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1. Introduction 

Sqema (Species Quantification from Environmental nucleic acid Metabarcode 
Abundance) is a software package for generating species abundance 

distributions from data taken from environmental DNA or RNA (eNA) data sets.  
 
SQEMA works on the assumption that the abundance of species in environments 
that eNA is sampled from follow predictable patterns of abundance. These 
“species abundance distributions” (SADs) have been studied extensively by 

ecologists and they provide valuable null hypotheses for the real abundance of 
species.  
 
 



1.1 Data 

Sqema works from nucleic acid read counts in Operational Taxonomic Unit 
(OTU) “OTU tables” formatted as .csv files. The term “OTU table” means in this 
context any table of nucleic acid sequence read counts derived from 
metabarcoding where the reads are aggregated to a species level. ZOTU (Zero-

radius OTU) and ASV (Amplified Sequence Variant) tables can have reads for 
individual sequence variants within a species aggregated to species level to fit 
the assumptions that sqema is based on. The software has functions to help with 
this where names can be ascribed to variants, or it can be done by clustering in 
other software such as USEARCH (Edgar 2010) or VSEARCH (Rognes et al. 2016). 

 
The input file format must conform to having one title row with the names of the 
samples in it and one title column with the names of the OTUs in it. The rest of the 
cells in the table contain DNA or RNA sequence read counts. These should be 
raw counts as an initial input, not proportionalised normalised, or rarefied. An 

example of this format is: 
 
 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

OTU a 45 23 0 55 87 

OTU b 690 789 0 1123 45 

OTU c 0 0 0 0 0 

OTU d 234 123 0 2 88 

OTU e 98 554 0 12 1188 

 
 
Sqema has commands for OTU table editing that help convert complex OTU 

tables into this format (sections 2.3 and 2.4) 
 
Sqema will remove any rows or columns that have only zeros in them before 
analysis, so in this example, both Sample 3 and OTU c would be removed from 
the table before analysis. The outputs will not include OTU c or sample 3. If 

sample or OTU names are duplicated, sqema will raise an error for any of the 
quantitative analyaes telling the user what the duplicates are. These must be 
removed and the file reloaded, either with sqema OTU table manipulation 
commands, or by editing in a spreadsheet or similar software package. 
 

 

1.2 Installation 

 
Sqema can be installed using the Python package installer. To do this, open a 
terminal on Linux/OSX systems and type: 



 
python3 -m pip install --upgrade pip 

 
This ensures that an up-to-date version of pip is installed. Then type: 
 
pip install sqema --target ~/sqema_all/ 

 

This will install sqema to the home folder on OSX contained in a folder called 
‘sqema_all’ (you can call this what you like).  
 
To run sqema on Windows, the recommended approach is to use a Linux 

distribution in a virtual machine. There are a few options for this, but I have had 
success with VirtualBox: 
 
https://www.virtualbox.org/ 
 

1.3 Control 

 

To use sqema, first navigate to the folder containing the script sqema.py with 

something like this: 
 
cd Users/273915i/sqema_all/sqema/ 

 

… which on my system is the folder where I have installed sqema.py. On Linux 
systems, try: 
 
cd /Home/sqema_all/sqema/ 

 

or something similar. Once you have navigated to the folder containing 

sqema.py, then all other commands in this manual, which begin python 

sqema.py should work. 

 

This is not the only way to run it, and it should be possible to change permissions 
and PATH variables etc. so that sqema.py is executable and you don’t have to 
enter “python” before it, but this will be platform-specific. For ease of instruction, 
in this manual, I will stick to the simplest and most robust option. Note that 
different versions of Python may be installed on your system. If so, it may be 

desirable to use python3, or python3.11 instead of python, as needed.  

 
Sqema is run from a command line interface. The user controls the base function 
that sqema will run for each operation by specifying a function and a set of 
parameters for the function. The base functions for SQEMA have to be specified 
immediately after the sqema command to run the program. Parameters for the 



function are specified either in long form with a ‘- -’ before the verbose 
parameter name, or preceded by a ‘-’ symbol for the abbreviated name for 

the parameter. For example, ‘-in’ and ‘--in_file’ do the same thing, but 

the first needs one hyphen before it, and the second two. 
 

Each part of the overall command input must be separated by a space, except 
in parameter values which are lists, where commas are used. An example is: 

python sqema.py fit_SAD -in sqematest_1.csv 

 

An example with input in a list is: 
 
python sqema.py fit_SAD -tmo zipf logser lognorm 

 

where the --test_models parameter is given with its short-form -tmo as a list of 

three models to test. Items in a list should be entered separated by spaces. If the 
name has a space in it, put it in quotes, e.g. “Genus species”. 
 
Each parameter has a specified type: 
 
“Str” is a string of characters, such as a name of a sample. 

“Choice” requires selection of one of a list of strings 
“Choices” requires selection of one or more strings entered as a list with spaces 
between the items, e.g.  
“float” is a floating point decimal number like 0.993 
“int” is an integer number with no decimals like 3 

 
All of the parameters have default values that are used if a user-defined value is 
not specified. For example, the default for -in / --in_file is 

sqematest_1.csv. This means that if the user does not specify an input file, sqema 
will analyse the sqematest_1.csv file that is included with the package, for 
example with this command: 

python sqema.py fit_SAD  

 
which would run the SAD fitting algorithm on the default data, and also use 
default parameters for the variables. 

 

1.4 Help 

 
The full list of available commands in both abbreviated and verbose form can 
be displayed with the command 
 



python sqema.py -h 

 

1.5 File input  

 
Sqema takes input from .csv formatted files. It will search in the same directory 
as the script is located, so: 

python sqema.py fit_SAD -in sqematest_1.csv 

 
Means that it will look in the same directory where sqema is installed for the file 
sqematest1.csv to use as its input. If you want to use files in a different location, 
specify this in the standard system format, for example: 
 

python sqema.py fit_SAD -in ~/Dropbox/seqma_inputs/test_1.csv 

 
sqema does some automated data cleanup on OTU tables. It removes samples 
(columns), and taxa (OTUs) that only contain zeros. An OTU table that has been 
filtered to remove either samples or taxa may end up with either of these issues, 

but these zeros are not useful in sqema’s functions, so it removes them and 
reports this to the standard output. The default test file has one column of zeroes 
in it to demonstrate this, and the removal will be reported to the terminal like this 
when you load the default file: 
 
Zero only columns removed: 100291, 

 
 If a persistent record of standard output is required, on Linux/OSX, the output 
can be sent to a textfile to make a record like this: 

 

python sqema.py fit_SAD -in 

~/Dropbox/seqma_inputs/sqematest_1.csv > ~/Desktop/sqema_log.txt 

 

Lists of parameters should be entered separated by spaces. If the items being 
entered have a space in them, they should be entered with with quotes around 
that item. For example: 
 
python sqema.py rm_rows -in ~/Desktop/Krill_eDNA.csv -b names -

rm_names Thysanoessa ‘Euphausia superba’ 

 
would remove OTUs named Thysanoessa or Euphausia superba from the table. 

