
SQEMA manual - version 0.5

Simon Jarman, February 2025

Contents

1. Introduction
1.1 Data
1.2 Installation
1.3 Control

1.4 Help
1.5 File input
1.6 Sqema output
1.7 Sqema code

2. Sqema functions
2.1 Fitting SAD models

2.2 Estimating relative species abundance
2.3 OTU table column/sample modification
2.4 OTU table row/OTU modification
2.5 Simulation
2.6 Community comparisons

2.7 Dispersion metrics
2.8 Biodiversity metrics

3. Example workflow
4. Alphabetical command list
5. References

1. Introduction

Sqema (Species Quantification from Environmental nucleic acid Metabarcode
Abundance) is a software package for generating species abundance

distributions from data taken from environmental DNA or RNA (eNA) data sets.

SQEMA works on the assumption that the abundance of species in environments
that eNA is sampled from follow predictable patterns of abundance. These
“species abundance distributions” (SADs) have been studied extensively by

ecologists and they provide valuable null hypotheses for the real abundance of
species.

1.1 Data

Sqema works from nucleic acid read counts in Operational Taxonomic Unit
(OTU) “OTU tables” formatted as .csv files. The term “OTU table” means in this
context any table of nucleic acid sequence read counts derived from
metabarcoding where the reads are aggregated to a species level. ZOTU (Zero-

radius OTU) and ASV (Amplified Sequence Variant) tables can have reads for
individual sequence variants within a species aggregated to species level to fit
the assumptions that sqema is based on. The software has functions to help with
this where names can be ascribed to variants, or it can be done by clustering in
other software such as USEARCH (Edgar 2010) or VSEARCH (Rognes et al. 2016).

The input file format must conform to having one title row with the names of the
samples in it and one title column with the names of the OTUs in it. The rest of the
cells in the table contain DNA or RNA sequence read counts. These should be
raw counts as an initial input, not proportionalised normalised, or rarefied. An

example of this format is:

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

OTU a 45 23 0 55 87

OTU b 690 789 0 1123 45

OTU c 0 0 0 0 0

OTU d 234 123 0 2 88

OTU e 98 554 0 12 1188

Sqema has commands for OTU table editing that help convert complex OTU

tables into this format (sections 2.3 and 2.4)

Sqema will remove any rows or columns that have only zeros in them before
analysis, so in this example, both Sample 3 and OTU c would be removed from
the table before analysis. The outputs will not include OTU c or sample 3. If

sample or OTU names are duplicated, sqema will raise an error for any of the
quantitative analyaes telling the user what the duplicates are. These must be
removed and the file reloaded, either with sqema OTU table manipulation
commands, or by editing in a spreadsheet or similar software package.

1.2 Installation

Sqema can be installed using the Python package installer. To do this, open a
terminal on Linux/OSX systems and type:

python3 -m pip install --upgrade pip

This ensures that an up-to-date version of pip is installed. Then type:

pip install sqema --target ~/sqema_all/

This will install sqema to the home folder on OSX contained in a folder called
‘sqema_all’ (you can call this what you like).

To run sqema on Windows, the recommended approach is to use a Linux

distribution in a virtual machine. There are a few options for this, but I have had
success with VirtualBox:

https://www.virtualbox.org/

1.3 Control

To use sqema, first navigate to the folder containing the script sqema.py with

something like this:

cd Users/273915i/sqema_all/sqema/

… which on my system is the folder where I have installed sqema.py. On Linux
systems, try:

cd /Home/sqema_all/sqema/

or something similar. Once you have navigated to the folder containing

sqema.py, then all other commands in this manual, which begin python

sqema.py should work.

This is not the only way to run it, and it should be possible to change permissions
and PATH variables etc. so that sqema.py is executable and you don’t have to
enter “python” before it, but this will be platform-specific. For ease of instruction,
in this manual, I will stick to the simplest and most robust option. Note that
different versions of Python may be installed on your system. If so, it may be

desirable to use python3, or python3.11 instead of python, as needed.

Sqema is run from a command line interface. The user controls the base function
that sqema will run for each operation by specifying a function and a set of
parameters for the function. The base functions for SQEMA have to be specified
immediately after the sqema command to run the program. Parameters for the

function are specified either in long form with a ‘- -’ before the verbose
parameter name, or preceded by a ‘-’ symbol for the abbreviated name for

the parameter. For example, ‘-in’ and ‘--in_file’ do the same thing, but

the first needs one hyphen before it, and the second two.

Each part of the overall command input must be separated by a space, except
in parameter values which are lists, where commas are used. An example is:

python sqema.py fit_SAD -in sqematest_1.csv

An example with input in a list is:

python sqema.py fit_SAD -tmo zipf logser lognorm

where the --test_models parameter is given with its short-form -tmo as a list of

three models to test. Items in a list should be entered separated by spaces. If the
name has a space in it, put it in quotes, e.g. “Genus species”.

Each parameter has a specified type:

“Str” is a string of characters, such as a name of a sample.

“Choice” requires selection of one of a list of strings
“Choices” requires selection of one or more strings entered as a list with spaces
between the items, e.g.
“float” is a floating point decimal number like 0.993
“int” is an integer number with no decimals like 3

All of the parameters have default values that are used if a user-defined value is
not specified. For example, the default for -in / --in_file is

sqematest_1.csv. This means that if the user does not specify an input file, sqema
will analyse the sqematest_1.csv file that is included with the package, for
example with this command:

python sqema.py fit_SAD

which would run the SAD fitting algorithm on the default data, and also use
default parameters for the variables.

1.4 Help

The full list of available commands in both abbreviated and verbose form can
be displayed with the command

python sqema.py -h

1.5 File input

Sqema takes input from .csv formatted files. It will search in the same directory
as the script is located, so:

python sqema.py fit_SAD -in sqematest_1.csv

Means that it will look in the same directory where sqema is installed for the file
sqematest1.csv to use as its input. If you want to use files in a different location,
specify this in the standard system format, for example:

python sqema.py fit_SAD -in ~/Dropbox/seqma_inputs/test_1.csv

sqema does some automated data cleanup on OTU tables. It removes samples
(columns), and taxa (OTUs) that only contain zeros. An OTU table that has been
filtered to remove either samples or taxa may end up with either of these issues,

but these zeros are not useful in sqema’s functions, so it removes them and
reports this to the standard output. The default test file has one column of zeroes
in it to demonstrate this, and the removal will be reported to the terminal like this
when you load the default file:

Zero only columns removed: 100291,

 If a persistent record of standard output is required, on Linux/OSX, the output
can be sent to a textfile to make a record like this:

python sqema.py fit_SAD -in

~/Dropbox/seqma_inputs/sqematest_1.csv > ~/Desktop/sqema_log.txt

Lists of parameters should be entered separated by spaces. If the items being
entered have a space in them, they should be entered with with quotes around
that item. For example:

python sqema.py rm_rows -in ~/Desktop/Krill_eDNA.csv -b names -

rm_names Thysanoessa ‘Euphausia superba’

would remove OTUs named Thysanoessa or Euphausia superba from the table.

1.6 sqema output

Output from sqema is always to a directory. The default directory is
‘sqema_output’ in the same directory as the main sqema scripts. To direct
output to a different directory, use the -od command, like this:

python sqema.py fit_SAD -in

~/Dropbox/seqma_inputs/sqematest_1.csv -od

~/Desktop/custom_sqema_output_directory/

By default, sqema will rename output files based on the input file. A timestamp is
added and a description of what was done to make the new file. For example:

python sqema.py fit_SAD -in sqematest_1.csv

will produce file in the sqema_output directory that have times associated with
them, and will report this in the command linewith something like this:

File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-24-

25_fit_SAD.png

File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-24-

25_fit_SAD.csv

If a definitive filename and location are required, use the -od command for the

directory, and the -of command for the desired filename.

