
frplib Cookbook
Contents

Recipe 1. Constructing Kinds with Kind Factories . 1
Recipe 2. Constructing FRPs with FRP Factories. 5
Recipe 3. Cloning an FRP. 6
Recipe 4. Checking if Two Kinds are Equal . 6
Recipe 5. Constructing Kinds from FRPs . 6
Recipe 6. Constructing Kinds from Strings . 7
Recipe 7. Finding Dimension, Codimension, Size, and Type 7
Recipe 8. Running Demos of FRPs . 8
Recipe 9. Pruning Numerically Negligible Branches of a Kind 9
Recipe 10. Unfolding a Multi-dimensional Kind . 9
Recipe 11. Transforming FRPs and Kinds with Built-in Statistics 9
Recipe 12. Using Projections .11
Recipe 13. Combining Built-in Statistics . 12
Recipe 14. Defining Custom Statistics from Python Functions 13
Recipe 15. Creating Independent Mixtures of FRPs and Kinds 14
Recipe 16. Computing Large Independent Mixture Powers of Kinds 15
Recipe 17. Defining Conditional FRPs and Kinds . 16
Recipe 18. Building a Mixture of FRPs and Kinds . 18
Recipe 19. Using the Conditioning Operator. 19
Recipe 20. Evolving a Random System. 20
Recipe 21. Applying Conditional Constraints with a Statistic21
Recipe 22. Applying Conditional Constraints on a Transformed Kind.21
Recipe 23. Handling Operator Precedence . 22
Recipe 24. Computing Expectations and Variances . 22
Recipe 25. Finding frplib Objects in Modules. 24
Recipe 26. Importing frplib Objects in Your Code . 24
Recipe 27. Using Symbolic Quantities . 25
Recipe 28. Managing High-Precision Quantities . 25
Recipe 29. Handling Tuples and Vector Tuples . 26
Recipe 30. Getting Help . 26

v1.0.0 Last Updated 08 Sep 2024

This Cookbook illustrates how to perform various common tasks in frplib. These
can be used either in the frp playground or in Python code that imports frplib.
In the latter case, you need to import any frplib symbols you use, see Recipe 26,
“Importing frplib Objects in Your Code.” To show the results of some commands,
we will precede the commands with the pgd> prompt and display the result after
the command.

Recipe 1. Constructing Kinds with Kind Factories

Although FRPs are fundamental in the sense that they represent the actual the
random outputs of a system, in practice, we often work with Kinds, both to construct
FRPs and for many calculations. So we start by showing how to use Kind factories
to construct Kinds.

A Kind factory is just a function that takes as input some parameters and re-
turns a Kind that is consistent with those parameters. The Kind factories discussed
here include constant, either, binary, uniform, weighted_as, weighted_pairs,
weighted_by, evenly_spaced, linear, symmetric, geometric, without_replacement,
and arbitrary.

The simplest factory constant produces a Kind with only one possible value, which
can be given as a single tuple or multiple arguments which become its components.
We call it with

constant(value...) # produces <> ----- 1 ---- <value...>

For example:

pgd> constant(0)

<> ------ 1 ---- 0

pgd> constant(1, 2, 3)

<> ------ 1 ---- <1, 2, 3>

pgd> constant((10, 20))

<> ------ 1 ---- <10, 20>

We often use Kinds with two values. The either Kind factory takes two values
and an optional ratio of weights (first value to second), which defaults to 1. The

1

binary factory is a special case where the values are 0 and 1 and the weight on 1 is
given as 0 < p < 1.

either(a, b, r) # r is the ratio of weights a to b

binary(p) # v0.2.4+

For example:

pgd> either(1, 2)

,---- 1/2 ---- 1

<> -|

`---- 1/2 ---- 2

<> ------ 1 ---- 0

pgd> either(1, 2, 9)

,---- 0.9 ----- 1

<> -|

`---- 0.1 ----- 2

pgd> either(1, 2, '1/9')

,---- 0.1 ----- 1

<> -|

`---- 0.9 ----- 2

pgd> binary() # p = 1/2 by default, either(0, 1)

,---- 1/2 ---- 0

<> -|

`---- 1/2 ---- 1

pgd> binary('3/4')

,---- 1/4 ---- 0

<> -|

`---- 3/4 ---- 1

pgd> binary('1/4')

,---- 3/4 ---- 0

<> -|

`---- 1/4 ---- 1

A very common case is to construct a Kind with equal weights on all its values.
This is produced by the uniform Kind factory. Like most of the Kind factories,

2

uniform accepts either a single sequence of values (e.g., a Python list or set or other
iterable) or values given as multiple arguments

uniform({1, 2, 3})

uniform([(0, 0), (0, 1), (1, 0), (1, 1)])

uniform(1, 2, 3)

uniform((0, 0), (0, 1), (1, 0), (1, 1))

uniform((x, y) for x in [0, 1] for y in [0, 1])

In the first two cases, we give the values as a single set (enclosed in {}s) or a single
list (enclosed in []s). In the third and fourth cases, the values are given as separate
arguments. In the last case, we pass a Python generator expression to construct the
values dynamically rather than write them out explicitly.