 



1.6  sqema output 

 
Output from sqema is always to a directory. The default directory is 
‘sqema_output’ in the same directory as the main sqema scripts. To direct 
output to a different directory, use the -od command, like this: 

python sqema.py fit_SAD -in 

~/Dropbox/seqma_inputs/sqematest_1.csv -od 

~/Desktop/custom_sqema_output_directory/ 

 
By default, sqema will rename output files based on the input file. A timestamp is 
added and a description of what was done to make the new file. For example: 
 

python sqema.py fit_SAD -in sqematest_1.csv 

 
will produce file in the sqema_output directory that have times associated with 
them, and will report this in the command linewith something like this: 
 
File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-24-

25_fit_SAD.png 

 

File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-24-

25_fit_SAD.csv 

 

If a definitive filename and location are required, use the -od command for the 

directory, and the -of command for the desired filename. 

 
For example, 
 
python sqema.py bdiv_metrics 

 
Will analyse the default sqematest_1.csv file and write the result to the default 
sqema_output/ directory, as reported: 
 
File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-25-

16_bdiv_metrics.csv 

If you do it again shortly afterwards, a new file with a different timestamp is 

written: 

 
File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-26-

19_bdiv_metrics.csv 

 



This behaviour is useful if you want to test sqema functions, and not have files 
overwrite each other. 
 

If you want to send the output to another directory, use -od like this: 

 
python sqema.py bdiv_metrics -od ~/Desktop/seqma_biodiv_results/ 

 
Which will save a folder on the desktop called “sqema_biodiv_results” with a file 

in it with the default name of “biodiversity_metrics.csv”: 
 
File saved: 

/Users/273915i/Desktop/seqma_biodiv_results/sqematest_1_Thu, 30 

Jan 2025 16-26-59_bdiv_metrics.csv 

 
If you also want a specified name, for instance if you are feeding the output of 
sqema into another command, us the -of command: 

 
python sqema.py bdiv_metrics -od ~/Desktop/seqma_biodiv_results/ 
-of BD_table_1 

 

which will give the same folder with the results file called BD_table_1.csv in it. 
Note that the file extension is added automatically by sqema. 
  

 

1.7 sqema code 

 
Sqema is written in Python 3 and requires the following packages: 
 
scipy, version >=1.11 

numpy, version >=1.26 
matplotlib version >= 3.8 
pandas version >=2.1 
svg version >=1.5.0 
 

The source code is editable, of course, where default parameters are not as 
desried, or if new functions are to be included. The license under which the 
software is released allows modification and redistribution if credit for the original 
code is given. 
 

 
  



2. Sqema functions 

2.1 Fitting SAD models 

 
fit_SAD finds SAD models that are the best fit to eDNA metabarcoding read 

abundance data. Each fit of a model to the data requires: 
 

1. A specified transform of the data, if any.  

2. A metric for measuring the read abundance found in the dataset.  
3. An SAD model, to which SQEMA fits the parameters of so that the best fit 

to the data can be found, 
 
Fitting will fit multiple combinations of transform, metric, and model 

simultaneously and report how well each combination fits based on likelihood 
and the Akaike Information Criterion (Akaike 1974). 
 
 
The transforms implemented in sqema are: 
 

untransf is the untransformed data from the OTU table. This is the default value 
and means that the read counts are unmodified. 
 

arcsin_sqrt is an arcsine square root transform 
(https://en.wikipedia.org/wiki/Arcsine_distribution). 

 

expit_lim is an approximation of the expit transform (the inverse of a logit 
transform). Artificial limits set to avoid the requirement for an infinite distribution 
(https://en.wikipedia.org/wiki/Logistic_function). 
 

clr is the “central log ratio” transform. This transform is recommended for 
compositional data like eDNA metabarcoding results (Aitchison 1983; Gloor et 
al. 2017; Quinn et al. 2018). 
 
 
The metric implemented in sqema are: 

 

RRA is “relative read abundance” following the definition in (Deagle et al. 2019). 
This is the proportionalised read counts per sample. 
 

RwRRA is “R weighted RRA”. In this metric, a weighting applied to samples based 

on the species diversity (R) present in them. Samples with higher R are likely to 
have eDNA that provides a more comprehensive representation of the true 
biodiversity present in the environment. The weighting is implemented as: 
 

https://en.wikipedia.org/wiki/Arcsine_distribution
https://en.wikipedia.org/wiki/Logistic_function


RRA x R/maxR 
 

POO is “proportion of occurrence” as given in (Deagle et al. 2019). This is the 

floating point equivalent of “frequency of occurrence” which is often given as a 
percentage, so 50% FOO is o.5 POO. 
 

wPOO is “weighted proportion of occurrence” as given in (Deagle et al. 2019).  
 

 
The models implemented in sqema are: 
 

logser for the log-series model 
(https://en.wikipedia.org/wiki/Logarithmic_distribution) of SAD (Fisher, Corbet, 
and Williams 1943). 

 

lognorm for the lognormal distribution (https://en.wikipedia.org/wiki/Log-
normal_distribution) as a SAD (Preston 1948). 
 

geom for the geometric distribution 

(https://en.wikipedia.org/wiki/Geometric_distribution) used as a SAD. 
 

zipf for the Zipf distribution (https://en.wikipedia.org/wiki/Zipf%27s_law) (Zipf 
1935) used as a SAD. 
 

genpareto for the generalised Pareto distribution 
(https://en.wikipedia.org/wiki/Generalized_Pareto_distribution) for a SAD model. 
 

nbinom for the negative binomial distribution 
(https://en.wikipedia.org/wiki/Negative_binomial_distribution) (Rémond de 

Montmort, n.d.) used for a SAD. 
 

linear for a 1:1 relationship between the metric and biomass. Useful for the 
purposes of comparing un-fitted data with data fitted to the other models. 
 
 

Parameters: 
 
-in -in_file 

Type = str, default = 'test_1.csv’ 
-out -out_dir 

 Type = str, default='sqema_output' 
--ttr --test_transforms 

Type = choices = 'untransf','arcsin_sqrt','expit_lim', ‘clr’, default = 'untransf' 
Multiple choices as a comma separated list without spaces. 
Transforms are applied to the entire dataset before other calculations. 

https://en.wikipedia.org/wiki/Logarithmic_distribution
https://en.wikipedia.org/wiki/Geometric_distribution


-tme --test_metrics 

Type = choices=['RRA','RwRRA','POO','wPOO','PRD','PRA'],default='RRA' 

Metrics are assigned to each OTU in a sample based on calculations 
derived from read count abundance. Multiple choices as a comma 
separated list without spaces. 

-tmo --test_models 

Type = choices= ‘logser','zipf','genpareto','lognorm','geom','linear','nbinom' 
,default='logser'. Multiple choices as a comma separated list without 
spaces. 
A range of SAD models to test for fit to metabarcoding data. 

-gf --graph_format 

Type = choices=['.svg','.png','.jpg'],default='.png' 
Format for plotting the graphs. .svg for vector graphics, allowing editing in 
Inskcape (https://inkscape.org/) or similar software, .png and .jpg for 
raster files. 

-py --plot_yaxis 

Type = choices=['log','linear'],default='log',help=' 
The y-axis can be set to either a log or linear scale. 

 
The outputs of model fitting are a graphical representation of the best fitting 

models and a .csv file of the relevant data. 
 
 
Example 

python sqema.py fit_SAD -in sqematest_1.csv -tmo logser lognorm 

nbinom zipf -tme RRA 

 
This will fit four different SAD models to the default dataset sqematest_1.csv. 

