistic but
indicates dimension 1.

Constantly (V) - a statistic that always returns v
Proj - constructs projection statistics given an index, list
of indices, slice, projection statistic, or integer iterable.
Projections are 1-indexed, unlike tuples.

Permute - constructs a permutation statistic given a
permutation of 1..n in cycle or ordinary form

Builtin Statistics

__ — The statistic that reproduces the value passed to it.
Scalar is similar but forces the result to be a scalar. Td
is a synonym.

Sum, Product, Min, Max, Mean - operations on the
value tuple; for example, Sum gives the component sum
Exp, Log, Log2, Log10, Sqrt, Abs, Floor, Ceil
Sin, Cos, Tan, ACos, ASin, ATan2, Sinh, Cosh,
Tanh, . .. - arithmetic and special functions
Diff,Diffs - first-order and higher-order differences
NormalCDF - standard Normal CDF

Cases - creates a statistic from a dictionary with
optional default

top and bottom - statistics that always return true and
false, respectively.

Statistics Combinators

Fork(statl, stat2, ..., statn) -createsa
new statistic that combines the results of stat1 ...
statn (with the same argument) into a tuple. (MFork is
identical but is intended for monoidal statistics.)
ForEach(stat) - apply statistic to each component
of the input tuple, combining results into a tuple
IfThenElse(cond, statt, statf) - applies
condition cond evaluates to true, apply statt, else
statf.

And, Or, Not, Xor - logical operations on the results of
statistics, returning a condition. For example,
And(statl, stat2) gives a condition that returns
true if both stat1 and stat2 do.

All, Any - condition true on every/some components

Actions

E — expectation operator, computes expectation of a Kind,
FRP, conditional Kind, or conditional frp. (The latter two
return functions.) See also Var.

D_ - distribution operator D_ (X) (ps1i) returns
E(psi(X))

unfold(k) - shows the unfolded Kind tree for a given
Kind k

clean (k) - given Kind k removes any branches that
are numerically zero according to a specified tolerance
(default 1e-16). It also rounds numeric values to avoid
round-off error in comparing values

FRP.sample(n, obj, summary=True) -
generate n samples from the given Kind or FRP obj.
Default produces a summary table, but if
summary=False, give all the values.

Kind.equal, Kind.compare - compare Kinds for
structural equality, testing weights and values within a
specified numerical tolerance (default: 1e-12)
Kind.divergence(k1l, k2) - computes relative
entropy of Kind k1 relative to this k2.

Utilities

show (x) - displays an object, list, or dictionary in a
more friendly manner.

clone (X) - produces a copy of its argument X if

possible; primarily useful with FRPs and conditional FRPs,
where it produces fresh copies with their own values.

Property Accessors

X.value - for an FRP X, returns X’s value, activating it
if necessary.

dim(x) - returns the dimension of ‘x', if available. Note
that taking the dimension of an FRP may force the Kind
computation.

codim(x) - returns the codimension of ‘x’, if available
size(x) - returns the size of ‘X', if available
typeof (x) - returns the type of x°

values (x) - returns the *set* of x”s values, if
available; applies to Kinds

Symbolic Manipulation

is_symbolic(x) - returns true if x‘is symbolic

symbol (name) - takes a string and creates a symbolic
term with that name

symbols (names) - takes a string with
space-separated names and returns symbols

gen_symbol () - returns a unique symbol name every
time it is called

substitute(quantity, mapping) -
substitutes values from mapping for the symbols in
‘quantity’; mapping is a dictionary associating symbol
names with values. Not all symbols need to be substituted;
if all are substituted with a numeric value then the result
is numeric.

substitute_with(mapping) - returns a function
that takes a quantity and substitutes with mapping in that
quantity.

substitution(quantity, **kw) - like
‘substitute but takes names and values as keyword
arguments rather than through a dictionary.

Tuples and Quantities

as_scalar(value) : converts a 1-dimensional tuple
to a scalar

gvec(x...) - converts arguments to a quantitative
vector tuple, whose values are numeric or symbolic
quantities and can be added or scaled like vectors.
as_quantity(spec) - converts to a quantity, takes
symbols, strings, or numbers, e.g.,
as_quantity(’1/2’),as_quantity(1.2),
as_quantity(’a’).
numeric_exp(x),numeric_ln(x),
numeric_log2(x),numeric_logl0(x),
numeric_abs(x),numeric_sqrt(x),
numeric_floor(x),numeric_ceil(x) -
numeric special functions that act on quantities

Function Helpers

identity(x) - afunction that returns its argument
const (a) - returns a function that itself always returns
the value ‘a‘

compose (f, g) - returns the function ‘f* after ‘g

Sequence Helpers

irange - creates an inclusive integer ranges with
optional gaps

index_of, index_where - searches sequence with
control over what to return if not found

every(f, iterable) - returns true if ‘f(x)‘is
truthy for every x° in ‘iterable’

some(f, iterable) - returns true if ‘f(x)‘ is truthy
for some ‘x° in ‘iterable’

Imap(f, iterable) - returns a list containing
‘f(x) for every ‘x’ in ‘iterable’
frequencies(iterable,
- computes counts of unique values in iterable; returns a
dictionary, but if counts_only is True, return just the
counts without labels.

Help

info(t) — interactive help various topics. Here t can be a
topic string or most playground objects (e.g., uniform).
Start with info (’overview’). This will point you to
the list of topics and more.

help(obj) - built-in python help, you can call this on any
playground function or object to get guidance on its use.

counts_only=False)

	Interaction
	Kind Factories
	FRP Factories
	Kind and FRP Combinators
	Statistics Factories
	Builtin Statistics
	Statistics Combinators
	Actions
	Utilities
	Property Accessors
	Symbolic Manipulation
	Tuples and Quantities
	Function Helpers
	Sequence Helpers

	Help