Like most Kind factories, scalar values passed to uniform can include a ... that
extends the two values before the ... forward up to but not including the value after
the a, b, . . . , c gives a, b, b+ (b− a), b+ 2(b− a), . . . , c. For example,

uniform(1, 2, ..., 6)

uniform(10, 20, ..., 100)

uniform(9, 8, ..., 1)

uniform(1, 4, 5, 9, 11, 13, ..., 22)

The latter has values 1, 4, 5, 9, 11, 13, 15, 17, 19, 21, and 22.
More generally, we want to specify values and weights. Three factories make this

easy:

weighted_as(values..., weights=weight_list)

weighted_pairs([(value1, weight1), (value2, weight2), ...])

weighted_by(values..., weight_by=function)

The weighted_as factory is our workhorse; the weights are specified by a list or
other sequence. weighted_pairs takes a Python list of pairs, containing values and
their corresponding weights. And weighted_by takes the values and a function that
assigns the weight to each value by calling function(value), where value is passed
as is, without any translation or conversion.

3

The values and weights in these factories can be any quantity, see Recipe 28, and
the weights can use ... patterns as described above.

For example:

weighted_as(1, 2, ..., 6, weights=[10, 11, ..., 15])

weighted_pairs([((1, 1), 3), ((1, 0), 2), ((0, 1), 2), ((0, 0), 1)])

weighted_by(1, 2, ..., 100, weight_by=lambda v: v * v)

Related is the Kind factory evenly_spaced, which specifies evenly-spaced scalar
values weighted with a weight_by function like weighted_by

evenly_spaced(0.2, 1.0, num=5, weight_by=lambda v: 1 + 5*v)

evenly_spaced(4, num=5)

With only one value given, it starts at 0, so evenly_spaced(4, num=5) is equivalent
to uniform(0, 1, ..., 4).

There are several other specialized factories for producing Kinds on the given
values with specified patterns of weights:

linear(1, 2, ..., 6, increment=2) # weights linear first + increment * index

geometric(1, 2, ..., 6, r=0.5) # weights geometric first r^index

symmetric(1, 2, ..., 6, around=3.5) # weights symmetric around aroud

Kinds can also be specified with symbolic values and weights. See Recipe 27.

pgd> a, b = symbols('a b')

pgd> either(a, b)

,---- 1/2 ---- a

<> -|

`---- 1/2 ---- b

pgd> uniform(a, a + 1, a + 2)

,---- 1/3 ---- 1 + a

<> -+---- 1/3 ---- 2 + a

`---- 1/3 ---- a

pgd> weighted_as(1, 2, weights=[a, b])

,---- a/(a + b) ---- 1

4

<> -|

`---- b/(a + b) ---- 2

pgd> arbitrary(1, 2, 3)

The last of these produces a Kind on the specified values with arbitrary symbolic
weights that can be named.

Finally, there are Kind factories that produce Kinds over special collections. For
example, without_replacement gives the Kind of all subsets of a specified set from
a collection of values.

pgd> without_replacement(2, [1, 2, 3, 4])

,---- 1/6 ---- <1, 2>

|---- 1/6 ---- <1, 3>

|---- 1/6 ---- <1, 4>

<> -|

|---- 1/6 ---- <2, 3>

|---- 1/6 ---- <2, 4>

`---- 1/6 ---- <3, 4>

Recipe 2. Constructing FRPs with FRP Factories

A frequently used method for constructing FRPs is to specify its Kind to the frp

function. This takes a Kind and returns a fresh FRP with that Kind.

X = frp(K) # K is a Kind, kind(X) is K

Examples:

frp(either(1, 2))

frp(uniform(1, 2, ..., 1000))

frp(weighted_as((0, 0), (0, 1), (1, 0), (1, 1),

weights=['1/8', '1/8', '1/4', '1/2']))

The special FRP factory shuffle returns an FRP representing a random per-
mutation of a given collection of values. For example, the following give an FRP
representing a shuffle of a standard deck of cards.