The data is  
 

Result: 

 
This fit of the four specified SAD models is given in a .csv file as a table like this: 
 

Log 
likelihood Transform Metric Model Model parameters AIC 

Relative 
Likelihood 

-19.656604  untransf  RRA  logser  p: 0.9064239977079377; loc: 0.0;  43.3132076 0 

-23.219246  untransf  RRA 
 
lognorm 

 s: 1.578050229179029; loc: 0.9; scale: 
1.3817664886790468;  52.4384916 0.01043446 

-24.138099  untransf  RRA  nbinom  p: 3.0; n: 0.42633377435532227; loc: 0.0;  54.2761988 0.0041631 

-27.199475  untransf  RRA  zipf  a: 1.6391426973287038; loc: 0.0;  58.3989493 0.00052987 

  
 



This shows the likelihood of the models and AIC scores. The best-fitting model in 
this case is the logseries model. There is also a graphical representation of the fit 
shown below, which makes the logser fit appear the best option as well. 

 
 
 
Having determined that the logser is the best model, we could see if a different 
metric would improve the fit with a command like this 

sqema fit_SAD -in sqematest_1.csv -tmo logser -tme RRA PRA POO 

wPOO 

 

 



Just looking at the graphical output, it seems that RRA is the best option: 

 
 

With a logser model and RRA, we could check whether any data transforms are 

beneficial for the fit with this: 

 

python sqema.py fit_SAD -in sqematest_1.csv -tmo logser -tme RRA 

-ttr untransf arcsin_sqrt expit_lim 

 



The graph below shows that the untransformed data is a slightly better fit than 
expit or the arcsinsqrt transformed data, so it looks like the logseries model with 
RRA as the metric and untransformed data is the best option for quantification.  

 

 



However, it is possible to check all implemented combinations of model, metric, 

and transform. This command: 

python sqema.py fit_SAD -tmo logser lognorm nbinom zipf 

genpareto geom -tme RRA RwRRA PRA PRD POO wPOO -ttr untransf 

arcsin_sqrt expit_lim clr 

 
will test the default sqematest_1.csv file for all combinations of these. This 
analysis shows that it is possible to find a better-fitting model, with the tabulated 
results showing that the geometric model with R-weighted relative read 
abundance and no data transforms is the closest fit: 
 

 
Log 
likelihood Transform Metric Model Model parameters AIC Relative Likelihood 

-
12.962496  untransf  RwRRA  geom  p: 0.2422414423551688; loc: 0.0;  29.9249916 0 

-
13.051822  untransf  RRA  geom  p: 0.245742631346948; loc: 0.0;  30.1036439 0.91454724 

-
14.175833  untransf  RwRRA  nbinom  p: 2.0; n: 0.3263703311000005; loc: 0.0;  34.3516661 0.10933516 

-
14.763267  untransf  RRA 

 
genpareto 

 c: 0.15724241630382177; loc: 0.9; 
scale: 2.683066415350518;  35.5265335 0.0607632 

-
15.010469 

 
arcsin_sqrt  RRA  nbinom  p: 2.0; n: 0.3002011987366431; loc: 0.0;  36.0209378 0.04745501 

-
15.577307  untransf  RwRRA 

 
genpareto 

 c: 0.23965940562780455; loc: 0.9; 
scale: 2.4951633077029;  37.1546144 0.026922 

-
16.565665  expit_lim  POO  nbinom  p: 3.0; n: 0.3586392096453717; loc: 0.0;  39.1313292 0.01002003 

-
16.983558  expit_lim  RRA  nbinom 

 p: 2.0; n: 0.28728813284136184; loc: 
0.0;  39.9671168 0.00659751 

-18.42871 
 
arcsin_sqrt  RRA 

 
genpareto 

 c: 0.11315313454467357; loc: 0.9; 
scale: 3.5228406616198225;  41.2691017 0.00344079 

-
18.634551 

 
arcsin_sqrt  RRA  geom  p: 0.2057931015146118; loc: 0.0;  42.8574209 0.0015551 

-
18.886665 

 
arcsin_sqrt  RRA  lognorm 

 s: 0.9326284037893275; loc: 
0.3036024447730369; scale: 
2.950290452003355;  43.0131639 0.0014386 

-
19.204554  expit_lim  RRA 

 
genpareto 

 c: 0.0849517163793254; loc: 0.9; scale: 
3.7468620195765223;  43.5931734 0.00107645 

-
19.506582  untransf  RRA  logser  p: 0.905518099716806; loc: 0.0;  43.7733304 0.00098372 

-
19.796587  untransf  RwRRA  logser  p: 0.9071150408653158; loc: 0.0;  44.4091075 0.00071584 

 
 
 
 

And the graphical results are: 

 



 

 

… although they are hard to interpret with so many curves on one graph. The 
effect of R-weighting RRA scores is very minor, so there could be an argument 
for choosing RRA alone as reducing the number of data manipulations may be 
wise. Ultimately, it is up to the user to decide and justify their choices. 

 

  



2.2 Estimating relative species abundance 

quantify uses an SAD model with parameters estimated from an OTU table to 

estimate the relative abundance of the OTUs in the table. This takes SAD model 
parameters derived from the fitting command (section 2.1) or determined by 
other means. The outputs of model fitting are two graphical representation of 
the best fitting models and a .csv file including all of the relevant data. 

 
-in -in_file 

Type = str, default = 'test_1.csv’ 
-out -out_dir 

 Type = str, default='sqema_output' 
-tr –transform 

Type = choices = 'untransf','arcsin_sqrt','expit_lim', ‘clr’, default = 'untransf' 

A single choice is required. 
Transforms are applied to the entire dataset before other calculations. 

-me --metric, 

Type = choices=['RRA','RwRRA','POO','wPOO','PRD','PRA'],default='RRA' 
Metrics are assigned to each OTU in a sample based on calculations 

derived from read count abundance. A single choice is required. 
-mo –model  

Type = choices= ‘logser','zipf','genpareto','lognorm','geom','linear','nbinom' 
,default='logser'. A single choice is required. 

The SAD models relate the rank abundance of species to their real 
abundance. 

-pr --pseudoreplicates 

Type = int, default = 500 

The number of pseudoreplicate datasets generated for estimating 
confidence in rank differences. 

-mfp --max_fit_plot 

Type = int, default = 12 
Maximum number of the best fitted SADs to plot 

-p --p_value 

Type=float, default=0.05 
The p value for Brunner-Munzel tests for rank differences assessed on 
pseudoreplicated data. 

 
 
Example: 
 
Using the parameters that the fit_SAD command suggested are the best fit to 

the default sqematest_1.csv data, we use this command:  

python sqema.py quantify --model geom --metric RwRRA 

 
Result: 



 
This gives two graphs and one .csv table as output. The first graph shows the 
results of bootstrap resampling the data. The range of estimated relative 

abundance values is shown as a box-plot.  

 
 
The y axis is a log scale by default, so the range of values appears larger for the 
low abundance species. To see the same result on a linear plot, use the -py 
linear command like this 

 
python sqema.py quantify --model geom --metric RwRRA -py linear 

 
which will give: 



 
 
Which can be easier to interpret. The range of bootstrap values is used to 
decide whether species/OTUs have genuinely different abundance ranks. A 

Brunel-Munzer test is used to determine whether there is a significant difference 
in the ranges of values found in the pseudoreplicated data. If there is, then ranks 
are assigned based on the mean values. If not, ranks are tied and several OTUs 
can have a shared rank. 
 

The graphical result of this with a log axis is useful for seeing the ranks in the lower 
abundance species. Where a rank is tied, a tilde indicates this on the x-axis. 