For example,

python sqema.py bdiv_metrics

Will analyse the default sqematest_1.csv file and write the result to the default
sqema_output/ directory, as reported:

File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-25-

16_bdiv_metrics.csv

If you do it again shortly afterwards, a new file with a different timestamp is

written:

File saved: sqema_output/sqematest_1_Thu, 30 Jan 2025 16-26-

19_bdiv_metrics.csv

This behaviour is useful if you want to test sqema functions, and not have files
overwrite each other.

If you want to send the output to another directory, use -od like this:

python sqema.py bdiv_metrics -od ~/Desktop/seqma_biodiv_results/

Which will save a folder on the desktop called “sqema_biodiv_results” with a file

in it with the default name of “biodiversity_metrics.csv”:

File saved:

/Users/273915i/Desktop/seqma_biodiv_results/sqematest_1_Thu, 30

Jan 2025 16-26-59_bdiv_metrics.csv

If you also want a specified name, for instance if you are feeding the output of
sqema into another command, us the -of command:

python sqema.py bdiv_metrics -od ~/Desktop/seqma_biodiv_results/
-of BD_table_1

which will give the same folder with the results file called BD_table_1.csv in it.
Note that the file extension is added automatically by sqema.

1.7 sqema code

Sqema is written in Python 3 and requires the following packages:

scipy, version >=1.11

numpy, version >=1.26
matplotlib version >= 3.8
pandas version >=2.1
svg version >=1.5.0

The source code is editable, of course, where default parameters are not as
desried, or if new functions are to be included. The license under which the
software is released allows modification and redistribution if credit for the original
code is given.

2. Sqema functions

2.1 Fitting SAD models

fit_SAD finds SAD models that are the best fit to eDNA metabarcoding read

abundance data. Each fit of a model to the data requires:

1. A specified transform of the data, if any.

2. A metric for measuring the read abundance found in the dataset.
3. An SAD model, to which SQEMA fits the parameters of so that the best fit

to the data can be found,

Fitting will fit multiple combinations of transform, metric, and model

simultaneously and report how well each combination fits based on likelihood
and the Akaike Information Criterion (Akaike 1974).

The transforms implemented in sqema are:

untransf is the untransformed data from the OTU table. This is the default value
and means that the read counts are unmodified.

arcsin_sqrt is an arcsine square root transform
(https://en.wikipedia.org/wiki/Arcsine_distribution).

expit_lim is an approximation of the expit transform (the inverse of a logit
transform). Artificial limits set to avoid the requirement for an infinite distribution
(https://en.wikipedia.org/wiki/Logistic_function).

clr is the “central log ratio” transform. This transform is recommended for
compositional data like eDNA metabarcoding results (Aitchison 1983; Gloor et
al. 2017; Quinn et al. 2018).

The metric implemented in sqema are:

RRA is “relative read abundance” following the definition in (Deagle et al. 2019).
This is the proportionalised read counts per sample.

RwRRA is “R weighted RRA”. In this metric, a weighting applied to samples based

on the species diversity (R) present in them. Samples with higher R are likely to
have eDNA that provides a more comprehensive representation of the true
biodiversity present in the environment. The weighting is implemented as:

https://en.wikipedia.org/wiki/Arcsine_distribution
https://en.wikipedia.org/wiki/Logistic_function

RRA x R/maxR

POO is “proportion of occurrence” as given in (Deagle et al. 2019). This is the

floating point equivalent of “frequency of occurrence” which is often given as a
percentage, so 50% FOO is o.5 POO.

wPOO is “weighted proportion of occurrence” as given in (Deagle et al. 2019).

The models implemented in sqema are:

logser for the log-series model
(https://en.wikipedia.org/wiki/Logarithmic_distribution) of SAD (Fisher, Corbet,
and Williams 1943).

lognorm for the lognormal distribution (https://en.wikipedia.org/wiki/Log-
normal_distribution) as a SAD (Preston 1948).

geom for the geometric distribution

(https://en.wikipedia.org/wiki/Geometric_distribution) used as a SAD.

zipf for the Zipf distribution (https://en.wikipedia.org/wiki/Zipf%27s_law) (Zipf
1935) used as a SAD.

genpareto for the generalised Pareto distribution
(https://en.wikipedia.org/wiki/Generalized_Pareto_distribution) for a SAD model.

nbinom for the negative binomial distribution
(https://en.wikipedia.org/wiki/Negative_binomial_distribution) (Rémond de

Montmort, n.d.) used for a SAD.

linear for a 1:1 relationship between the metric and biomass. Useful for the
purposes of comparing un-fitted data with data fitted to the other models.

Parameters:

-in -in_file

Type = str, default = 'test_1.csv’
-out -out_dir

 Type = str, default='sqema_output'
--ttr --test_transforms

Type = choices = 'untransf','arcsin_sqrt','expit_lim', ‘clr’, default = 'untransf'
Multiple choices as a comma separated list without spaces.
Transforms are applied to the entire dataset before other calculations.

https://en.wikipedia.org/wiki/Logarithmic_distribution
https://en.wikipedia.org/wiki/Geometric_distribution

-tme --test_metrics

Type = choices=['RRA','RwRRA','POO','wPOO','PRD','PRA'],default='RRA'

Metrics are assigned to each OTU in a sample based on calculations
derived from read count abundance. Multiple choices as a comma
separated list without spaces.

-tmo --test_models

Type = choices= ‘logser','zipf','genpareto','lognorm','geom','linear','nbinom'
,default='logser'. Multiple choices as a comma separated list without
spaces.
A range of SAD models to test for fit to metabarcoding data.

-gf --graph_format

Type = choices=['.svg','.png','.jpg'],default='.png'
Format for plotting the graphs. .svg for vector graphics, allowing editing in
Inskcape (https://inkscape.org/) or similar software, .png and .jpg for
raster files.

-py --plot_yaxis

Type = choices=['log','linear'],default='log',help='
The y-axis can be set to either a log or linear scale.

The outputs of model fitting are a graphical representation of the best fitting

models and a .csv file of the relevant data.

Example

python sqema.py fit_SAD -in sqematest_1.csv -tmo logser lognorm

nbinom zipf -tme RRA

This will fit four different SAD models to the default dataset sqematest_1.csv.

The data is

Result:

This fit of the four specified SAD models is given in a .csv file as a table like this:

Log
likelihood Transform Metric Model Model parameters AIC

Relative
Likelihood

-19.656604 untransf RRA logser p: 0.9064239977079377; loc: 0.0; 43.3132076 0

-23.219246 untransf RRA

lognorm

 s: 1.578050229179029; loc: 0.9; scale:
1.3817664886790468; 52.4384916 0.01043446

-24.138099 untransf RRA nbinom p: 3.0; n: 0.42633377435532227; loc: 0.0; 54.2761988 0.0041631

-27.199475 untransf RRA zipf a: 1.6391426973287038; loc: 0.0; 58.3989493 0.00052987

This shows the likelihood of the models and AIC scores. The best-fitting model in
this case is the logseries model. There is also a graphical representation of the fit
shown below, which makes the logser fit appear the best option as well.