5

shuffle(k for k in irange(1, 52))

shuffle(1, 2, ..., 52) # v0.2.4+

Recipe 3. Cloning an FRP

If X is an FRP and

Y = clone(X)

then Y is a fresh FRP with the same Kind as X.
If S is a Conditional FRP and

T = clone(S)

then T is a Conditional FRP with the same inputs whose targets are clones of S’s
targets.

Recipe 4. Checking if Two Kinds are Equal

Use Kind.equal:

Kind.equal(kind1, kind2)

returns True or False if the Kinds are equal (within numerical precision). This also
works with Kinds whose values or weights are symbolic.

This takes an optional argument tolerance that specifies how close two numbers
need to be to be considered numerically equal

Kind.equal(kind1, kind2, tolerance=1e-7)

Recipe 5. Constructing Kinds from FRPs

The function kind is used to find the Kind of an FRP or the Conditional Kind of a
Conditional FRP.

6

kind(X) # returns the Kind of FRP X

Note that some FRPs have Kinds that are computationally hard to compute. You
can call kind on these FRPs but the computation will take a very long time. Given
an FRP X,

X.is_kinded()

will give a Boolean indicating whether the Kind is available without additional
computation.

pgd> frp(binary()).is_kinded()

True

pgd> Bits = frp(binary()) ** 100

pgd> Bits.is_kinded()

False

Recipe 6. Constructing Kinds from Strings

The kind function also accepts market-style strings. Do info('kinds') in the
playground (or ’help kinds.’ in the market) For example,

equivalent to either(0, 1)

kind('(<> 1 <0> 1 <1>)'

equivalent to weighted_as((0, 0), (0, 1), (1, 0), (1, 1),

weights=[1, 1, 2, 4])

kind('(<> 1 <0, 0> 1 <0, 1> 2 <1, 0> 4 <1, 1>)'

Recipe 7. Finding Dimension, Codimension, Size, and Type

The functions dim, codim, size, and typeof extract information about Kinds, FRPs,
Conditional Kinds, Conditional FRPs, and Statistics.

7

k = uniform(1, 2, ..., 100)

X = frp(k) ** 3

c = conditional_kind({0: constant(1, 2), 1: either((2, 3), (3, 4))})

C = conditional_frp(c)

s = Proj[1, 2, 3, 4]

size(k) # Size of the Kind, 100

dim(k ** 2) # Dimension 2

dim(X) # Dimension 3

dim(s) # Dimension 4

codim(X) # Codimension 0 for any FRP or Kind

codim(c) # Codimension 1

codim(C) # Codimension 1

codim(s) # Codimension 4 and up

typeof(k) # 0 -> 1 dim -> codim

typeof(c) # 1 -> 2

typeof(C) # 1 -> 2

typeof(s) # [4..) -> 1

Note that size applies only to Kinds and FRPs, and it forces the computation of an
FRPs Kind.

Recipe 8. Running Demos of FRPs

The function FRP.sample provides the same functionality as the demo task in the frp
market. It activates a large collection of fresh FRPs and tabulates their value.

FRP.sample(n, kind_or_frp, summary=True)

Accepts the size of the demo, a Kind or FRP, and an optional argument summary

indicating whether to summarize the results (True) or list them individually (False).

8

FRP.sample(100, uniform(1, 2, 3))

FRP.sample(10_000, frp(geometric(0, 1, 2, ... 100, r=0.9)))

Recipe 9. Pruning Numerically Negligible Branches of a Kind

Some transformations with statistics can give branches with very small, numerically
negligible weights, sometimes many of them. We use the clean to prune those
branches and renormalize the Kind, which usually makes it nicer to view.

clean(k)

clean(k, tolerance=1e-7)

The optional argument tolerance gives the threshold for numerically negligible. By
default it is small, 10−12.

Recipe 10. Unfolding a Multi-dimensional Kind

A Kind with dimension > 1 can be unfolded to have width greater than 1 with the
unfold function.

unfold(uniform(1, 2) * weighted_as(3, 4, weights=[9, 1]) * constant(5))

displays the unfolded tree Currently unfold does not work for Kinds with symbolic
weights.

Recipe 11. Transforming FRPs and Kinds with Built-in Statistics

To transform a Kind K or FRP X with a compatible statistic psi, we can either apply
the statistic or use the ^ operator:

psi(K) psi(X)

K ^ psi X ^ psi

Both forms are convenient in different situations and give the same result.