 
The same graph with a linear y-axis looks like this: 



 
Which makes it easier to imagine real proportional species abundances. As is 
commonly-seen, most of the OTUs are low in abundance and a few OTUs 
dominate the community. 

 

  



2.3 OTU table column/sample modification 

rm_columns uses rules to remove samples/columns from an OTU table. The OTU 

table is then written to a new .csv file. 
 
-b --basis  

Type = choices= names, low_reads, richness, default = 'names'. 
Defines the basis for removing samples, either by names, read counts, or 
OTU richness. 

-rn --rm_names 

Type = str, default = '' 
If “names” is specified for –basis, the names of samples (columns) to 

remove from an OTU table. 
-minR --minimum_R 

Type = int, default = 2 

Minimum OTU richness for samples in an OTU table to be retained. 
-minReads --minimum_reads 

Type = int, default = 5  
Minimum number of reads for samples in an OTU table to be retained. 

 

Example_1: 

 
To remove all samples in the OTU table with fewer than 100 reads from the 
default dataset, this is the command: 
 

python sqema.py rm_columns -b low_reads -minReads 100 

 

Result_1: 

 

This removes all of the samples containing less than 100 reads and reports which 

ones: 
 
Low read samples removed: 

100198,100210,100213,100219,100234,100257,100269,100270,100272,1

00277,100279,100282,100285,100287,100290,100291,100297,100304,10

0309, 

 

 

Example_2: 

 

To remove all samples in the OTU table that have only one OTU, do this:  
 



python sqema.py rm_columns -b richness -minR 2 -od ~/Desktop/ -

of sqematest_R>1 

 

 

This identifies all the samples with only one OTU and deletes them: 
 
Low-R samples removed: 

100198,100204,100213,100219,100257,100260,100262,100266,100271,1

00272,100279,100282,100285,100287,100290,100291,100293,100297,10

0306, 

 

and saves a file on the Desktop called sqematest_R>1.csv with the results in it. 
 

 

filter_keep takes the name of OTUs present in one specified column, then 

keeps all OTUs/rows that have these. This is useful for filtering OTU tables so that 
only one taxonomic group is retained. For example, if you have metabarcoding 
data from a primer set that amplifies from all Eukarya, but want to analyse only 
results for two phyla, specify the phyla of interest with -fi, and the column 

where these phyla are listed with -fc. 

 
-fi --filter_items 

Type = str, default = '' 
Names as a spaceseparated list to be used as a filter for keeping rows in 
an OTU table. 

-fc --filter_column 

Type= str default =  ‘’ 
Title of column containing filter for losing rows in an OTU table. 

 

 Example: 

 
An OTU table with full taxonomic information and some sequencing information 
is included with sqema, SharkBay16S_HP_1.csv. To focus on analysis of just one 
taxonomic group, for example Actinopteri (bony fish), this command will remove 
all other OTUs:  

 
python sqema.py filter_keep -in SharkBay16S_HP_1.csv -fc class -

fi Actinopteri  

 

Result: 

 



This removes all OTUs that don’t belong to class Actinopteri as shown in the 
“class” column of the datasheet from the lab. The new .csv file is written to the 
default seqma_output/ directory. 

 
 
filter_lose does the opposite of filter_keep. This can be used to remove 

taxonomic groups that are not to be analysed from an OTU table. An example 
application might be to reduce OTUs that are off-target amplifications 
commonly found with eDNA metabarcoding. 

 
-fi --filter_items 

Type = str, default = '' (empty string) 
Names as a space-separated list to be used as a filter for removing rows in 
an OTU table. 

-fc --filter_column 

Type= str default =  ‘’ 
Title of column containing filter for losing rows in an OTU table. 

 

Example: 

 

The file SharkBay16S_HP_1.csv was generated with a metabarcoding primer set 

targeting fish, but it also amplifies some bacterial and archaeal DNA. To remove 
bacterial and archaeal OTUs, use the - filter_lose command: 

 
python sqema.py filter_lose -in SharkBay16S_HP_1.csv -fc domain 

-fi Bacteria Archaea   

 

Result: 

A new .csv file is written to the seqma_output default folder that only has OTUs 
from Eukaryota retained. 
 

 
merge_columns combines names across columns and places them in one 

column. This is used for editing OTU tables with multi-column taxonomies when it 
is useful to retain several levels of taxonomic information. 

 
 
-mt --merge_titles 

Type=str,default 

Name for column/samples to be combined when merging. 
-nn --new_name 

Type=str,default 
Name for new column/sample when combined. 



 

Example: 

 

This can be used for combining OTU names into a single column when they are 
presented in separate columns for providing taxonomic and technical information. As 

an example, the SharkBay16S_HP_1.csv file contains genus, species and OTU 
information that could be combined to make a one-column name. This command 
does this: 

 
python sqema.py merge_columns -in SharkBay16S_HP_1.csv -mt genus 

species zotu -nn GenSpZOTU   

 

Result: 

A new .csv file is written where the first column contains genus:species:OTU 
names concatenated. The other columns could be removed using rm_columns 

to make the OTU table useable for sqema quantitative analyses.  
 

  



2.4 OTU table row/OTU modification 

rm_rows removes OTUs as a whole row from an OTU table. 

 
-b --basis  

Type = choices= names, POO, low_quant, default = 'names'. 

Defines the basis for removing samples, either by names, proportion of 
occurrence in the OTU table, or low relative quantification based on an 
SAD. 

-rn --rm_names 

Type = str, default = '' 
If “names” is specified for –basis, the names of OTUs (rows) to remove 

from an OTU table. 
-pt --POO_threshold 

Type = float, default = 0.005 

Minimum POO for OTUs to be retained in the OTU table. 
-qt -quant_threshold 

Type = float, default = 0.001 
Minimum estimated biomass proportion for an OTU to be retained. 

 

Example: 

 
To remove OTUs that are present at less than 1% estimated proportional quantity 
from the default datafile, with default parameters for an SAD, this is the 
command: 

 
python sqema.py rm_rows -b low_quant -qt 0.01 

 

Result: 

 
This saves a reduced .csv OTU table file in the default directory and reports 
which OTUs were removed: 
 
Based on SAD model: logser 

Metric: RRA 

Transform: untransf 

With a threshold for inclusion of > 0.01 estimated total 

proportion in the OTU table 

OTUs removed: Aiptasiogeton eruptaurantia,Obeliida sp.3,Obelia 

sp.1,Edwardsia longicornis,Bougainvillia sp. ,Coryne 

eximia,Stauridiosarsia marii,Leuckartiara cf. octonema PS-

2018,Turritopsis sp.1,Turritopsis dohrnii,Obeliida 



sp.2,Eudendrium carneum,Zanclea migottoi,Clytia sp.2,Zancleopsis 

dichotoma,Anthopleura elegantissima, 

 

 
merge_otus merges two or more rows of an OTU table. Reads are summed for 

each sample. The names of the OTUs are combined and renamed with the –
new_OTU_name command, or if combined automatically if a new name is not 

specified. This command is useful for merging multiple OTUs from one species 

into a single OTU representing all DNA variants in the species.  

 
-mt --merge_titles 

Type = str, default = ’’ (empty string) 
Name for rows/OTUs to be combined when merging. 

-nn --new_OTU_name 

Type = str, default = ’’ (empty string) 
Name for a new row/OTUs when merging columns. 

-fc --filter_column 

Type= str default =  ‘’ 

Title of column containing filter for merging rows in an OTU table. If -fc is 

not specified, sqema will default to the first column in the OTU table.  
 