Having determined that the logser is the best model, we could see if a different
metric would improve the fit with a command like this

sqema fit_SAD -in sqematest_1.csv -tmo logser -tme RRA PRA POO

wPOO

Just looking at the graphical output, it seems that RRA is the best option:

With a logser model and RRA, we could check whether any data transforms are

beneficial for the fit with this:

python sqema.py fit_SAD -in sqematest_1.csv -tmo logser -tme RRA

-ttr untransf arcsin_sqrt expit_lim

The graph below shows that the untransformed data is a slightly better fit than
expit or the arcsinsqrt transformed data, so it looks like the logseries model with
RRA as the metric and untransformed data is the best option for quantification.

However, it is possible to check all implemented combinations of model, metric,

and transform. This command:

python sqema.py fit_SAD -tmo logser lognorm nbinom zipf

genpareto geom -tme RRA RwRRA PRA PRD POO wPOO -ttr untransf

arcsin_sqrt expit_lim clr

will test the default sqematest_1.csv file for all combinations of these. This
analysis shows that it is possible to find a better-fitting model, with the tabulated
results showing that the geometric model with R-weighted relative read
abundance and no data transforms is the closest fit:

Log
likelihood Transform Metric Model Model parameters AIC Relative Likelihood

-
12.962496 untransf RwRRA geom p: 0.2422414423551688; loc: 0.0; 29.9249916 0

-
13.051822 untransf RRA geom p: 0.245742631346948; loc: 0.0; 30.1036439 0.91454724

-
14.175833 untransf RwRRA nbinom p: 2.0; n: 0.3263703311000005; loc: 0.0; 34.3516661 0.10933516

-
14.763267 untransf RRA

genpareto

 c: 0.15724241630382177; loc: 0.9;
scale: 2.683066415350518; 35.5265335 0.0607632

-
15.010469

arcsin_sqrt RRA nbinom p: 2.0; n: 0.3002011987366431; loc: 0.0; 36.0209378 0.04745501

-
15.577307 untransf RwRRA

genpareto

 c: 0.23965940562780455; loc: 0.9;
scale: 2.4951633077029; 37.1546144 0.026922

-
16.565665 expit_lim POO nbinom p: 3.0; n: 0.3586392096453717; loc: 0.0; 39.1313292 0.01002003

-
16.983558 expit_lim RRA nbinom

 p: 2.0; n: 0.28728813284136184; loc:
0.0; 39.9671168 0.00659751

-18.42871

arcsin_sqrt RRA

genpareto

 c: 0.11315313454467357; loc: 0.9;
scale: 3.5228406616198225; 41.2691017 0.00344079

-
18.634551

arcsin_sqrt RRA geom p: 0.2057931015146118; loc: 0.0; 42.8574209 0.0015551

-
18.886665

arcsin_sqrt RRA lognorm

 s: 0.9326284037893275; loc:
0.3036024447730369; scale:
2.950290452003355; 43.0131639 0.0014386

-
19.204554 expit_lim RRA

genpareto

 c: 0.0849517163793254; loc: 0.9; scale:
3.7468620195765223; 43.5931734 0.00107645

-
19.506582 untransf RRA logser p: 0.905518099716806; loc: 0.0; 43.7733304 0.00098372

-
19.796587 untransf RwRRA logser p: 0.9071150408653158; loc: 0.0; 44.4091075 0.00071584

And the graphical results are:

… although they are hard to interpret with so many curves on one graph. The
effect of R-weighting RRA scores is very minor, so there could be an argument
for choosing RRA alone as reducing the number of data manipulations may be
wise. Ultimately, it is up to the user to decide and justify their choices.

2.2 Estimating relative species abundance

quantify uses an SAD model with parameters estimated from an OTU table to

estimate the relative abundance of the OTUs in the table. This takes SAD model
parameters derived from the fitting command (section 2.1) or determined by
other means. The outputs of model fitting are two graphical representation of
the best fitting models and a .csv file including all of the relevant data.

-in -in_file

Type = str, default = 'test_1.csv’
-out -out_dir

 Type = str, default='sqema_output'
-tr –transform

Type = choices = 'untransf','arcsin_sqrt','expit_lim', ‘clr’, default = 'untransf'

A single choice is required.
Transforms are applied to the entire dataset before other calculations.

-me --metric,

Type = choices=['RRA','RwRRA','POO','wPOO','PRD','PRA'],default='RRA'
Metrics are assigned to each OTU in a sample based on calculations

derived from read count abundance. A single choice is required.
-mo –model

Type = choices= ‘logser','zipf','genpareto','lognorm','geom','linear','nbinom'
,default='logser'. A single choice is required.

The SAD models relate the rank abundance of species to their real
abundance.

-pr --pseudoreplicates

Type = int, default = 500

The number of pseudoreplicate datasets generated for estimating
confidence in rank differences.

-mfp --max_fit_plot

Type = int, default = 12
Maximum number of the best fitted SADs to plot

-p --p_value

Type=float, default=0.05
The p value for Brunner-Munzel tests for rank differences assessed on
pseudoreplicated data.

Example:

Using the parameters that the fit_SAD command suggested are the best fit to

the default sqematest_1.csv data, we use this command:

python sqema.py quantify --model geom --metric RwRRA

Result:

This gives two graphs and one .csv table as output. The first graph shows the
results of bootstrap resampling the data. The range of estimated relative

abundance values is shown as a box-plot.

The y axis is a log scale by default, so the range of values appears larger for the
low abundance species. To see the same result on a linear plot, use the -py
linear command like this

python sqema.py quantify --model geom --metric RwRRA -py linear

which will give:

Which can be easier to interpret. The range of bootstrap values is used to
decide whether species/OTUs have genuinely different abundance ranks. A

Brunel-Munzer test is used to determine whether there is a significant difference
in the ranges of values found in the pseudoreplicated data. If there is, then ranks
are assigned based on the mean values. If not, ranks are tied and several OTUs
can have a shared rank.

The graphical result of this with a log axis is useful for seeing the ranks in the lower
abundance species. Where a rank is tied, a tilde indicates this on the x-axis.

The same graph with a linear y-axis looks like this:

Which makes it easier to imagine real proportional species abundances. As is
commonly-seen, most of the OTUs are low in abundance and a few OTUs
dominate the community.

2.3 OTU table column/sample modification

rm_columns uses rules to remove samples/columns from an OTU table. The OTU

table is then written to a new .csv file.

-b --basis

Type = choices= names, low_reads, richness, default = 'names'.
Defines the basis for removing samples, either by names, read counts, or
OTU richness.

-rn --rm_names

Type = str, default = ''
If “names” is specified for –basis, the names of samples (columns) to

remove from an OTU table.
-minR --minimum_R

Type = int, default = 2

Minimum OTU richness for samples in an OTU table to be retained.
-minReads --minimum_reads

Type = int, default = 5
Minimum number of reads for samples in an OTU table to be retained.

Example_1:

To remove all samples in the OTU table with fewer than 100 reads from the
default dataset, this is the command:

python sqema.py rm_columns -b low_reads -minReads 100

Result_1:

This removes all of the samples containing less than 100 reads and reports which

ones:

Low read samples removed:

100198,100210,100213,100219,100234,100257,100269,100270,100272,1

00277,100279,100282,100285,100287,100290,100291,100297,100304,10

0309,

Example_2:

To remove all samples in the OTU table that have only one OTU, do this:

python sqema.py rm_columns -b richness -minR 2 -od ~/Desktop/ -

of sqematest_R>1

This identifies all the samples with only one OTU and deletes them:

Low-R samples removed:

100198,100204,100213,100219,100257,100260,100262,100266,100271,1

00272,100279,100282,100285,100287,100290,100291,100293,100297,10

0306,

and saves a file on the Desktop called sqematest_R>1.csv with the results in it.

filter_keep takes the name of OTUs present in one specified column, then

keeps all OTUs/rows that have these. This is useful for filtering OTU tables so that
only one taxonomic group is retained. For example, if you have metabarcoding
data from a primer set that amplifies from all Eukarya, but want to analyse only
results for two phyla, specify the phyla of interest with -fi, and the column

where these phyla are listed with -fc.