9

pgd> K = uniform(1, 2, 3) ** 2

pgd> X = frp(X)

pgd> X

An FRP with value <2, 3>

pgd> Sum(X)

An FRP with value <5>

pgd> K ^ (Proj[2] + 10)

,---- 1/3 ---- 11

<> -+---- 1/3 ---- 12

`---- 1/3 ---- 13

pgd> X ^ Permute(2, 1)

An FRP with value <3, 2>

pgd> Max(K)

,---- 1/9 ---- 1

<> -+---- 3/9 ---- 2

`---- 5/9 ---- 3

The @ operator is related, see Recipe 22.
We can use the same operators to transform general conditional Kinds and FRPs.

In this case, the statistic gets the input and target values and produces new target
values.

pgd> Max(conditional_kind({1: constant(1), 2: either(0, 4)}))

A conditional Kind of type 1 -> 2 with wiring:

<1>: <> ------ 1 ---- 1

,---- 1/2 ---- 2

<2>: <> -|

`---- 1/2 ---- 4

pgd> conditional_kind({1: constant(1), 2: either(0, 1)}) ^ (Proj[2] + 1)

A conditional Kind of type 1 -> 3 with wiring:

<1>: <> ------ 1 ---- 2

,---- 1/2 ---- 1

10

<2>: <> -|

`---- 1/2 ---- 2

pgd> conditional_kind({1: constant(1), 2: either(0, 1)}) ^ (__ + 1)

A conditional Kind of type 1 -> 3 with wiring:

<1>: <> ------ 1 ---- <2, 2>

,---- 1/2 ---- <3, 1>

<2>: <> -|

`---- 1/2 ---- <3, 2>

(See the .transform_targets method to give a statistic that just receives the target
values.)

Recipe 12. Using Projections

Projections are statistics that extract one or more components from the tuple passed
as input. The Proj factory constructs projection statistics, specified by indices or
slices in []s.

Proj[1](10, 20, 30, 40, 50) # == <10>

Proj[3](10, 20, 30, 40, 50) # == <30>

Proj[5](10, 20, 30, 40, 50) # == <50>

Proj[3,5](10, 20, 30, 40, 50) # == <30, 50>

Proj[1,3,5](10, 20, 30, 40, 50) # == <10, 30, 50>

Proj[1:4](10, 20, 30, 40, 50) # == <10, 30, 50> (item 4 excluded)

Proj[1:4:2](10, 20, 30, 40, 50) # == <10, 50> (skip by 2)

Proj[3:](10, 20, 30, 40, 50) # == <30, 40, 50> (to end)

Proj[:3](10, 20, 30, 40, 50) # == <10, 20> (from start, 3 excluded)

Proj[-1](10, 20, 30, 40, 50) # == <50> (-1 is last component)

Proj[-2:](10, 20, 30, 40, 50) # == <40, 50>

Proj[:-2](10, 20, 30, 40, 50) # == <10, 20, 30>

11

Proj[-1::-1](10, 20, 30, 40, 50) # == <50, 40, 30, 20, 10>

Recipe 13. Combining Built-in Statistics

Transforming a statistic with a statistic composes them.

pgd> X = uniform(1, 2, ..., 10) ** 3

An FRP with value <4, 9, 1>

pgd> X ^ Sqrt(Max) # Computes Sqrt(Max(value))

An FRP with value <3>

pgd> X ^ Abs(Proj[1] - Proj[2])

An FRP with value <5>

Arithmetic operations on statistics produce statistics

pgd> X ^ (Proj[1] + 2 * Proj[2] + 3 * Proj[3])

An FRP with value <25>

pgd> X ^ (__ + 10)

An FRP with value <14, 19, 11>

pgd> X ^ Fork(Proj[2] - Proj[1], Proj[3] - Proj[2], Proj[1] - Proj[3])

An FRP with value <5, -8, 3>

Comparison operations on statistics produce conditions

pgd> X ^ (Proj[2] == 1)

An FRP with value <0>

pgd> X ^ (Proj[1] < 3)

An FRP with value <1>

pgd> X ^ (Proj[1] + Proj[2] > 12)

An FRP with value <1>

pgd> X ^ And(Proj[1] == 4, Proj[2] == 9, Proj[3] == 2)

An FRP with value <0>

12

Recipe 14. Defining Custom Statistics from Python Functions

We create statistics from Python functions by attaching a decorator – one of
@statistic, @scalar_statistic, or @condition – before the definition. Each of
these decorators accepts optional arguments (including codim and dim) that specify
properties of the statistic.