Example: 

python sqema.py merge_otus -mt Clytia_sp.1 Clytia_sp.2 -nn 

Clytia_sp 

Result: 

 
This combines two OTUs in the default sqematest_t.csv file. The output to the 

terminal is: 
 
OTUs Clytia sp.1, Clytia sp.2,  combined into new OTU Clytia_sp 

with reads summed for each sample 

 

The new .csv file has the merged OTU at the end of the table, and Clytia sp. 1 
and Clytia sp. 2 have been removed. Their read counts were summed for each 
sample and entered in the same sample columns in Clytia_all. Note that Clytia 

gracilis is retained as a separate OTU as it was not specified that it should be 
combined. 
 

ScientificName 100162 100163 100164 100165 
Campanularia hincksii 1496 5075 53 1502 
Podocorynoides minima 1024 565 0 94 



Turritopsis rubra 0 0 0 0 
Bougainvillia muscus 901 849 189 5 
Aequorea macrodactyla 0 0 0 0 
Orthopyxis crenata 136 66 63 0 
Obelia dichotoma 59 184 177 0 
Clytia gracilis 0 0 0 0 
Actiniaria sp. 0 309 0 0 
Liriope tetraphylla 0 0 0 0 
Aiptasiogeton eruptaurantia 0 0 0 0 
Coryne eximia 142 0 0 5 
Bougainvillia sp.  0 0 0 456 
Obelia sp.1 47 231 33 0 
Obeliida sp.2 0 0 0 0 
Obeliida sp.3 0 0 0 0 
Turritopsis dohrnii 0 0 0 0 
Turritopsis sp.1 85 0 0 0 
Edwardsia longicornis 0 0 0 0 
Eudendrium carneum 0 0 0 0 
Stauridiosarsia marii 0 0 0 0 
Leuckartiara cf. octonema PS-
2018 0 0 0 0 
Zanclea migottoi 0 0 0 0 
Anthopleura elegantissima 0 0 0 5 
Zancleopsis dichotoma 0 0 0 0 
Clytia_sp 0 0 0 0 

 
 

 

 
merge_otus_auto merges rows of an OTU table that share an entry in column -

-filter_column. This is useful for grouping multiple ZOTUs/ASVs to species 

level, for example. In this case, given an OTU table with a column “species”, 
enter that title via -fc. The function will search for all shared species names in the 
column, and merge the rows that have them, summing reads in the numerical 
columns. 

 
-fc --filter_column 

Type= str default =  ‘’ 

Title of column containing filter for merging rows in an OTU table. If -fc is 

not specified, sqema will default to the first column in the OTU table.  
 



Example: 

 
Python sqema.py merge_otus_auto -in SharkBay16S_EG_1.csv -fc 

species -of SharkBay16S_EG_1_species_merged 

 

  



2.5 Simulation 

sim_samples creates a simulated eDNA metabarcoding dataset. This is useful 

for experimental planning, or for exploring the value of using the SAD fitting that 
SQEMA implements for quantification in eDNA metabarcoding data. This 
function takes a user-defined number of species from a distribution defined by 
the user. Sampling is repeated to simulate multiple random samples from the 

same population. Patchiness of eDNA detection is simulated by a user-defined 
parameter. Results are written to a .csv formatted file as an OTU table. A 
separate file is written with dispersal metrics recorded for the simulated dataset. 
These can be used to compare dispersion among distributions and might be 
helpful as a basis for making a simulated OTU table with dispersion of values from 

the SAD similar to that seen in real data (see section 2.4 – dispersion metrics). 

Parameters: 

-sp --shape_par   

type = float, default = 0.9  

Shape metric for defining an SAD model of expected counts. 
-pch -–patchiness   

type = float, default = 0.1 
Proportion of OTUs in a simulated sample lost due to eDNA patchiness. 

-simR --sim_richness  

type = int, default = 25  
Number of species in a simulated community. 

-simC --sim_counts  

type = int, default = 10000 
Counts (sequencing reads) per sample in a simulated community. 

-simN --sim_samples   

type= int, default = 25 

Number of samples for an OTU table derived from a simulated community. 
 

Example: 

python sqema.py sim_samples -simR 50 -simN 100 -simC 30000 -sp 

0.88 -pch 0.2  

 

Result: 

 
One .csv OTU table with 50 species, 100 samples, 3000 reads per sample, a 0.2 

proportion loss of items per sample (the zeroes are largely from this. This is a 
portion of the table: 
 
 



 
 

 Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 
Species_1 12413 12434 0 12218 12385 
Species_2 5585 5435 17963 0 0 
Species_3 3217 3215 0 8707 8799 
Species_4 2175 2084 5331 2130 2067 
Species_5 1523 1511 1476 1547 1512 
Species_6 1059 1141 0 1156 1121 
Species_7 845 849 1965 0 0 
Species_8 553 0 651 1470 1443 
Species_9 478 1141 469 0 0 
Species_10 384 368 0 923 502 

 

 
A .csv file is also produced showing measures of dispersion for the OTU table, a 
portion of which looks like this: 
 
 

Measures of dispersion for simulated OTU table   

Species richness 50     

Samples 100     
Counts per 
sample 30000     

      

Dataset means     

mean MAE 220.04     

mean MSE 1638972.94     

mean RMSD 871.65227     

      

Sample dispersions     

 1 2 3 4 5 
MAE 523.183673 532.142857 70.4285714 65.7346939 54.3877551 
MSE 6323072.12 6311362.59 36395.3673 40064.5102 30861.6122 
RMSD 2514.57196 2512.24254 190.775699 200.161211 175.674734 

  



2.6 Community comparisons 

 

venn draws a Venn diagram for overlap and independence of OTUs in two 

communities. The input is a pair of .csv files with the title of a column of names  

(the same in both files) indicated by the -cn parameter. A scaling factor for the 

Venn diagrams can be used to adjust the output where more extreme values 

cause the text to not fit the overlaps well. The default value of 2 is generally 

effective, 1 works for for small R values, and > 2 if there is extensive overlap 

between communities. The value is decimal and changest eh size of the overall 

graph, while the text stays the same. The graph indicates counts of OTUs in bold, 

and proportions in normal type under that. 

 

The file output is .svg only and can be determined with the -od and -of 

parameters, or the default file will go to the sqema_output folder. 

 

Parameters: 

-cf1 --comparison_file_1   

type = str, default = none 
-cf2 --comparison_file_2   

type = str, default = none 
-cn --comparison_names   

type = string, default = none 
-gs --graph_scale 

type=float, default = 2 

Example: 

python3 sqema.py venn -cf1 python sqema.py venn -cf1 

~/Sqema/SB_data/SharkBay16S_EG_11.csv -cf2 

~/Sqema/SB_data/SharkBay16S_HP_8.csv -cn GenSpZOTU 

 

Result: 

 

This plot is produced: 



 
 

 

… which is saved in the sqema_output/ directory. These plots use squares with 

sizes proportional to the species richness in each community, and an overlap 

that is proportional to that as well.  

 

 

arch_plot draws a diagram that compares the abundance of species in two 

communities and links abundance between species that occur in both, like this:  

 



where items unique to each community have a red or blue indication and the 

shared items are grey and a line links their entry for each community. The inputs 

for this are two .csv files with columns of OTU names and their estimated 

abundance proportions in them, as is produced by the output of quantify. The 

names of the headers for the columns should be the same in each file, and 

have to be specified in the input for this function. 