-fi --filter_items

Type = str, default = ''
Names as a spaceseparated list to be used as a filter for keeping rows in
an OTU table.

-fc --filter_column

Type= str default = ‘’
Title of column containing filter for losing rows in an OTU table.

 Example:

An OTU table with full taxonomic information and some sequencing information
is included with sqema, SharkBay16S_HP_1.csv. To focus on analysis of just one
taxonomic group, for example Actinopteri (bony fish), this command will remove
all other OTUs:

python sqema.py filter_keep -in SharkBay16S_HP_1.csv -fc class -

fi Actinopteri

Result:

This removes all OTUs that don’t belong to class Actinopteri as shown in the
“class” column of the datasheet from the lab. The new .csv file is written to the
default seqma_output/ directory.

filter_lose does the opposite of filter_keep. This can be used to remove

taxonomic groups that are not to be analysed from an OTU table. An example
application might be to reduce OTUs that are off-target amplifications
commonly found with eDNA metabarcoding.

-fi --filter_items

Type = str, default = '' (empty string)
Names as a space-separated list to be used as a filter for removing rows in
an OTU table.

-fc --filter_column

Type= str default = ‘’
Title of column containing filter for losing rows in an OTU table.

Example:

The file SharkBay16S_HP_1.csv was generated with a metabarcoding primer set

targeting fish, but it also amplifies some bacterial and archaeal DNA. To remove
bacterial and archaeal OTUs, use the - filter_lose command:

python sqema.py filter_lose -in SharkBay16S_HP_1.csv -fc domain

-fi Bacteria Archaea

Result:

A new .csv file is written to the seqma_output default folder that only has OTUs
from Eukaryota retained.

merge_columns combines names across columns and places them in one

column. This is used for editing OTU tables with multi-column taxonomies when it
is useful to retain several levels of taxonomic information.

-mt --merge_titles

Type=str,default

Name for column/samples to be combined when merging.
-nn --new_name

Type=str,default
Name for new column/sample when combined.

Example:

This can be used for combining OTU names into a single column when they are
presented in separate columns for providing taxonomic and technical information. As

an example, the SharkBay16S_HP_1.csv file contains genus, species and OTU
information that could be combined to make a one-column name. This command
does this:

python sqema.py merge_columns -in SharkBay16S_HP_1.csv -mt genus

species zotu -nn GenSpZOTU

Result:

A new .csv file is written where the first column contains genus:species:OTU
names concatenated. The other columns could be removed using rm_columns

to make the OTU table useable for sqema quantitative analyses.

2.4 OTU table row/OTU modification

rm_rows removes OTUs as a whole row from an OTU table.

-b --basis

Type = choices= names, POO, low_quant, default = 'names'.

Defines the basis for removing samples, either by names, proportion of
occurrence in the OTU table, or low relative quantification based on an
SAD.

-rn --rm_names

Type = str, default = ''
If “names” is specified for –basis, the names of OTUs (rows) to remove

from an OTU table.
-pt --POO_threshold

Type = float, default = 0.005

Minimum POO for OTUs to be retained in the OTU table.
-qt -quant_threshold

Type = float, default = 0.001
Minimum estimated biomass proportion for an OTU to be retained.

Example:

To remove OTUs that are present at less than 1% estimated proportional quantity
from the default datafile, with default parameters for an SAD, this is the
command:

python sqema.py rm_rows -b low_quant -qt 0.01

Result:

This saves a reduced .csv OTU table file in the default directory and reports
which OTUs were removed:

Based on SAD model: logser

Metric: RRA

Transform: untransf

With a threshold for inclusion of > 0.01 estimated total

proportion in the OTU table

OTUs removed: Aiptasiogeton eruptaurantia,Obeliida sp.3,Obelia

sp.1,Edwardsia longicornis,Bougainvillia sp. ,Coryne

eximia,Stauridiosarsia marii,Leuckartiara cf. octonema PS-

2018,Turritopsis sp.1,Turritopsis dohrnii,Obeliida

sp.2,Eudendrium carneum,Zanclea migottoi,Clytia sp.2,Zancleopsis

dichotoma,Anthopleura elegantissima,

merge_otus merges two or more rows of an OTU table. Reads are summed for

each sample. The names of the OTUs are combined and renamed with the –
new_OTU_name command, or if combined automatically if a new name is not

specified. This command is useful for merging multiple OTUs from one species

into a single OTU representing all DNA variants in the species.

-mt --merge_titles

Type = str, default = ’’ (empty string)
Name for rows/OTUs to be combined when merging.

-nn --new_OTU_name

Type = str, default = ’’ (empty string)
Name for a new row/OTUs when merging columns.

-fc --filter_column

Type= str default = ‘’

Title of column containing filter for merging rows in an OTU table. If -fc is

not specified, sqema will default to the first column in the OTU table.

Example:

python sqema.py merge_otus -mt Clytia_sp.1 Clytia_sp.2 -nn

Clytia_sp

Result:

This combines two OTUs in the default sqematest_t.csv file. The output to the

terminal is:

OTUs Clytia sp.1, Clytia sp.2, combined into new OTU Clytia_sp

with reads summed for each sample

The new .csv file has the merged OTU at the end of the table, and Clytia sp. 1
and Clytia sp. 2 have been removed. Their read counts were summed for each
sample and entered in the same sample columns in Clytia_all. Note that Clytia

gracilis is retained as a separate OTU as it was not specified that it should be
combined.

ScientificName 100162 100163 100164 100165
Campanularia hincksii 1496 5075 53 1502
Podocorynoides minima 1024 565 0 94

Turritopsis rubra 0 0 0 0
Bougainvillia muscus 901 849 189 5
Aequorea macrodactyla 0 0 0 0
Orthopyxis crenata 136 66 63 0
Obelia dichotoma 59 184 177 0
Clytia gracilis 0 0 0 0
Actiniaria sp. 0 309 0 0
Liriope tetraphylla 0 0 0 0
Aiptasiogeton eruptaurantia 0 0 0 0
Coryne eximia 142 0 0 5
Bougainvillia sp. 0 0 0 456
Obelia sp.1 47 231 33 0
Obeliida sp.2 0 0 0 0
Obeliida sp.3 0 0 0 0
Turritopsis dohrnii 0 0 0 0
Turritopsis sp.1 85 0 0 0
Edwardsia longicornis 0 0 0 0
Eudendrium carneum 0 0 0 0
Stauridiosarsia marii 0 0 0 0
Leuckartiara cf. octonema PS-
2018 0 0 0 0
Zanclea migottoi 0 0 0 0
Anthopleura elegantissima 0 0 0 5
Zancleopsis dichotoma 0 0 0 0
Clytia_sp 0 0 0 0

merge_otus_auto merges rows of an OTU table that share an entry in column -

-filter_column. This is useful for grouping multiple ZOTUs/ASVs to species

level, for example. In this case, given an OTU table with a column “species”,
enter that title via -fc. The function will search for all shared species names in the
column, and merge the rows that have them, summing reads in the numerical
columns.

-fc --filter_column

Type= str default = ‘’

Title of column containing filter for merging rows in an OTU table. If -fc is

not specified, sqema will default to the first column in the OTU table.