@statistic

def got7(rolls):

return index_of(7, rolls) # Index of first 7 or -1

@statistic(codim=1, dim=2)

def rotate90(x_y):

x, y = x_y

return (-y, x)

@scalar_statistic

def right_triangle_area(x, y):

"area of right triangle with hypotenuse from origin to <x, y>"

return (x * y) / 2

With two arguments, frplib infers that the codimension is 2, with one argument
it allows any codimension unless specified. The @scalar_statistic decorator just
ensures that the dimension is 1. The return value of a statistic is automatically
converted to a vector tuple.

The @condition decorator converts a Boolean statistic into one that returns 0
(false) or 1 (true).

@condition

def both_even(x, y):

return x % 2 == 0 and y % 2 == 0

A condition always has dimension 1.
statistic, scalar_statistic, and condition can also be used as functions

that take a function as an argument.
Chapter 0, Section 2 gives many more examples of custom statistics.

13

Recipe 15. Creating Independent Mixtures of FRPs and Kinds

The * operator gives independent mixtures of Kinds and FRPs (as well as more
general conditional Kinds and conditional FRPs).

pgd> either(0, 1) * either(3, 4)

,---- 1/4 ---- <0, 3>

|---- 1/4 ---- <0, 4>

<> -|

|---- 1/4 ---- <1, 3>

`---- 1/4 ---- <1, 4>

pgd> X = frp(either(0, 1))

pgd> X * clone(X)

An FRP with value <0, 1>

The clone is needed when using * on FRPs, but not with ** (see below).
An independent mixture of conditional Kinds and FRPs with the same inputs

produces the type of object with the same inputs where the targets are the independent
mixtures of the originals’ targets. For exampe,

pgd> cK = conditional_kind({1: constant(1), 2: either(0, 4)})

pgd> cK * cK

A conditional Kind of type 1 -> 3 with wiring:

<1>: <> ------ 1 ---- <1, 1>

,---- 1/4 ---- <0, 0>

|---- 1/4 ---- <0, 4>

<2>: <> -|

|---- 1/4 ---- <4, 0>

`---- 1/4 ---- <4, 4>

The ** operator computes independent mixture powers

pgd> uniform(2, 4, 6) ** 2

,---- 1/9 ---- <2, 2>

|---- 1/9 ---- <2, 4>

14

|---- 1/9 ---- <2, 6>

|---- 1/9 ---- <4, 2>

<> -+---- 1/9 ---- <4, 4>

|---- 1/9 ---- <4, 6>

|---- 1/9 ---- <6, 2>

|---- 1/9 ---- <6, 4>

`---- 1/9 ---- <6, 6>

pgd> X ** 100

An FRP with value <1, 2, 3, 1, 3, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 1, 3, 2, 2, 3, 1, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 1, 3, 2, 3, 3, 3, 3, 1, 3, 2, 1, 2, 2, 3, 2, 1, 2, 2, 1, 3, 2,

1, 2, 2, 1, 3, 1, 1, 3, 3, 2, 3, 2, 2, 3, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 3, 3, 1, 1, 1, 3, 1, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 1, 1, 3, 3, 1, 3, 3, 3, 3, 2,

3, 3, 1, 1, 3, 3, 3, 1, 1, 1, 2, 3, 3, 3, 2, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 2, 3, 3, 1, 1, 3, 1, 1, 2, 3, 3, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2>. (It may be slow to

evaluate its kind.)

For FRPs, ** automatically clones the FRP.

Recipe 16. Computing Large Independent Mixture Powers of Kinds

Independent mixture powers of Kinds have sizes that grow exponentially in the
exponent and so quickly become infeasible to compute in general. However, for some
types of statistics, we can compute

psi(K ** n)

efficiently, where psi is a statistic, K is a Kind, and n is moderately large
These statistics are called “monoidal statistics” in frplib and include common

statistics like Sum, Count, Max, and Min. The technique is discussed in detail in
Chapter 0 Section 6.1. It is implemented in the fast_mixture_pow

fast_mixture_pow(stat, a_kind, n) # computes stat(a_kind ** n)

For example,

fast_mixture_pow(Sum, either(0, 1), 100)

takes only a few seconds; done naively it would take longer than the age of the
universe. (The clean operation is often useful after computing the Kinds of large
mixture powers, see Recipe 9.)

15

Recipe 17. Defining Conditional FRPs and Kinds

We use conditional_frp to construct Conditional FRPs. This can be passed a
dictionary

pgd> N = frp(either(0, 1, 99))

pgd> P = frp(either(0, 1, 1/19))

pgd> T = conditional_frp({ 0: N, 1: P })

or a function

def a_func(value):

if value == 0:

return N

else:

return P

both of these give the same result

T = conditional_frp(a_func)

T = conditional_frp(lambda value: N if value == 0 else P)

or used as a decorator above a Python function definition.

