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Interaction
The playground is an enhanced Python read-eval-print
loop (REPL). You can use any Python construct, and the
environment is preloaded with playground specific
functions and values.
You can use arrows (or Control-n and Control-p) to move
through your history, optionally modifying earlier
commands. Special keys: Arrow keys, Control-a
(beginning of line), Control-e (end of line), Control-k
delete rest of line, F3 see full history, F2 settings menu,
Control-r search history for pattern (type pattern and hit
enter to select).
Multi-line input is accepted; a blank line at the end will
enter the input.
Syntax errors will show up in a message at the bottom of
the screen, usually disallowing entering that input. Many
errors raised by code will show special
playground-specific error messages, but some errors will
show the full Python stack traces.

Kind Factories
All factories with arguments values. . . can take multiple
values as individual arguments, or an iterable, or an
implied sequence of the form a, b, ..., c in a
positive or negative direction. (If a == c in this form, b
is ignored, giving a single value a.) Values can be numbers
or tuples and can contain symbols.
kind(spec) – constructs a Kind from a string, an FRP,
or another Kind.
conditional_kind(mapping) – constructs a
conditional Kind from a dictionary or function. (For the
latter, use argument codim=1 if the function wants a
scalar argument.) Can be used as a decorator or a function.
Kind.empty – the empty Kind
constant(v) – Kind of a constant FRP with value v
binary(p) – the Kind of a 0-1 FRP with weight p on 1
uniform(values...) – the Kind with specified
values and equal weights

either(a, b, ratio) – has values a and b with
weights ratio and 1
weighted_as(values..., weights=[...])
– arbitrary weights associated with the given values, can
also accept a dictionary {value: weight, ...}

weighted_by – weights on values determined by a
general function
weighted_pairs – a Kind specified by a sequence of
(value, weight) pairs
symmetric(values.., around, weight_by)
– weights on values determined by a symmetric function
weight_by around a specified value around
geometric(values..., r) – weights on values
varying geometrically with ratio r
linear(values..., first=a, increment=b)
– weights on values vary linearly from a changing by b
for each value.
evenly_spaced – Kind of an FRP whose values
consist of evenly spaced numbers
integers – Kind with integer sequence as values
subsets, without_replacement,
permutations_of, ordered_samples - the
Kinds of combinatorial operations on sequences: all
subsets, samples of a given size without replacement,
permutations of a given size, and ordered samples without
replacement
arbitrary – the Kind with specified values and
symbolic (unspecified) weights

FRP Factories
frp(spec) – constructs an FRP from a Kind or clones
another FRP.
conditional_frp(mapping) – constructs a
conditional Kind from a dict or function
shuffle(coll) – constructs an FRP whose value is a
random permutation of the collection coll

Kind and FRP Combinators
kf ^ stat or stat(kf) – apply a statistic stat to
a Kind (or FRP) kf
kf1 * kf2 – independent mixtures of kf1 and kf2,
either both Kinds or both FRPs
kf ** n – independent mixture power, for Kind or FRP
kf and natural number n

kf >> ckf – a general mixture for a (conditional) Kind
(or FRP) kf and a conditional Kind (or conditional FRP)
ckf Returns a (conditional) Kind (or FRP).
kf | c - applies conditional constraint to update
Kind/FRP, kf is a Kind or FRP and c is a condition.
m // k – conditioning on the Kind (or FRP) k, where m
is a conditional Kind (or conditional FRP).
psi@k | c – evaluate a statistic with context
fast_mixture_pow(stat, kind, n) –
efficiently computes mstat(kind ** n)
bin(scalar_kind, lower, width) – returns a
Kind similar to that given but with values binned in
specified intervals
evolve(start, next_state, steps=1) –
evolves a system through a specified number of steps
bayes(observed_y, x, y_given_x) – applies
Bayes’s rule for Kinds or FRPs

Statistics Factories
statistic – Creates a statistic from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.
condition – Creates a condition from a function. The
function is either passed as the first argument or is being
defined with @statistic used as a decorator.
scalar_statistic – Like statistic but
indicates dimension 1.
Constantly(v) – a statistic that always returns v
Proj – constructs projection statistics given an index, list
of indices, slice, projection statistic, or integer iterable.
Projections are 1-indexed, unlike tuples.
Permute – constructs a permutation statistic given a
permutation of 1..n in cycle or ordinary form

Builtin Statistics
__ – The statistic that reproduces the value passed to it.
Scalar is similar but forces the result to be a scalar. Id
is a synonym.
Sum, Product, Min, Max, Mean – operations on the
value tuple; for example, Sum gives the component sum
Exp, Log, Log2, Log10, Sqrt, Abs, Floor, Ceil
Sin, Cos, Tan, ACos, ASin, ATan2, Sinh, Cosh,
Tanh, ... – arithmetic and special functions
Diff, Diffs – first-order and higher-order differences
NormalCDF – standard Normal CDF



Cases – creates a statistic from a dictionary with
optional default
top and bottom – statistics that always return true and
false, respectively.