 

Parameters: 

-cf1 --comparison_file_1   

type = str, default = none 
-cf2 --comparison_file_2   

type = str, default = none 
-cn --comparison_names   

type = float, default = 0.0 
-cp --comparison_proportions   

type = float, default = 0.0 
-qt --quant_threshold   

type = float, default = 0.0  



Example: 

python sqema.py arch_plot -cf1 

~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_EG_quantalluvial.csv 

-cf2 

~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_HP_quantalluvial.csv 

-cn Names -cp Proportions -qt 0.01 

 

Result: 

 

This produces a plot of fish species in two adjacent communities in the Shark Bay 

area of Western Australia, with only species present at greater than 1% of the 

total included: 

 

 
 

 

 

 

  



2.7 Dispersion metrics 

 
Measures of dispersal of data from an underlying distribution are useful for 
measuring the fit of real or simulated data to a model.  
 

dispersions is the base command. This takes an OTU table as input, as well as 

model parameters for an SAD. The degree of dispersion on the data around the 
expected values for the SAD is measured and reported as: 
 
MAE mean absolute error (https://en.wikipedia.org/wiki/Mean_absolute_error) 
MSE mean squared error (https://en.wikipedia.org/wiki/Mean_squared_error) 

RMSD root mean squared deviation 
(https://en.wikipedia.org/wiki/Root_mean_square_deviation) 
 
 
-mo --model 

Type=choices, options = logser, zipf, genpareto, lognorm , geom , linear, 
nbinom, default = logser  
The SAD model used to determine expected counts 

-sp --shape_par  

type=float, default=0. 
Defininesthe shape of an SAD to determine expected counts. 

 

Example: 

python sqema.py dispersions -in sqematest_1.csv -mo zipf -sp 3 

 

Result: 

 
A .csv file is written giving measures of dispersion for the OTU table based on the 

specified SAD, a portion of which looks like this: 
 
 
 

Model: zipf 
Shape 
parameters: 3  

Cumulative frequency 
distribution: 
0.8319073725807077 0.93589579 0.96670718 0.97970573 0.98636099 

     

OTU table mean dispersions   

     

https://en.wikipedia.org/wiki/Root_mean_square_deviation


mean MAE 48.9399038    

mean MSE 81987.5871    

mean RMSD 147.783538    

     

Sample dispersions    

     

Sample 100162 100163 100164 100165 
MAE 146.807692 114.038462 34.6153846 35.3461538 
MSE 161452.038 68938.9615 8194.84615 10543.9615 
RMSD 401.810949 262.5623 90.5253896 102.683794 

 
 
 

 
  



2.8 OTU table biodiversity metrics 

bdiv_metrics calculates a range of metrics and standard ecological indices 

from the OTU table (https://en.wikipedia.org/wiki/Diversity_index). The metrics 
are written to a CSV file with the following lines: 
 

Sample names - the names of the samples in the first row of the columns 

of the .csv formatted OTU table input file. 

N reads - the total count of sequence reads in each sample of the OTU 
table input file. 

Species richness (R or S) - the number of unique OTUs in the sample. 

Simpson index (λ) - the probability that any two sequence reads are from 

the same species (Simpson 1949). 

Gini-Simpson index (1-λ) - the probability of encounter of two species 
present in a samples (Hurlbert 1971). 

Shannon index (H’) - index representing the chance that an OTU in a 
sample will be novel rather than previously encountered (Shannon 1948). 

Berger-Parker index - the proportion of sample reads for the most 
abundant OTU. 

Hill D0 - value of D from the General Equation of Diversity with q set to 0 - 
identical to Species Richness (Alberdi and Gilbert 2019). 

Hill D1 - value of D from the General Equation of Diversity with q set to 1 - 

equal to 1/Simpson index. 

Hill D2 - value of D from the General Equation of Diversity with q set to 2 -
equal to exp (Shannon Index). 
 

Example: 

python sqema.py bdiv_metrics -in sqematest_1.csv 

 

Result: 

 
A .csv file is written that looks like this: 

 
 

Sample 100162 100163 100164 100165 100166 

N reads 3890 3890 7279 7279 515 

Richness (R) 8 7 5 6 2 

Simpson index (lambda) 0.27424931 0.50926291 0.28246583 0.57878464 0.81440544 

Gini-Simpson index 0.72575069 0.49073709 0.71753417 0.42121536 0.18559456 
Shannon-Weaver 
diversity (H') 1.49614544 1.07969831 1.40203797 0.74970922 0.33273184 



Berger-Parker index 0.38457584 0.69721116 0.36699029 0.72665699 0.89648799 

Hill D0 8 7 5 6 2 

Hill D1 4.46444736 2.94379131 4.06347279 2.11638452 1.39477322 

Hill D2 3.64631727 1.96362229 3.54025121 1.72775836 1.22788963 

 
 
 

 
 
 
 
  



3.0 Example workflow 

 
Shark Bay is a large, shallow feature on the coast of Western Australia. It features 
a strong salinity gradient from hypersaline waters in Hamelin Pool at the furthest 
point from the sea, grading down to globally average marine salinity at the 

ocean mouth of the bay.  
 
 

  
 
 

 
 
eDNA metabarcoding data from two regions of Shark Bay, Hamelin Pool and 
the Eastern Gulf, are included as sample data. These are included with sqema in 
files: 

 

Hamelin 

Pool 

Eastern 

Gulf 



 
SharkBay16S_HP_1.csv 

SharkBay16S_EG_1.csv 

 
 
Here is an example workflow for the question: 

 

What differences are there between the most abundant fish species found in 

Hamelin Pool and in the Eastern Gulf of Shark Bay? 

 

We will use the eDNA metabarcoding data, which was collected by sampling 
the sea-bottom biofilms with paint rollers on a pole (Jarman et al. 2024). This 
sampling method produces a good overall assessment of fish biodiversity in 
these conditions, with many benthic species detected that water column 
sampling does not (Richards et al., submitted).  

 
To start, we will filter the file to include only data from fish. The classes Actinopteri 
and Chondrichthyes contain all the fish in the data, so we will use the 
filter_keep command to only retain OTUs from that class. The new file will be 

written to a folder “SB_data” on the Desktop: 
 
python sqema.py filter_keep -in SharkBay16S_HP_1.csv -fc class -

fi Actinopteri Chondrichthyes -od ~/Desktop/SB_data/ -of 

SharkBay16S_HP_2 

 

Each OTU needs a unique name in one column, so combining the genus, 

species, and name columns is a good option with: 

 

python sqema.py merge_columns -in 

~/Desktop/SB_data/SharkBay16S_HP_2.csv -mt genus species OTU -nn 

GenSpZOTU -od ~/Desktop/SB_data/ -of SharkBay16S_HP_3 

 

Which loads the file from the folder made in step 1. The next step is to remove 
columns that we won’t need for the analyses: 
 

python sqema.py rm_columns -rn domain phylum class order family 

numberOfUnq_BlastHits -in ~/Desktop/SB_data/SharkBay16S_HP_3.csv 

-od ~/Desktop/SB_data/ -of SharkBay16S_HP_4 

 

At this point, the file SharkBay16S_HP_4.csv is formatted so that it could be used 

for sqema quantitative analyses, as an OTU table with the first column 

containing OTU names, and the first row containing sample names, and it looks 

like this: 



 