@conditional_frp

def T(value):

if value == 0: # Inputs are scalars when codim=1

return N

return P

In all these cases, we get a conditional FRP object to which we can pass input, look
at targets, and use for mixtures.

pgd> T.target(0)

An FRP with value <1>

pgd> T(0)

An FRP with value <0, 1>

pgd> frp(either(0, 1, 999)) >> T

16

An FRP with value <0, 1>

conditional_frp accepts optional parameters that specify the codimension, dimen-
sion, and domain of the conditional FRP. frplib can infer these from a dictionary
and can infer the codimension from a function with multiple arguments, but otherwise
it is good practice to supply at least the codimension if possible as it helps with error
checking. The decorator can take these arguments as well.

@conditional_frp(codim=1, domain={0, 1})

def T(value):

if value == 0: # Inputs are scalars when codim=1

return N

return P

Analogously, we use conditional_kind to construct conditional Kinds with the
same mechanisms: passing a dictionary

t = conditional_kind({

0: either(0, 1, 99),

1: either(0, 1, 1/19)

})

passing a function (named or anonymous)

t = conditional_kind(

lambda value:

either(0, 1, 99) if value == 0 else either(0, 1, 1/19),

domain=[0, 1], target_dim=1

)

or putting a decorator on a function definition

@conditional_kind(domain=[0, 1], target_dim=1)

def t(value):

if value == 0:

return either(0, 1, 99)

17

return either(0, 1, 1/19)

If cF is a conditional FRP, then

cK = conditional_kind(cF)

is the corresponding conditional Kind. This goes in reverse as well, with conditional_frp

on cK, but a better way is to use the kind function which is a bit smarter about it

kind(cK) # same as cF

Recipe 18. Building a Mixture of FRPs and Kinds

The mixture operator >> computes mixtures. The basic case is a mixture of a Kind k

and conditional Kind cK k >> cK or of an FRP X and a conditional FRP cF, X >> cF.
The dimension of the object on the left of the >> must be compatible with the
codimension of the object on the right.

pgd> either(11, 22) >> conditional_kind({11: either(99, 100), 22: constant(7)})

,---- 1/4 ---- <11, 99>

<> -+---- 1/4 ---- <11, 100>

`---- 2/4 ---- <22, 7>

pgd> X = frp(either(11, 22))

An FRP with value 22

pgd> cF = conditional_frp({11: frp(either(99, 100)), 22: frp(constant(7))})

A conditional FRP of type 1 -> 2 with wiring:

<11> An FRP with value 99

<22> An FRP with value 7

pgd> X >> cF

AN FRP with value <22, 7>

More generally, >> accepts a conditional FRP or Kind of type m → p and a
conditional FRP or Kind of type p → n and produces a conditional FRP or Kind of
type m → n. Because an FRP or Kind of dimension m is just a conditional FRP or
Kind of type 0 → m, this generalizes the basic case. For example:

18

pgd> cK1 = conditional_kind({0: either(1, 2), 1: either(3, 4)})

pgd> cK2 = conditional_kind({(0, 1): either(9, 10), (0, 2): either(11, 12),

(1, 3): either(21, 22), (1, 4): either(23, 24)})

pgd> cK1 >> cK2

A conditional Kind of type 1 -> 3 with wiring:

,---- 1/4 ---- <1, 9>

|---- 1/4 ---- <1, 10>

<0>: <> -|

|---- 1/4 ---- <2, 11>

`---- 1/4 ---- <2, 12>

,---- 1/4 ---- <3, 21>

|---- 1/4 ---- <3, 22>

<1>: <> -|

|---- 1/4 ---- <4, 23>

`---- 1/4 ---- <4, 24>

See Chapter 0, Section 4 for more on mixtures. And see Recipe 19 for the related
conditioning operator //.

Recipe 19. Using the Conditioning Operator

The conditioning operator // is a combination of mixture and projection. We can
think of it as an averaging operation where the target Kinds in a conditional Kind
are averaged over the inputs according to the weights of a given Kind. We use it as

cK // K

where cK is a conditional Kind (or FRP) and K is a Kind (or FRP). This is equivalent
to

K >> cK ^ Proj[(d+1):]

where d == dim(K).

