
frplib Cheatsheet
C. Genovese
10 Sep 2024 v0.2.4 (frplib v0.2.4)

Interaction
The playground is an enhanced Python read-eval-print
loop (REPL). You can use any Python construct, and the
environment is preloaded with playground specific
functions and values.
You can use arrows (or Control-n and Control-p) to move
through your history, optionally modifying earlier
commands. Special keys: Arrow keys, Control-a
(beginning of line), Control-e (end of line), Control-k
delete rest of line, F3 see full history, F2 settings menu,
Control-r search history for pattern (type pattern and hit
enter to select).
Multi-line input is accepted; a blank line at the end will
enter the input.
Syntax errors will show up in a message at the bottom of
the screen, usually disallowing entering that input. Many
errors raised by code will show special
playground-specific error messages, but some errors will
show the full Python stack traces.

Kind Factories
All factories with arguments values. . . can take multiple
values as individual arguments, or an iterable, or an
implied sequence of the form a, b, ..., c in a
positive or negative direction. (If a == c in this form, b
is ignored, giving a single value a.) Values can be numbers
or tuples and can contain symbols.
kind(spec) – constructs a Kind from a string, an FRP,
or another Kind.
conditional_kind(mapping) – constructs a
conditional Kind from a dictionary or function. (For the
latter, use argument codim=1 if the function wants a
scalar argument.) Can be used as a decorator or a function.
Kind.empty – the empty Kind
constant(v) – Kind of a constant FRP with value v
binary(p) – the Kind of a 0-1 FRP with weight p on 1
uniform(values...) – the Kind with specified
values and equal weights

either(a, b, ratio) – has values a and b with
weights ratio and 1
weighted_as(values..., weights=[...])
– arbitrary weights associated with the given values, can
also accept a dictionary {value: weight, ...}

weighted_by – weights on values determined by a
general function
weighted_pairs – a Kind specified by a sequence of
(value, weight) pairs
symmetric(values.., around, weight_by)
– weights on values determined by a symmetric function
weight_by around a specified value around
geometric(values..., r) – weights on values
varying geometrically with ratio r
linear(values..., first=a, increment=b)
– weights on values vary linearly from a changing by b
for each value.
evenly_spaced – Kind of an FRP whose values
consist of evenly spaced numbers
integers – Kind with integer sequence as values
subsets, without_replacement,
permutations_of, ordered_samples - the
Kinds of combinatorial operations on sequences: all
subsets, samples of a given size without replacement,
permutations of a given size, and ordered samples without
replacement
arbitrary – the Kind with specified values and
symbolic (unspecified) weights

FRP Factories
frp(spec) – constructs an FRP from a Kind or clones
another FRP.
conditional_frp(mapping) – constructs a
conditional Kind from a dict or function
shuffle(coll) – constructs an FRP whose value is a
random permutation of the collection coll

Kind and FRP Combinators
kf ^ stat or stat(kf) – apply a statistic stat to
a Kind (or FRP) kf
kf1 * kf2 – independent mixtures of kf1 and kf2,
either both Kinds or both FRPs
kf ** n – independent mixture power, for Kind or FRP
kf and natural number n

kf >> ckf – a general mixture for a (conditional) Kind
(or FRP) kf and a conditional Kind (or conditional FRP)
ckf Returns a (conditional) Kind (or FRP).
kf | c - applies conditional constraint to update
Kind/FRP, kf is a Kind or FRP and c is a condition.
m // k – conditioning on the Kind (or FRP) k, where m
is a conditional Kind (or conditional FRP).
psi@k | c – evaluate a statistic with context
fast_mixture_pow(stat, kind, n) –
efficiently computes mstat(kind ** n)
bin(scalar_kind, lower, width) – returns a
Kind similar to that given but with values binned in
specified intervals
evolve(start, next_state, steps=1) –
evolves a system through a specified number of steps
bayes(observed_y, x, y_given_x) – applies
Bayes’s rule for Kinds or FRPs

Statistics Factories
statistic – Creates a statistic from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.
condition – Creates a condition from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.
scalar_statistic – Like statistic but
indicates dimension 1.
Constantly(v) – a statistic that always returns v
Proj – constructs projection statistics given an index, list
of indices, slice, projection statistic, or integer iterable.
Projections are 1-indexed, unlike tuples.
Permute – constructs a permutation statistic given a
permutation of 1..n in cycle or ordinary form

Builtin Statistics
__ – The statistic that reproduces the value passed to it.
Scalar is similar but forces the result to be a scalar. Id
is a synonym.
Sum, Product, Min, Max, Mean – operations on the
value tuple; for example, Sum gives the component sum
Exp, Log, Log2, Log10, Sqrt, Abs, Floor, Ceil
Sin, Cos, Tan, ACos, ASin, ATan2, Sinh, Cosh,
Tanh, ... – arithmetic and special functions
Diff, Diffs – first-order and higher-order differences
NormalCDF – standard Normal CDF

Cases – creates a statistic from a dictionary with
optional default
top and bottom – statistics that always return true and
false, respectively.