Example:

Python sqema.py merge_otus_auto -in SharkBay16S_EG_1.csv -fc

species -of SharkBay16S_EG_1_species_merged

2.5 Simulation

sim_samples creates a simulated eDNA metabarcoding dataset. This is useful

for experimental planning, or for exploring the value of using the SAD fitting that
SQEMA implements for quantification in eDNA metabarcoding data. This
function takes a user-defined number of species from a distribution defined by
the user. Sampling is repeated to simulate multiple random samples from the

same population. Patchiness of eDNA detection is simulated by a user-defined
parameter. Results are written to a .csv formatted file as an OTU table. A
separate file is written with dispersal metrics recorded for the simulated dataset.
These can be used to compare dispersion among distributions and might be
helpful as a basis for making a simulated OTU table with dispersion of values from

the SAD similar to that seen in real data (see section 2.4 – dispersion metrics).

Parameters:

-sp --shape_par

type = float, default = 0.9

Shape metric for defining an SAD model of expected counts.
-pch -–patchiness

type = float, default = 0.1
Proportion of OTUs in a simulated sample lost due to eDNA patchiness.

-simR --sim_richness

type = int, default = 25
Number of species in a simulated community.

-simC --sim_counts

type = int, default = 10000
Counts (sequencing reads) per sample in a simulated community.

-simN --sim_samples

type= int, default = 25

Number of samples for an OTU table derived from a simulated community.

Example:

python sqema.py sim_samples -simR 50 -simN 100 -simC 30000 -sp

0.88 -pch 0.2

Result:

One .csv OTU table with 50 species, 100 samples, 3000 reads per sample, a 0.2

proportion loss of items per sample (the zeroes are largely from this. This is a
portion of the table:

 Sample_1 Sample_2 Sample_3 Sample_4 Sample_5
Species_1 12413 12434 0 12218 12385
Species_2 5585 5435 17963 0 0
Species_3 3217 3215 0 8707 8799
Species_4 2175 2084 5331 2130 2067
Species_5 1523 1511 1476 1547 1512
Species_6 1059 1141 0 1156 1121
Species_7 845 849 1965 0 0
Species_8 553 0 651 1470 1443
Species_9 478 1141 469 0 0
Species_10 384 368 0 923 502

A .csv file is also produced showing measures of dispersion for the OTU table, a
portion of which looks like this:

Measures of dispersion for simulated OTU table

Species richness 50

Samples 100
Counts per
sample 30000

Dataset means

mean MAE 220.04

mean MSE 1638972.94

mean RMSD 871.65227

Sample dispersions

 1 2 3 4 5
MAE 523.183673 532.142857 70.4285714 65.7346939 54.3877551
MSE 6323072.12 6311362.59 36395.3673 40064.5102 30861.6122
RMSD 2514.57196 2512.24254 190.775699 200.161211 175.674734

2.6 Community comparisons

venn draws a Venn diagram for overlap and independence of OTUs in two

communities. The input is a pair of .csv files with the title of a column of names

(the same in both files) indicated by the -cn parameter. A scaling factor for the

Venn diagrams can be used to adjust the output where more extreme values

cause the text to not fit the overlaps well. The default value of 2 is generally

effective, 1 works for for small R values, and > 2 if there is extensive overlap

between communities. The value is decimal and changest eh size of the overall

graph, while the text stays the same. The graph indicates counts of OTUs in bold,

and proportions in normal type under that.

The file output is .svg only and can be determined with the -od and -of

parameters, or the default file will go to the sqema_output folder.

Parameters:

-cf1 --comparison_file_1

type = str, default = none
-cf2 --comparison_file_2

type = str, default = none
-cn --comparison_names

type = string, default = none
-gs --graph_scale

type=float, default = 2

Example:

python3 sqema.py venn -cf1 python sqema.py venn -cf1

~/Sqema/SB_data/SharkBay16S_EG_11.csv -cf2

~/Sqema/SB_data/SharkBay16S_HP_8.csv -cn GenSpZOTU

Result:

This plot is produced:

… which is saved in the sqema_output/ directory. These plots use squares with

sizes proportional to the species richness in each community, and an overlap

that is proportional to that as well.

arch_plot draws a diagram that compares the abundance of species in two

communities and links abundance between species that occur in both, like this:

where items unique to each community have a red or blue indication and the

shared items are grey and a line links their entry for each community. The inputs

for this are two .csv files with columns of OTU names and their estimated

abundance proportions in them, as is produced by the output of quantify. The

names of the headers for the columns should be the same in each file, and

have to be specified in the input for this function.

Parameters:

-cf1 --comparison_file_1

type = str, default = none
-cf2 --comparison_file_2

type = str, default = none
-cn --comparison_names

type = float, default = 0.0
-cp --comparison_proportions

type = float, default = 0.0
-qt --quant_threshold

type = float, default = 0.0

Example:

python sqema.py arch_plot -cf1

~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_EG_quantalluvial.csv

-cf2

~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_HP_quantalluvial.csv

-cn Names -cp Proportions -qt 0.01

Result:

This produces a plot of fish species in two adjacent communities in the Shark Bay

area of Western Australia, with only species present at greater than 1% of the

total included:

2.7 Dispersion metrics

Measures of dispersal of data from an underlying distribution are useful for
measuring the fit of real or simulated data to a model.

dispersions is the base command. This takes an OTU table as input, as well as

model parameters for an SAD. The degree of dispersion on the data around the
expected values for the SAD is measured and reported as:

MAE mean absolute error (https://en.wikipedia.org/wiki/Mean_absolute_error)
MSE mean squared error (https://en.wikipedia.org/wiki/Mean_squared_error)

RMSD root mean squared deviation
(https://en.wikipedia.org/wiki/Root_mean_square_deviation)

-mo --model

Type=choices, options = logser, zipf, genpareto, lognorm , geom , linear,
nbinom, default = logser
The SAD model used to determine expected counts

-sp --shape_par

type=float, default=0.
Defininesthe shape of an SAD to determine expected counts.

Example:

python sqema.py dispersions -in sqematest_1.csv -mo zipf -sp 3

Result:

A .csv file is written giving measures of dispersion for the OTU table based on the

specified SAD, a portion of which looks like this:

Model: zipf
Shape
parameters: 3

Cumulative frequency
distribution:
0.8319073725807077 0.93589579 0.96670718 0.97970573 0.98636099

OTU table mean dispersions

https://en.wikipedia.org/wiki/Root_mean_square_deviation

mean MAE 48.9399038

mean MSE 81987.5871

mean RMSD 147.783538

Sample dispersions

Sample 100162 100163 100164 100165
MAE 146.807692 114.038462 34.6153846 35.3461538
MSE 161452.038 68938.9615 8194.84615 10543.9615
RMSD 401.810949 262.5623 90.5253896 102.683794

2.8 OTU table biodiversity metrics

bdiv_metrics calculates a range of metrics and standard ecological indices

from the OTU table (https://en.wikipedia.org/wiki/Diversity_index). The metrics
are written to a CSV file with the following lines:

Sample names - the names of the samples in the first row of the columns

of the .csv formatted OTU table input file.

N reads - the total count of sequence reads in each sample of the OTU
table input file.

Species richness (R or S) - the number of unique OTUs in the sample.

Simpson index (λ) - the probability that any two sequence reads are from

the same species (Simpson 1949).

Gini-Simpson index (1-λ) - the probability of encounter of two species
present in a samples (Hurlbert 1971).

Shannon index (H’) - index representing the chance that an OTU in a
sample will be novel rather than previously encountered (Shannon 1948).

Berger-Parker index - the proportion of sample reads for the most
abundant OTU.

Hill D0 - value of D from the General Equation of Diversity with q set to 0 -
identical to Species Richness (Alberdi and Gilbert 2019).