Statistics Combinators
Fork(stat1, stat2, ..., statn) – creates a
new statistic that combines the results of stat1 ...
statn (with the same argument) into a tuple. (MFork is
identical but is intended for monoidal statistics.)
ForEach(stat) – apply statistic to each component
of the input tuple, combining results into a tuple
IfThenElse(cond, statt, statf) – applies
condition cond evaluates to true, apply statt, else
statf.
And, Or, Not, Xor – logical operations on the results of
statistics, returning a condition. For example,
And(stat1, stat2) gives a condition that returns
true if both stat1 and stat2 do.
All, Any – condition true on every/some components

Actions
E – expectation operator, computes expectation of a Kind,
FRP, conditional Kind, or conditional frp. (The latter two
return functions.) See also Var.
D_ – distribution operator D_(X)(psi) returns
E(psi(X))
unfold(k) – shows the unfolded Kind tree for a given
Kind k
clean(k) – given Kind k removes any branches that
are numerically zero according to a specified tolerance
(default 1e-16). It also rounds numeric values to avoid
round-off error in comparing values
FRP.sample(n, obj, summary=True) –
generate n samples from the given Kind or FRP obj.
Default produces a summary table, but if
summary=False, give all the values.
Kind.equal, Kind.compare – compare Kinds for
structural equality, testing weights and values within a
specified numerical tolerance (default: 1e-12)
Kind.divergence(k1, k2) – computes relative
entropy of Kind k1 relative to this k2.

Utilities
show(x) – displays an object, list, or dictionary in a
more friendly manner.
clone(X) – produces a copy of its argument ‘X‘ if
possible; primarily useful with FRPs and conditional FRPs,
where it produces fresh copies with their own values.

Property Accessors

X.value – for an FRP X, returns X’s value, activating it
if necessary.

dim(x) – returns the dimension of ‘x‘, if available. Note
that taking the dimension of an FRP may force the Kind
computation.
codim(x) – returns the codimension of ‘x‘, if available
size(x) – returns the size of ‘x‘, if available
typeof(x) – returns the type of ‘x‘
values(x) – returns the *set* of ‘x‘’s values, if
available; applies to Kinds

Symbolic Manipulation

is_symbolic(x) – returns true if ‘x‘ is symbolic
symbol(name) – takes a string and creates a symbolic
term with that name
symbols(names) – takes a string with
space-separated names and returns symbols
gen_symbol() – returns a unique symbol name every
time it is called
substitute(quantity, mapping) –
substitutes values from mapping for the symbols in
‘quantity‘; mapping is a dictionary associating symbol
names with values. Not all symbols need to be substituted;
if all are substituted with a numeric value then the result
is numeric.
substitute_with(mapping) – returns a function
that takes a quantity and substitutes with mapping in that
quantity.
substitution(quantity, **kw) – like
‘substitute‘ but takes names and values as keyword
arguments rather than through a dictionary.

Tuples andQuantities
as_scalar(value) :: converts a 1-dimensional tuple
to a scalar
qvec(x...) – converts arguments to a quantitative
vector tuple, whose values are numeric or symbolic
quantities and can be added or scaled like vectors.
as_quantity(spec) – converts to a quantity, takes
symbols, strings, or numbers, e.g.,
as_quantity(’1/2’), as_quantity(1.2),
as_quantity(’a’).
numeric_exp(x), numeric_ln(x),
numeric_log2(x), numeric_log10(x),
numeric_abs(x), numeric_sqrt(x),
numeric_floor(x), numeric_ceil(x) –
numeric special functions that act on quantities
Function Helpers
identity(x) – a function that returns its argument
const(a) – returns a function that itself always returns
the value ‘a‘
compose(f,g) – returns the function ‘f‘ after ‘g‘
Sequence Helpers
irange – creates an inclusive integer ranges with
optional gaps
index_of, index_where – searches sequence with
control over what to return if not found
every(f, iterable) – returns true if ‘f(x)‘ is
truthy for every ‘x‘ in ‘iterable‘
some(f, iterable) – returns true if ‘f(x)‘ is truthy
for some ‘x‘ in ‘iterable‘
lmap(f, iterable) – returns a list containing
‘f(x)‘ for every ‘x‘ in ‘iterable‘
frequencies(iterable, counts_only=False)
– computes counts of unique values in iterable; returns a
dictionary, but if counts_only is True, return just the
counts without labels.

Help
info(t) – interactive help various topics. Here t can be a
topic string or most playground objects (e.g., uniform).
Start with info(’overview’). This will point you to
the list of topics and more.
help(obj) – built-in python help, you can call this on any
playground function or object to get guidance on its use.
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