19

pgd> door = uniform(1, 2, 3)

pgd> prize_by_door = conditional_kind({

...> 1: either(-10, 100),

...> 2: either(-50, 250),

...> 3: constant(-100)

...> })

pgd> prize_by_door // door

,---- 2/6 ---- -100

|---- 1/6 ---- -50

<> -+---- 1/6 ---- -10

|---- 1/6 ---- 100

`---- 1/6 ---- 250

This gives the Kind of the FRP representing the prize obtained. We have averaged
the possibilities over different door choices.

This operator is the basis of the evolve built-in; see Recipe 20.

Recipe 20. Evolving a Random System

The evolve function is called as

evolve(start, next_state, n_steps=1)

where start is the Kind (or FRP) of an initial state, next_state is a conditional
Kind (or conditional FRP) that takes in a current state and whose targets represent
the next state, and n_steps is the number of steps to iterate over.

room = uniform(1, 2, 3)

move = conditional_kind({

1: either(2, 3),

2: constant(3)

3: uniform(1, 2, 3)

})

room_after_100 = evolve(room, move, 100)

20

This describes a random walk through a simple maze, where move represents the next
room given the current room.

Recipe 21. Applying Conditional Constraints with a Statistic

We use the | to indicate conditional constraints, with a Kind or FRP on the left and
a statistic on the right side.

either(1, 2) ** 3 | (Proj[2] == 1)

d_kind | Fork(Id, Sum > 4)

a_kind | And(Proj[1] > 1, Proj[2] < -1, Proj[3] == 0)

The parentheses are required around the statistic expresssion because | has low
precedence. (See Recipe 23.)

Recipe 22. Applying Conditional Constraints on a Transformed Kind

Sometimes we want to apply a constraint to a transformed FRP or Kind where the
constraint refers to the original Kind or FRP. This will not work

Sum(X) | (Proj[2] == 1)

The constraint applies to X but the statistic transforms it so the original information
is lost.

This is the role of the @ operator. It is a form of the transform by a statistic that
remembers the original FRP or Kind. This does work

Sum @ X | (Proj[2] == 1)

Think of Sum @ X as an alternative form of Sum(X). You could also write this as
Sum@(X) if you prefer.

21

Recipe 23. Handling Operator Precedence

The operators used by frplib follow Python precedence rules, as described at this
link. In particular, from most tightly binding to least tightly binding, the frplib

operators are

[] () # Indexing and evaluation/transformation

**

* @ //

>>

^

|

So, for example, we need parentheses around the statistic expression and the condi-
tional constraint but no where else in

uniform(1, 2, 3) ** 2 ^ (Proj[1] + Proj[2])

uniform(1, 2, 3) >> prize_by_door ^ convert

a_kind | (Proj[2] > 4)

b_kind ^ Proj[4, 5, 6]

Recipe 24. Computing Expectations and Variances

The E operator computes expectations. It can be applied to a Kind, an FRP, a
conditional Kind, or a conditional FRP.

pgd> K = uniform(1, 2, ... 11)

pgd> X = frp(K)

pgd> E(K)

6

pgd> E(X)

6

When applied to an FRP whose Kind is difficult to compute, E will use an approx-
imation to the FRP instead. You can specify the tolerance of that approximation
(optional argument tolerance) or even force the computation of the Kind (optional
argument force_kind).

22

https://docs.python.org/3/reference/expressions.html#operator-precedence

pgd> Y = frp(binary()) ** 16

pgd> E(Sum(Y))

Computing approximation (tolerance 0.01) as exact calculation may be costly

8.0266

pgd> E(Sum(Y), tolerance=0.001)

7.998249

pgd> E(Sum(Y), force_kind=True)

8

The last two commands take a little time.
When E is applied to a conditional Kind or conditional FRP, the result is a

function that takes the same inputs and returns the expectation of the corresponding
target.

pgd> prize_by_door = conditional_kind({

...> 1: either(-10, 100),

...> 2: either(-50, 250),

...> 3: constant(-100)

...> })

pgd> f = E(prize_by_door)

pgd> f(1)

45

pgd> f(2)

100

pgd> f(3)

-100

Similarly, the Var operator computes the variance of an FRP or Kind.

pgd> Var(uniform(-1, 0, 1))

1

pgd> Var(uniform(-10, 0, 10))

100

23

Recipe 25. Finding frplib Objects in Modules

The object index is included in the info system:

info('object-index')

All modules are listed with

info('modules')

Each module is automatically loaded into the playground, so you can access them
with the name

kinds.kind

utils.dim

frps.shuffle

In v0.2.5+, the frplib_objects dictionary will show all objects imported into the
playground by module.