Hill D1 - value of D from the General Equation of Diversity with q set to 1 -

equal to 1/Simpson index.

Hill D2 - value of D from the General Equation of Diversity with q set to 2 -
equal to exp (Shannon Index).

Example:

python sqema.py bdiv_metrics -in sqematest_1.csv

Result:

A .csv file is written that looks like this:

Sample 100162 100163 100164 100165 100166

N reads 3890 3890 7279 7279 515

Richness (R) 8 7 5 6 2

Simpson index (lambda) 0.27424931 0.50926291 0.28246583 0.57878464 0.81440544

Gini-Simpson index 0.72575069 0.49073709 0.71753417 0.42121536 0.18559456
Shannon-Weaver
diversity (H') 1.49614544 1.07969831 1.40203797 0.74970922 0.33273184

Berger-Parker index 0.38457584 0.69721116 0.36699029 0.72665699 0.89648799

Hill D0 8 7 5 6 2

Hill D1 4.46444736 2.94379131 4.06347279 2.11638452 1.39477322

Hill D2 3.64631727 1.96362229 3.54025121 1.72775836 1.22788963

3.0 Example workflow

Shark Bay is a large, shallow feature on the coast of Western Australia. It features
a strong salinity gradient from hypersaline waters in Hamelin Pool at the furthest
point from the sea, grading down to globally average marine salinity at the

ocean mouth of the bay.

eDNA metabarcoding data from two regions of Shark Bay, Hamelin Pool and
the Eastern Gulf, are included as sample data. These are included with sqema in
files:

Hamelin

Pool

Eastern

Gulf

SharkBay16S_HP_1.csv

SharkBay16S_EG_1.csv

Here is an example workflow for the question:

What differences are there between the most abundant fish species found in

Hamelin Pool and in the Eastern Gulf of Shark Bay?

We will use the eDNA metabarcoding data, which was collected by sampling
the sea-bottom biofilms with paint rollers on a pole (Jarman et al. 2024). This
sampling method produces a good overall assessment of fish biodiversity in
these conditions, with many benthic species detected that water column
sampling does not (Richards et al., submitted).

To start, we will filter the file to include only data from fish. The classes Actinopteri
and Chondrichthyes contain all the fish in the data, so we will use the
filter_keep command to only retain OTUs from that class. The new file will be

written to a folder “SB_data” on the Desktop:

python sqema.py filter_keep -in SharkBay16S_HP_1.csv -fc class -

fi Actinopteri Chondrichthyes -od ~/Desktop/SB_data/ -of

SharkBay16S_HP_2

Each OTU needs a unique name in one column, so combining the genus,

species, and name columns is a good option with:

python sqema.py merge_columns -in

~/Desktop/SB_data/SharkBay16S_HP_2.csv -mt genus species OTU -nn

GenSpZOTU -od ~/Desktop/SB_data/ -of SharkBay16S_HP_3

Which loads the file from the folder made in step 1. The next step is to remove
columns that we won’t need for the analyses:

python sqema.py rm_columns -rn domain phylum class order family

numberOfUnq_BlastHits -in ~/Desktop/SB_data/SharkBay16S_HP_3.csv

-od ~/Desktop/SB_data/ -of SharkBay16S_HP_4

At this point, the file SharkBay16S_HP_4.csv is formatted so that it could be used

for sqema quantitative analyses, as an OTU table with the first column

containing OTU names, and the first row containing sample names, and it looks

like this:

GenSpZOTU E_442_001 E_442_002 E_442_003 E_442_004
Xyrichtys:Xyrichtys_novacula:Zotu2 0 0 0 0
Pelates:Pelates_quadrilineatus:Zotu5 1 2 0 2
Monacanthus:Monacanthus_chinensis:Zotu6 0 5 2 1
Pelates:Pelates_octolineatus:Zotu8 1 9 1 0
Siganus:dropped:Zotu9 0 0 1 6
Leiopotherapon:Leiopotherapon_aheneus:Zotu11 0 5 0 11
Gerres:dropped:Zotu14 2 5 0 6
Rhabdosargus:Rhabdosargus_sarba:Zotu21 6 11 9 3

We should remove samples with low total read numbers for the fish groups of

interest so that we don’t bias the results too much, which we can do with the

command:

python sqema.py rm_columns -b low_reads -minReads 200 -in

~/Desktop/SB_data/SharkBay16S_HP_4.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_5

Which removes any sample with less than 200 reads from the OTU table. At this

point, the data is ZOTUs and there are three putative species represented by

multiple ZOTUs in the data:

Choerodon:Choerodon_cauteroma:Zotu56
Choerodon:Choerodon_cephalotes:Zotu63
Choerodon:Choerodon_schoenleinii:Zotu103
Choerodon:Choerodon_cauteroma:Zotu120

Sardinella:dropped:Zotu74
Sardinella:dropped:Zotu76

Pelates:Pelates_octolineatus:Zotu236
Pelates:Pelates_octolineatus:Zotu2302
Pelates:Pelates_octolineatus:Zotu31462
Pelates:Pelates_octolineatus:Zotu33495

For a stringent analysis, these should be combined so that we get as close to

species-level as possible.

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_HP_5.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_6 -mt Choerodon:Choerodon_cauteroma:Zotu56

Choerodon:Choerodon_cauteroma:Zotu63

Choerodon:Choerodon_cauteroma:Zotu103

Choerodon:Choerodon_cauteroma:Zotu120

Choerodon:Choerodon_cauteroma:Zotu74

Choerodon:Choerodon_cauteroma:Zotu76 -nn

Choerodon_cauteroma_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_HP_6.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_7 -mt Sardinella:dropped:Zotu74

Sardinella:dropped:Zotu76 -nn Sardinella_sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_HP_7.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_HP_8 -mt Pelates:Pelates_octolineatus:Zotu236

Pelates:Pelates_octolineatus:Zotu2302

Pelates:Pelates_octolineatus:Zotu31462

Pelates:Pelates_octolineatus:Zotu33495 -nn

Pelates_octolineatus_allZOTUs

The file SharkBay16S_HP_8.csv now has one column of taxonomic information,

which corresponds to species as closely as we can make it. To find a good SAD
model for the dataset, this command is used:

python sqema.py fit_SAD -in

~/Desktop/SB_data/SharkBay16S_HP_8.csv -od ~/Desktop/SB_data/

which shows that the negative binomial model with relative read abundance is
the best fitting option tested:

Now that there is a model, we can use it to make quantitative assessments with:

python sqema.py quantify -mo nbinom -py linear -in

~/Desktop/SB_data/SharkBay16S_HP_8.csv -od ~/Desktop/SB_data/

Following the same steps for the Eastern Gulf samples up to EG_5, we get an
OTU table with these duplicates:

Sardinella:dropped:Zotu74
Sardinella:dropped:Zotu76
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu9363
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684
Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684
Hyporhamphus:Hyporhamphus_quoyi:Zotu8696
Hyporhamphus:Hyporhamphus_quoyi:Zotu8798
Choerodon:Choerodon_cyanodus:Zotu28
Choerodon:Choerodon_cyanodus:Zotu28
Choerodon:Choerodon_schoenleinii:Zotu103
Choerodon:Choerodon_cauteroma:Zotu120
Choerodon:Choerodon_cauteroma:Zotu56
Choerodon:Choerodon_cephalotes:Zotu63
Pelates:Pelates_octolineatus:Zotu23729
Pelates:Pelates_octolineatus:Zotu31462
Pelates:Pelates_octolineatus:Zotu33495
Pelates:Pelates_octolineatus:Zotu236
Pelates:Pelates_octolineatus:Zotu8
Pelates:Pelates_octolineatus:Zotu236
Siganus:dropped:Zotu5100
Siganus:dropped:Zotu18538
Siganus:dropped:Zotu24429
Siganus:dropped:Zotu26039
Sillago:dropped:Zotu129
Sillago:dropped:Zotu140