Statistics Combinators
Fork(stat1, stat2, ..., statn) – creates a
new statistic that combines the results of stat1 ...
statn (with the same argument) into a tuple. (MFork is
identical but is intended for monoidal statistics.)
ForEach(stat) – apply statistic to each component
of the input tuple, combining results into a tuple
IfThenElse(cond, statt, statf) – applies
condition cond evaluates to true, apply statt, else
statf.
And, Or, Not, Xor – logical operations on the results of
statistics, returning a condition. For example,
And(stat1, stat2) gives a condition that returns
true if both stat1 and stat2 do.
All, Any – condition true on every/some components

Actions
E – expectation operator, computes expectation of a Kind,
FRP, conditional Kind, or conditional frp. (The latter two
return functions.) See also Var.
D_ – distribution operator D_(X)(psi) returns
E(psi(X))
unfold(k) – shows the unfolded Kind tree for a given
Kind k
clean(k) – given Kind k removes any branches that
are numerically zero according to a specified tolerance
(default 1e-16). It also rounds numeric values to avoid
round-off error in comparing values
FRP.sample(n, obj, summary=True) –
generate n samples from the given Kind or FRP obj.
Default produces a summary table, but if
summary=False, give all the values.
Kind.equal, Kind.compare – compare Kinds for
structural equality, testing weights and values within a
specified numerical tolerance (default: 1e-12)
Kind.divergence(k1, k2) – computes relative
entropy of Kind k1 relative to this k2.

Utilities
show(x) – displays an object, list, or dictionary in a
more friendly manner.
clone(X) – produces a copy of its argument ‘X‘ if
possible; primarily useful with FRPs and conditional FRPs,
where it produces fresh copies with their own values.

Property Accessors

X.value – for an FRP X, returns X’s value, activating it
if necessary.

dim(x) – returns the dimension of ‘x‘, if available. Note
that taking the dimension of an FRP may force the Kind
computation.
codim(x) – returns the codimension of ‘x‘, if available
size(x) – returns the size of ‘x‘, if available
typeof(x) – returns the type of ‘x‘
values(x) – returns the *set* of ‘x‘’s values, if
available; applies to Kinds

Symbolic Manipulation

is_symbolic(x) – returns true if ‘x‘ is symbolic
symbol(name) – takes a string and creates a symbolic
term with that name
symbols(names) – takes a string with
space-separated names and returns symbols
gen_symbol() – returns a unique symbol name every
time it is called
substitute(quantity, mapping) –
substitutes values from mapping for the symbols in
‘quantity‘; mapping is a dictionary associating symbol
names with values. Not all symbols need to be substituted;
if all are substituted with a numeric value then the result
is numeric.
substitute_with(mapping) – returns a function
that takes a quantity and substitutes with mapping in that
quantity.
substitution(quantity, **kw) – like
‘substitute‘ but takes names and values as keyword
arguments rather than through a dictionary.

Tuples andQuantities
as_scalar(value) :: converts a 1-dimensional tuple
to a scalar
qvec(x...) – converts arguments to a quantitative
vector tuple, whose values are numeric or symbolic
quantities and can be added or scaled like vectors.
as_quantity(spec) – converts to a quantity, takes
symbols, strings, or numbers, e.g.,
as_quantity(’1/2’), as_quantity(1.2),
as_quantity(’a’).
numeric_exp(x), numeric_ln(x),
numeric_log2(x), numeric_log10(x),
numeric_abs(x), numeric_sqrt(x),
numeric_floor(x), numeric_ceil(x) –
numeric special functions that act on quantities
Function Helpers
identity(x) – a function that returns its argument
const(a) – returns a function that itself always returns
the value ‘a‘
compose(f,g) – returns the function ‘f‘ after ‘g‘
Sequence Helpers
irange – creates an inclusive integer ranges with
optional gaps
index_of, index_where – searches sequence with
control over what to return if not found
every(f, iterable) – returns true if ‘f(x)‘ is
truthy for every ‘x‘ in ‘iterable‘
some(f, iterable) – returns true if ‘f(x)‘ is truthy
for some ‘x‘ in ‘iterable‘
lmap(f, iterable) – returns a list containing
‘f(x)‘ for every ‘x‘ in ‘iterable‘
frequencies(iterable, counts_only=False)
– computes counts of unique values in iterable; returns a
dictionary, but if counts_only is True, return just the
counts without labels.

Help
info(t) – interactive help various topics. Here t can be a
topic string or most playground objects (e.g., uniform).
Start with info(’overview’). This will point you to
the list of topics and more.
help(obj) – built-in python help, you can call this on any
playground function or object to get guidance on its use.

	Interaction
	Kind Factories
	FRP Factories
	Kind and FRP Combinators
	Statistics Factories
	Builtin Statistics
	Statistics Combinators
	Actions
	Utilities
	Property Accessors
	Symbolic Manipulation
	Tuples and Quantities
	Function Helpers
	Sequence Helpers

	Help

