
1 Corrected supplementary methods for Vireo paper 1

In this supplementary section, we will first re-introduce the notation we use, then derive the
detailed computation of the lower bound of the variational distribution L(q) in Eq(7) in the
main text, and lastly derive the updates of each variational component in equations Eq(9-11) in
the main text. By leveraging the read counts of alternative alleles A and both alleles (namely
depth) D from N variants in M cells, Vireo aims to estimate the joint posterior distribution
of sample identity Z for each cell j from each sample k, the genotype G for variant i in each
sample k, and the corresponding alternative allele rate θ for each genotype t ∈ {0, 1, 2}. As
described in the main text, we used multinomial priors for the categorical variables Z and G with
hyper-parameters π and U , respectively, and by default both take uniform multinomial priors.
We used beta priors for the parameter of the alternative allele rate θ, and we took the hyper-

parameters (α
(0)
t , β

(0)
t ), t ∈ {0, 1, 2} that generally fit well to highly expressed germline variants

in standard scRNA-seq data set (not multiplexed). Specifically, the default prior distribution
are: θ0 ∼ beta(0.3, 29.7), θ1 ∼ beta(3, 3), and θ2 ∼ beta(29.7, 0.3).

Next, the lower bound L(q) in Eq(7) can be written as follows

L(q) =
∑
Z

∑
G

∫
θ

q(Z,G,θ) log

{
p(A,D,Z,G,θ)

q(Z,G,θ)

}
dZdGdθ

=EG,Z,θ[log p(A,D,Z,G,θ)]− EG,Z,θ[log q(Z,G,θ)]

=EG,Z,θ[log p(A,D|Z,G,θ)] + EZ [log p(Z|π)] + EG[log p(G|U)]+

Eθ[log p(θ|α(0),β(0))]− EZ [log q(Z)]− EG[log q(G)]− Eθ[log q(θ)]

(S1)

where each part is expressed below.

EG,Z,θ[log p(A,D|Z,G,θ)] =

N∑
i=1

M∑
j=1

K∑
k=1

∑
t∈T

{
r̃j,kg̃i,k,t

[
log

(
di,j
ai,j

)
+ ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)

]}
(S2)

Eθ[log p(θ|α(0),β(0))] =
∑
t∈T

−(α
(0)
t +β

(0)
t −2)ϕ(α̃t + β̃t)+(α

(0)
t −1)ϕ(α̃t)+(β

(0)
t −1)ϕ(β̃t)− log(B(αt, βt)) (S3)

Eθ[log q(θ|α̃, β̃)] =
∑
t∈T

−(α̃t + β̃t − 2)ϕ(α̃t + β̃t) + (α̃t − 1)ϕ(α̃t) + (β̃t − 1)ϕ(β̃t)− log(B(α̃t, β̃t)) (S4)

EZ [log p(Z|π)] =

M∑
j=1

K∑
k=1

{r̃j,k log(πk)} , EG[log p(G|U)] =

N∑
i=1

K∑
k=1

∑
t∈T

{g̃i,k,t log(ui,k,t)} (S5)

EZ [log q(Z)] =

M∑
j=1

K∑
k=1

{r̃j,k log(r̃j,k)} , EG[log q(G)] =

N∑
i=1

K∑
k=1

∑
t∈T

{g̃i,k,t log(g̃i,k,t)} (S6)

Note, the variables with tilde hat are the estimated parameters otherwise are fixed hyper pa-
rameters, including αt and βt. Same below.

Then, following the general updating rule in the mean-field variational inference (see main
text Eq(8)), we can update the parameters in each component alternately while fixing all other
components of the variational distributions and reach the finalized equations Eq(9-11) in the
main paper.

First, by using the distributions of genotypeG and alternative allele rate θ that are estimated
from a previous step in the iteration, we can analytically update the distribution of the sample
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assignment Z by a categorical distribution.

log q∗(Z) = EG,θ[log p(A,D,Z,G,θ)] + const.

=
M∑
j=1

K∑
k=1

N∑
i=1

∑
t∈T

Zj,k

{
log(πk) + g̃i,k,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)]

}
+ const.

(S7)

where ϕ(·) is the digamma function, the same below. As q(Zj) for any j follows a multinomial
distribution, we can therefore have the updated parameter rj,k, namely the probability of cell j
from component k as follows,

rj,k =
πk exp

∑N
i=1

∑
t∈T

{
g̃i,k,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)]

}
∑K

h=1 πh exp
∑N

i=1

∑
t∈T

{
g̃i,h,t[ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)]

} (S8)

Second, with a similar procedure, the analytical updates for the genotype distribution can
be written in the form of a categorical distribution as follows,

log q∗(G) = EZ,θ[log p(A,D,Z,G,θ)] + const.

=
N∑
i=1

K∑
k=1

∑
t∈T

M∑
j=1

Gi,k,t

{
log(ui,k,t) + r̃j,k[ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)]

}
+ const.

(S9)

where the updated probability of variant i in component k equals to t can be expressed as
follows,

gi,k,t =
ui,k,t exp

∑M
j=1

{
r̃j,k[ai,jϕ(α̃t) + bi,jϕ(β̃t)− di,jϕ(α̃t + β̃t)]

}
∑

h∈T ui,k,h exp
∑M

j=1

{
r̃j,k[ai,jϕ(α̃h) + bi,jϕ(β̃h)− di,jϕ(α̃h + β̃h)]

} . (S10)

Lastly, the analytical updates of the distribution of the alternative allele rate θ can be
expressed in the form of a beta distribution as follows,

log q∗(θ) = EG,Z [log p(A,D,Z,G,θ)] + const.

=
∑
t∈T

N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,t[ai,j log(θt) + (di,j − ai,j) log(1− θt)]}+

+
∑
t∈T

[
(α

(0)
t − 1) log(θt) + (β

(0)
t − 1) log(1− θt)

]
+ const

= log(beta(θt|α̃t, β̃t)).

(S11)

where the parameters for this beta distribution are

α̃t = α
(0)
t +

N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,tai,j} ; β̃t = β
(0)
t +

N∑
i=1

M∑
j=1

K∑
k=1

{r̃j,kg̃i,k,t(di,j − ai,j)} . (S12)

Now, by updating these parameters iteratively, we can achieve the maximized lower bound of
L(q), and equivalently the minimized KL(q(Z,G,θ)||p(Z,G,θ|A,D)).
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