GenSpZOTU E_442_001 E_442_002 E_442_003 E_442_004 
Xyrichtys:Xyrichtys_novacula:Zotu2 0 0 0 0 
Pelates:Pelates_quadrilineatus:Zotu5 1 2 0 2 
Monacanthus:Monacanthus_chinensis:Zotu6 0 5 2 1 
Pelates:Pelates_octolineatus:Zotu8 1 9 1 0 
Siganus:dropped:Zotu9 0 0 1 6 
Leiopotherapon:Leiopotherapon_aheneus:Zotu11 0 5 0 11 
Gerres:dropped:Zotu14 2 5 0 6 
Rhabdosargus:Rhabdosargus_sarba:Zotu21 6 11 9 3 

 

 

We should remove samples with low total read numbers for the fish groups of 

interest so that we don’t bias the results too much, which we can do with the 

command: 

 

python sqema.py rm_columns -b low_reads -minReads 200 -in 

~/Desktop/SB_data/SharkBay16S_HP_4.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_5 

 

 

Which removes any sample with less than 200 reads from the OTU table. At this 

point, the data is ZOTUs and there are three putative species represented by 

multiple ZOTUs in the data: 

 

Choerodon:Choerodon_cauteroma:Zotu56 
Choerodon:Choerodon_cephalotes:Zotu63 
Choerodon:Choerodon_schoenleinii:Zotu103 
Choerodon:Choerodon_cauteroma:Zotu120 

 

 

Sardinella:dropped:Zotu74 
Sardinella:dropped:Zotu76 

 

 

Pelates:Pelates_octolineatus:Zotu236 
Pelates:Pelates_octolineatus:Zotu2302 
Pelates:Pelates_octolineatus:Zotu31462 
Pelates:Pelates_octolineatus:Zotu33495 

 



 

For a stringent analysis, these should be combined so that we get as close to 

species-level as possible.  

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_HP_5.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_6 -mt Choerodon:Choerodon_cauteroma:Zotu56 

Choerodon:Choerodon_cauteroma:Zotu63 

Choerodon:Choerodon_cauteroma:Zotu103 

Choerodon:Choerodon_cauteroma:Zotu120 

Choerodon:Choerodon_cauteroma:Zotu74 

Choerodon:Choerodon_cauteroma:Zotu76 -nn 

Choerodon_cauteroma_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_HP_6.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_7 -mt Sardinella:dropped:Zotu74 

Sardinella:dropped:Zotu76 -nn Sardinella_sp_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_HP_7.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_8 -mt Pelates:Pelates_octolineatus:Zotu236 

Pelates:Pelates_octolineatus:Zotu2302 

Pelates:Pelates_octolineatus:Zotu31462 

Pelates:Pelates_octolineatus:Zotu33495 -nn 

Pelates_octolineatus_allZOTUs 

 

 

The file SharkBay16S_HP_8.csv now has one column of taxonomic information, 

which corresponds to species as closely as we can make it. To find a good SAD 
model for the dataset, this command is used: 
 
 
python sqema.py fit_SAD -in 

~/Desktop/SB_data/SharkBay16S_HP_8.csv -od ~/Desktop/SB_data/ 

 
which shows that the negative binomial model with relative read abundance is 
the best fitting option tested: 



  



Now that there is a model, we can use it to make quantitative assessments with: 

 
python sqema.py quantify -mo nbinom -py linear -in 

~/Desktop/SB_data/SharkBay16S_HP_8.csv -od ~/Desktop/SB_data/ 

 
  



Following the same steps for the Eastern Gulf samples up to EG_5, we get an 
OTU table with these duplicates: 
 

Sardinella:dropped:Zotu74 
Sardinella:dropped:Zotu76 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu9363 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684 
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684 
Hyporhamphus:Hyporhamphus_quoyi:Zotu8696 
Hyporhamphus:Hyporhamphus_quoyi:Zotu8798 
Choerodon:Choerodon_cyanodus:Zotu28 
Choerodon:Choerodon_cyanodus:Zotu28 
Choerodon:Choerodon_schoenleinii:Zotu103 
Choerodon:Choerodon_cauteroma:Zotu120 
Choerodon:Choerodon_cauteroma:Zotu56 
Choerodon:Choerodon_cephalotes:Zotu63 
Pelates:Pelates_octolineatus:Zotu23729 
Pelates:Pelates_octolineatus:Zotu31462 
Pelates:Pelates_octolineatus:Zotu33495 
Pelates:Pelates_octolineatus:Zotu236 
Pelates:Pelates_octolineatus:Zotu8 
Pelates:Pelates_octolineatus:Zotu236 
Siganus:dropped:Zotu5100 
Siganus:dropped:Zotu18538 
Siganus:dropped:Zotu24429 
Siganus:dropped:Zotu26039 
Sillago:dropped:Zotu129 
Sillago:dropped:Zotu140 

 
 

To combine these Multi-ZOTU groups into single putative OTUs, we can use the 
series of commands below: 

 
Sqema merge_otus -in ~/Desktop/SB_data/SharkBay16S_EG_5.csv -od 

~/Desktop/SB_data/ -of SharkBay16S_EG_6 -mt 



Sardinella:dropped:Zotu74 Sardinella:dropped:Zotu76 -nn 

Sardinella_sp_allZOTUs 

 
 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_EG_6.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_7 -mt Atherinomorus:Atherinomorus_sp._pinguis-

1:Zotu12852 Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu9363 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu21345 

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu24 -nn 

Atherinomorus:Atherinomorus_sp_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_EG_7.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_8 -mt Hyporhamphus:Hyporhamphus_quoyi:Zotu8696 

Hyporhamphus:Hyporhamphus_quoyi:Zotu8798 -nn 

Hyporhamphus:Hyporhamphus__sp_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_EG_8.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_9 -mt Pelates:Pelates_octolineatus:Zotu23729 

Pelates:Pelates_octolineatus:Zotu31462 

Pelates:Pelates_octolineatus:Zotu33495 

Pelates:Pelates_octolineatus:Zotu236 

Pelates:Pelates_octolineatus:Zotu8 

Pelates:Pelates_octolineatus:Zotu236 -nn 

Pelates_octolineatus_sp_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_EG_9.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_10 -mt Siganus:dropped:Zotu5100 



Siganus:dropped:Zotu18538 Siganus:dropped:Zotu24429 

Siganus:dropped:Zotu26039 -nn Siganus_sp_allZOTUs 

 

 

python sqema.py merge_otus -in 

~/Desktop/SB_data/SharkBay16S_EG_10.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_11 -mt Sillago:dropped:Zotu129 

Sillago:dropped:Zotu140 -nn Silago_sp_allZOTUs 

 

File SharkBay16S_EG_11.csv is now equivalent to SharkBay16S_HP_8.csv and 

the same quantitative analyses can be done with it, e.g: 
 
python sqema.py quantify -mo nbinom -py linear -in 

~/Desktop/SB_data/SharkBay16S_EG_11.csv -od ~/Desktop/SB_data/ 

 

 

If we compare the .csv file quantitative, there are some overlaps in fish species, 
but the ten most abundant fish are completely different. These comprise 
approximately 60% of the estimated biomass in each community: 
 

 

EG_OTUs ranked by abundance 

EG Relative 
abundance 
with means for 
tied ranks HP_OTUs ranked by abundance 

HP_Relative 
abundance 
with means 
for tied 
ranks 

Pelates:Pelates_quadrilineatus:Zotu5 0.094014847 Rhabdosargus:Rhabdosargus_sarba:Zotu21 0.13638101 
Siganus:dropped:Zotu9 0.084138546 Monacanthus:Monacanthus_chinensis:Zotu6 0.11416102 