To combine these Multi-ZOTU groups into single putative OTUs, we can use the
series of commands below:

Sqema merge_otus -in ~/Desktop/SB_data/SharkBay16S_EG_5.csv -od

~/Desktop/SB_data/ -of SharkBay16S_EG_6 -mt

Sardinella:dropped:Zotu74 Sardinella:dropped:Zotu76 -nn

Sardinella_sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_EG_6.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_7 -mt Atherinomorus:Atherinomorus_sp._pinguis-

1:Zotu12852 Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu9363

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu12852

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu13388

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu16069

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu29684

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu21345

Atherinomorus:Atherinomorus_sp._pinguis-1:Zotu24 -nn

Atherinomorus:Atherinomorus_sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_EG_7.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_8 -mt Hyporhamphus:Hyporhamphus_quoyi:Zotu8696

Hyporhamphus:Hyporhamphus_quoyi:Zotu8798 -nn

Hyporhamphus:Hyporhamphus__sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_EG_8.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_9 -mt Pelates:Pelates_octolineatus:Zotu23729

Pelates:Pelates_octolineatus:Zotu31462

Pelates:Pelates_octolineatus:Zotu33495

Pelates:Pelates_octolineatus:Zotu236

Pelates:Pelates_octolineatus:Zotu8

Pelates:Pelates_octolineatus:Zotu236 -nn

Pelates_octolineatus_sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_EG_9.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_10 -mt Siganus:dropped:Zotu5100

Siganus:dropped:Zotu18538 Siganus:dropped:Zotu24429

Siganus:dropped:Zotu26039 -nn Siganus_sp_allZOTUs

python sqema.py merge_otus -in

~/Desktop/SB_data/SharkBay16S_EG_10.csv -od ~/Desktop/SB_data/ -

of SharkBay16S_EG_11 -mt Sillago:dropped:Zotu129

Sillago:dropped:Zotu140 -nn Silago_sp_allZOTUs

File SharkBay16S_EG_11.csv is now equivalent to SharkBay16S_HP_8.csv and

the same quantitative analyses can be done with it, e.g:

python sqema.py quantify -mo nbinom -py linear -in

~/Desktop/SB_data/SharkBay16S_EG_11.csv -od ~/Desktop/SB_data/

If we compare the .csv file quantitative, there are some overlaps in fish species,
but the ten most abundant fish are completely different. These comprise
approximately 60% of the estimated biomass in each community:

EG_OTUs ranked by abundance

EG Relative
abundance
with means for
tied ranks HP_OTUs ranked by abundance

HP_Relative
abundance
with means
for tied
ranks

Pelates:Pelates_quadrilineatus:Zotu5 0.094014847 Rhabdosargus:Rhabdosargus_sarba:Zotu21 0.13638101
Siganus:dropped:Zotu9 0.084138546 Monacanthus:Monacanthus_chinensis:Zotu6 0.11416102

Pelates_octolineatus_sp_allZOTUs 0.075299754 Leiopotherapon:Leiopotherapon_aheneus:Zotu11 0.09556124
Gerres:dropped:Zotu14 0.067389482 Pelates:Pelates_octolineatus:Zotu8 0.07999184
Atherinomorus:Atherinomorus_sp._pinguis-
1:Zotu24 0.060310187 Pelates:Pelates_quadrilineatus:Zotu5 0.06695911
Lethrinus:Lethrinus_laticaudis:Zotu38 0.053974575 Leiopotherapon:Leiopotherapon_aheneus:Zotu45 0.05148376

Upeneus:Upeneus_tragula:Zotu25 0.045767316 Xyrichtys:Xyrichtys_novacula:Zotu2 0.05148376

Sardinella_sp_allZOTUs 0.045767316 Sillago:dropped:Zotu129 0.03607432

Upeneus:Upeneus_tragula:Zotu29 0.038688768 Monacanthus:Monacanthus_chinensis:Zotu35 0.03607432
Sillago:dropped:Zotu37 0.034624496 Upeneus:Upeneus_tragula:Zotu29 0.02751879

The two fish communities are unsurprisingly different in composition, being in
completely different salinity zones despite being close to each other. However,

the extent of the difference would be masked if only incidence data was used,
which is common in eDNA studies. There Venn diagram below shows that almost
half of the species are shared, whereas the biomass composition is very
different.

The diagram is generated by:

python sqema.py venn -cf1 ~/sqema/SB_data/SharkBay16S_EG_11.csv

-cf2 ~/sqmea/SB_data/SharkBay16S_HP_8.csv -cn GenSpZOTU

If we consider abundance, however, a more realistic picture of two separate

fish communities can be seen. This command:

python sqema.py arch_plot -cf1

~/Desktop/SB_data/SharkBay16S_EG_11_quantify_scores.csv -cf2

~/Desktop/SB_data/SharkBay16S_HP_8_quantify_scores.csv -cn 'OTUs

ranked by abundance' -cp 'Estimated relative abundance'

Produces a plot of the abundance of OTUs in both communities. Shared OTUs

are shown in grey, with links between the entries in each community given as a

diagonal line. OTUs unique to each community are indicated in red or blue, as

shown here:

What this shows is that the communities are very different when abundance is

considered. The high biomass species are quite different in each region, but in

many cases the high biomass species from one community shows up as a low

biomass species in the adjacent community, so the Venn diagram view of

extensive community overlap based on incidence is misleading.

4.0 Command list

Base_functions are the only positional argument follows the “sqema” command
 and tells it what to do. These do not require a “-“ or “--“. The options are:
fit_SAD quantify bdiv_metrics dispersions sim_samples

rm_columns rm_rows merge_columns filter_keep filter_lose

merge_otus

arch_plot Base function for generating a plot that compares the species

abundance distribution for two sampled communities.
-b --basis

Defines the basis for removing samples in rm_column or rm_rows.

bdiv_metrics Base function that generates a table of standard biodiversity

metrics from an OTU table.

dispersions Base function for measures of dispersal of data from an

underlying distribution.
-fc --filter_column

Title of a column in an OTU table in merge_columns, filter_keep or

filter_lose..

-fi --filter_items

Names used as a filter of an OTU table in merge_columns merge_otus,

filter_keep or filter_lose..

filter_keep Base function that that uses items specified by -fi in one column

specified by -fc to retain OTUs, removing all others.

filter_lose Base function that uses items specified by -fi in one column

specified by -fc to remove OTUs from the dataset.

fit_SAD Base function that fits SAD models to OTU table data.
-gf --graph_format

Format for graphs in quantify and fit_SAD. Options = svg png jpg

-gs --graph_scale is a scaling factor for Venn diagrams.
-in--in_file

 Name and path of a .csv OTU table for analysis.

merge_columns Base function for merging colums, which are renamed with -nn

and defined by -mt.

merge_otus Base function for merging OTUs, which are renamed with -nn and

defined by -mt.

merge_otus_auto Base function for merging OTUs based on common words in

a column designated by -fc.
-me --metric

The metric to use for quantify. Options: RRA RwRRA POO wPOO PRA
-mfp --max_fit_plot

The maximum number of the best fitted SADs to plot with fit_SAD.

-minR --minimum_R

Minimum OTU richness for samples in an OTU table to be retained in
rm_columns.