Recipe 26. Importing frplib Objects in Your Code

The frplib modules have the form frplib.modulename, e.g., frplib.kinds and
frplib.frps. These modules are preloaded into the playground, but in your code,
you need to import them or symbols from them into your environment.

For example:

from frplib.frps import frp

from frplib.kinds import kind, uniform, weighted_as

from frplib.statistics import statistic, condition, __, Sum, Proj

from frplib.utils import irange, dim, codim

It is good practice to import only the names you need, but you can do

from frplib.utils import *

You can also import the modules and use the names qualified by the module name:

24

import frplib.utils

utils.irange(1, 6)

Recipe 27. Using Symbolic Quantities

The functions symbol and symbols make “symbols” that can be operated on with
ordinary arithmetic operators to make expressions that can be values or weights in
Kinds.

pgd> a = symbol('a')

pgd> (1 + a) ** 2

1 + 2 a + a^2

pgd> x, y, z = symbols('x y z')

pgd> x**2 + y**2 + 2 * z**2

x^2 + y^2 + 2 z^2

pgd> u = symbols('u0 ... u9')

pgd> u[7]

u7

Recipe 28. Managing High-Precision Quantities

Under the hood, frplib uses high-precision decimals, and it converts input quantities
into the correct form automatically. For this reason, one can give fractions as strings
that will be converted more precisely than the built-in floats

weighted_as(1, 2, weights=['6/7', '1/7'])

The output of frplib functions is also in this format, and from time to time, this
can cause a conflict because the high-precision decimals are not auto-convertible into
standard Python floats.

pgd> Decimal('0.99') * 4.2

TypeError: unsupported operand type(s) for *: 'decimal.Decimal' and 'float'

25

In the rare case in which you encounter this error, you can either use float to convert
the decimal quantity to a float or use as_quantity to convert the float to the right
form.

pgd> Decimal('0.99') * as_quantity(4.2)

Decimal('4.158')

pgd> float(Decimal('0.99')) * 4.2

4.158

In v0.2.4+, the as_float utility will convert high-precision scalars and tuples to float
form.

Recipe 29. Handling Tuples and Vector Tuples

For values, frplib uses a special type of tuple on which one can operate as vectors.
These are convenient for many operations, and frplib does the translation for you
in almost all cases.

If you want to produce such tuples, the functions as_vec_tuple and vec_tuple

are helpful

pgd> vec_tuple(1, 2, 3)

<1, 2, 3>

pgd> as_vec_tuple([1, 2, 3])

<1, 2, 3>

pgd> as_vec_tuple(1)

<1>

pgd> vec_tuple(1)

<1>

Recipe 30. Getting Help

There are several ways to get help on frplib. Besides this Cookbook and the frplib

Cheatsheet, Chapter 0 of the text has a wide range of examples and descriptions of
how to use the tools in frplib. You can search in that document for examples of
any particular function. In addition, the examples from the text are all accompanied

26

by code modules which you can both use and look at. See for instance the examples

directory on github.
Moreover, the playground has built-in help. You can use help on any function or

object to see documentation and often examples. This help can be a bit “Pythony”
at times, so there is also the info facility.

info() # Index

info('overview') # A string topic

info(weighted_as) # associated info on an objecct

info(frp)

info('kind-factories::weighted_as') # hierarchical topic

It can be useful to look at both info and help.

27

https://github.com/genovese/frplib

	Constructing Kinds with Kind Factories
	Constructing FRPs with FRP Factories
	Cloning an FRP
	Checking if Two Kinds are Equal
	Constructing Kinds from FRPs
	Constructing Kinds from Strings
	Finding Dimension, Codimension, Size, and Type
	Running Demos of FRPs
	Pruning Numerically Negligible Branches of a Kind
	Unfolding a Multi-dimensional Kind
	Transforming FRPs and Kinds with Built-in Statistics
	Using Projections
	Combining Built-in Statistics
	Defining Custom Statistics from Python Functions
	Creating Independent Mixtures of FRPs and Kinds
	Computing Large Independent Mixture Powers of Kinds
	Defining Conditional FRPs and Kinds
	Building a Mixture of FRPs and Kinds
	Using the Conditioning Operator
	Evolving a Random System
	Applying Conditional Constraints with a Statistic
	Applying Conditional Constraints on a Transformed Kind
	Handling Operator Precedence
	Computing Expectations and Variances
	Finding frplib Objects in Modules
	Importing frplib Objects in Your Code
	Using Symbolic Quantities
	Managing High-Precision Quantities
	Handling Tuples and Vector Tuples
	Getting Help