Pelates_octolineatus_sp_allZOTUs 0.075299754 Leiopotherapon:Leiopotherapon_aheneus:Zotu11 0.09556124 
Gerres:dropped:Zotu14 0.067389482 Pelates:Pelates_octolineatus:Zotu8 0.07999184 
Atherinomorus:Atherinomorus_sp._pinguis-
1:Zotu24 0.060310187 Pelates:Pelates_quadrilineatus:Zotu5 0.06695911 
Lethrinus:Lethrinus_laticaudis:Zotu38 0.053974575 Leiopotherapon:Leiopotherapon_aheneus:Zotu45 0.05148376 

Upeneus:Upeneus_tragula:Zotu25 0.045767316 Xyrichtys:Xyrichtys_novacula:Zotu2 0.05148376 

Sardinella_sp_allZOTUs 0.045767316 Sillago:dropped:Zotu129 0.03607432 

Upeneus:Upeneus_tragula:Zotu29 0.038688768 Monacanthus:Monacanthus_chinensis:Zotu35 0.03607432 
Sillago:dropped:Zotu37 0.034624496 Upeneus:Upeneus_tragula:Zotu29 0.02751879 

 

 



 
The two fish communities are unsurprisingly different in composition, being in 
completely different salinity zones despite being close to each other. However, 

the extent of the difference would be masked if only incidence data was used, 
which is common in eDNA studies. There Venn diagram below shows that almost 
half of the species are shared, whereas the biomass composition is very 
different. 
 
The diagram is generated by: 

 
 
python sqema.py venn -cf1 ~/sqema/SB_data/SharkBay16S_EG_11.csv 

-cf2 ~/sqmea/SB_data/SharkBay16S_HP_8.csv -cn GenSpZOTU 



 

 

 

 
 

 

If we consider abundance, however, a more realistic picture of two separate 

fish communities can be seen. This command: 

 

python sqema.py arch_plot -cf1 

~/Desktop/SB_data/SharkBay16S_EG_11_quantify_scores.csv -cf2 

~/Desktop/SB_data/SharkBay16S_HP_8_quantify_scores.csv -cn 'OTUs 

ranked by abundance' -cp 'Estimated relative abundance' 

 

Produces a plot of the abundance of OTUs in both communities. Shared OTUs 

are shown in grey, with links between the entries in each community given as a 

diagonal line. OTUs unique to each community are indicated in red or blue, as 

shown here:



 
 

 

What this shows is that the communities are very different when abundance is 

considered. The high biomass species are quite different in each region, but in 

many cases the high biomass species from one community shows up as a low 

biomass species in the adjacent community, so the Venn diagram view of 

extensive community overlap based on incidence is misleading. 

 

 

  



4.0 Command list 

 

Base_functions are the only positional argument follows the “sqema” command 
 and tells it what to do. These do not require a “-“ or “--“. The options are:  
fit_SAD quantify bdiv_metrics dispersions sim_samples 

rm_columns rm_rows merge_columns filter_keep filter_lose 

merge_otus 

arch_plot Base function for generating a plot that compares the species 

abundance distribution for two sampled communities. 
-b --basis  

Defines the basis for removing samples in rm_column or rm_rows. 

bdiv_metrics Base function that generates a table of standard biodiversity  

metrics from an OTU table. 

dispersions Base function for measures of dispersal of data from an  

underlying distribution.  
-fc --filter_column 

Title of a column in an OTU table in merge_columns, filter_keep or 

filter_lose.. 

-fi --filter_items 

Names used as a filter of an OTU table in merge_columns merge_otus, 

filter_keep or filter_lose.. 

filter_keep Base function that that uses items specified by -fi in one column  

specified by -fc to retain OTUs, removing all others. 

filter_lose Base function that uses items specified by -fi in one column  

specified by -fc to remove OTUs from the dataset. 

fit_SAD Base function that fits SAD models to OTU table data. 
-gf --graph_format 

Format for graphs in quantify and fit_SAD. Options = svg png jpg 

-gs --graph_scale is a scaling factor for Venn diagrams. 
-in--in_file 

 Name and path of a .csv OTU table for analysis. 

merge_columns Base function for merging colums, which are renamed with -nn  

and defined by -mt. 

merge_otus Base function for merging OTUs, which are renamed with -nn and  

defined by -mt. 

merge_otus_auto Base function for merging OTUs based on common words in 

a column designated by -fc. 
-me --metric 

The metric to use for quantify. Options: RRA RwRRA POO wPOO PRA 
-mfp --max_fit_plot 

The maximum number of the best fitted SADs to plot with fit_SAD. 

-minR --minimum_R 



Minimum OTU richness for samples in an OTU table to be retained in 
rm_columns. 

-minReads --minimum_reads 

Minimum read counts for keeping samples in an OTU table in rm_columns. 
-mo --model 

The model to use for quantify. Options:  logser zipf genpareto 
lognorm geom linear nbinom. 

-mt --merge_titles 

Name for columns or rows to be combined when merging in 
merge_columns or merge_otus. 

-nn --new_name 

Name for columns or rows formed with merge_columns or merge_otus. 
-od --out_dir 

 Directory for file output. 
-of --out_dir 

 Name basis for output files - file extensions and descriptions are added. 
-rn --rm_names 

If “names” is specified for –basis, the names of samples (columns) to 

remove from an OTU table in in rm_samples and rm_rows. 
-pch --patchiness 

Proportion of OTUs generated lost due to expected eDNA patchiness in 

sim_samples. 

-pr --pseudoreplicates 

Numnber of pseudoreplicate datasets generated for estimating 

confidence in rank differences in quantify. 

-pt --POO_threshold 

Minimum POO for OTUs to be retained in rm_rows. 

-pv --p_value 

The p value for Brunner-Munzel tests for rank differences assessed on 

pseudoreplicated data in fit_SAD. 

-py --plot_yaxis 

Y axis choices for plots in quantify and fit_SAD. Options = log linear 

Quantify Base function for estimating species abundance from a given SAD. 
-qt --quant_threshold 

Minimum estimated biomass proportion for an OTU to be retained in 

rm_rows. 

rm_columns Base function for removing OTU table columns by a criterion  

defined by --basis. 

rm_rows Base function for removing OTU table rows by a criterion defined by  

--basis. 

sim_samples Base function for generating an OTU table from a simulated  

community. 



-simC --sim_counts 

Read counts for OTU table sim_samples.  

-simN --sim_samples 

Number of samples for OTU table simulated in sim_samples.  

-simR --sim_richness 

Species richness for communities pseudosampled in sim_samples.  

-sp --shape_par 

Shape metric for defining an SAD model for quantify, sim_samples. 

-tr --transform 

The data transform to use for quantify. Options: Untransf 
arcsin_sqrt expit_lim clr 

-ttr --test_transforms 

A list of metrics to test SAD fit with using base command fit_SAD. Options: 

Untransf arcsin_sqrt expit_lim  

-tme --test_metric 

A list of metrics to test SAD fit with using base command fit_SAD. Options: 

RRA RwRRA POO wPOO PRA 

-tmo --test_models 

A list of models to test SAD fit with using base command fit_SAD. 

Options: nbinom logser zipf genpareto lognorm geom 

venn Base function for generating a Venn diagram that compares the shared  

and unique species incidence for two sampled communities. 
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