-minReads --minimum_reads

Minimum read counts for keeping samples in an OTU table in rm_columns.
-mo --model

The model to use for quantify. Options: logser zipf genpareto
lognorm geom linear nbinom.

-mt --merge_titles

Name for columns or rows to be combined when merging in
merge_columns or merge_otus.

-nn --new_name

Name for columns or rows formed with merge_columns or merge_otus.
-od --out_dir

 Directory for file output.
-of --out_dir

 Name basis for output files - file extensions and descriptions are added.
-rn --rm_names

If “names” is specified for –basis, the names of samples (columns) to

remove from an OTU table in in rm_samples and rm_rows.
-pch --patchiness

Proportion of OTUs generated lost due to expected eDNA patchiness in

sim_samples.

-pr --pseudoreplicates

Numnber of pseudoreplicate datasets generated for estimating

confidence in rank differences in quantify.

-pt --POO_threshold

Minimum POO for OTUs to be retained in rm_rows.

-pv --p_value

The p value for Brunner-Munzel tests for rank differences assessed on

pseudoreplicated data in fit_SAD.

-py --plot_yaxis

Y axis choices for plots in quantify and fit_SAD. Options = log linear

Quantify Base function for estimating species abundance from a given SAD.
-qt --quant_threshold

Minimum estimated biomass proportion for an OTU to be retained in

rm_rows.

rm_columns Base function for removing OTU table columns by a criterion

defined by --basis.

rm_rows Base function for removing OTU table rows by a criterion defined by

--basis.

sim_samples Base function for generating an OTU table from a simulated

community.

-simC --sim_counts

Read counts for OTU table sim_samples.

-simN --sim_samples

Number of samples for OTU table simulated in sim_samples.

-simR --sim_richness

Species richness for communities pseudosampled in sim_samples.

-sp --shape_par

Shape metric for defining an SAD model for quantify, sim_samples.

-tr --transform

The data transform to use for quantify. Options: Untransf
arcsin_sqrt expit_lim clr

-ttr --test_transforms

A list of metrics to test SAD fit with using base command fit_SAD. Options:

Untransf arcsin_sqrt expit_lim

-tme --test_metric

A list of metrics to test SAD fit with using base command fit_SAD. Options:

RRA RwRRA POO wPOO PRA

-tmo --test_models

A list of models to test SAD fit with using base command fit_SAD.

Options: nbinom logser zipf genpareto lognorm geom

venn Base function for generating a Venn diagram that compares the shared

and unique species incidence for two sampled communities.

5.0 References

Aitchison, J. 1983. “Principal Component Analysis of Compositional Data.”

Biometrika 70 (1): 57–65.

Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE
Transactions on Automatic Control 19 (6): 716–23.

Alberdi, Antton, and M. Thomas P. Gilbert. 2019. “A Guide to the Application of
Hill Numbers to DNA-Based Diversity Analyses.” Molecular Ecology
Resources 19 (4): 804–17.

Deagle, Bruce E., Austen C. Thomas, Julie C. McInnes, Laurence J. Clarke, Eero J.
Vesterinen, Elizabeth L. Clare, Tyler R. Kartzinel, and J. Paige Eveson. 2019.
“Counting with DNA in Metabarcoding Studies: How Should We Convert
Sequence Reads to Dietary Data?” Molecular Ecology 28 (2): 391–406.

Edgar, Robert C. 2010. “Search and Clustering Orders of Magnitude Faster than

BLAST.” Bioinformatics 26 (19): 2460–61.
Fisher, R. A., A. Steven Corbet, and C. B. Williams. 1943. “The Relation between

the Number of Species and the Number of Individuals in a Random
Sample of an Animal Population.” The Journal of Animal Ecology 12 (1):
42.

Gloor, Gregory B., Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J.

Egozcue. 2017. “Microbiome Datasets Are Compositional: And This Is Not
Optional.” Frontiers in Microbiology 8 (November): 2224.

Hurlbert, Stuart H. 1971. “The Nonconcept of Species Diversity: A Critique and
Alternative Parameters.” Ecology 52 (4): 577–86.

Jarman, Simon, Jason B. Alexander, Kathryn L. Dawkins, Sherralee S. Lukehurst,

Georgia M. Nester, Shaun Wilkinson, Michael J. Marnane, Justin I.
McDonald, Travis S. Elsdon, and Euan S. Harvey. 2024. “Marine EDNA
Sampling from Submerged Surfaces with Paint Rollers.” Marine Genomics
76 (101127): 101127.

Preston, F. W. 1948. “The Commonness, and Rarity, of Species.” Ecology 29 (3):

254–83.
Quinn, Thomas P., Ionas Erb, Mark F. Richardson, and Tamsyn M. Crowley. 2018.

“Understanding Sequencing Data as Compositions: An Outlook and
Review.” Bioinformatics (Oxford, England) 34 (16): 2870–78.

Rémond de Montmort, P. n.d. “Essai d’analyse Sur Les Jeux de Hasard.”
http://sites.mathdoc.fr/cgi-bin/linum?aun=001130.

Rognes, Torbjørn, T. Flouri, Ben Nichols, C. Quince, and F. Mahé. 2016. “VSEARCH:
A Versatile Open Source Tool for Metagenomics.” PeerJ 4 (October).
https://doi.org/10.7717/peerj.2584.

Shannon, C. 1948. “A Mathematical Theory of Communication.” Bell Syst. Tech.
J. 27 (July): 623–56.

Simpson, E. H. 1949. “Measurement of Diversity.” Nature 163 (4148): 688–688.
Zipf, G. K. 1935. “The Psycho-Biology of Language, Patterns.”

	SQEMA manual - version 0.5
	Contents
	1. Introduction
	1.1 Data
	1.2 Installation
	1.3 Control
	python sqema.py fit_SAD -in sqematest_1.csv
	python sqema.py fit_SAD

	1.4 Help
	1.5 File input
	python sqema.py fit_SAD -in sqematest_1.csv
	python sqema.py fit_SAD -in ~/Dropbox/seqma_inputs/test_1.csv
	python sqema.py fit_SAD -in ~/Dropbox/seqma_inputs/sqematest_1.csv > ~/Desktop/sqema_log.txt

	1.6 sqema output
	python sqema.py fit_SAD -in ~/Dropbox/seqma_inputs/sqematest_1.csv -od ~/Desktop/custom_sqema_output_directory/
	python sqema.py fit_SAD -in sqematest_1.csv

	If you do it again shortly afterwards, a new file with a different timestamp is written:
	1.7 sqema code
	2. Sqema functions
	2.1 Fitting SAD models
	python sqema.py fit_SAD -in sqematest_1.csv -tmo logser lognorm nbinom zipf -tme RRA
	Result:

	sqema fit_SAD -in sqematest_1.csv -tmo logser -tme RRA PRA POO wPOO
	python sqema.py fit_SAD -in sqematest_1.csv -tmo logser -tme RRA -ttr untransf arcsin_sqrt expit_lim

	However, it is possible to check all implemented combinations of model, metric, and transform. This command:
	python sqema.py fit_SAD -tmo logser lognorm nbinom zipf genpareto geom -tme RRA RwRRA PRA PRD POO wPOO -ttr untransf arcsin_sqrt expit_lim clr

	And the graphical results are:
	2.2 Estimating relative species abundance
	python sqema.py quantify --model geom --metric RwRRA

	2.3 OTU table column/sample modification
	Example_1:
	Result_1:
	Example_2:
	Example:
	Result:
	Example:
	Result:
	Example:
	Result:

	2.4 OTU table row/OTU modification
	Example:
	Result:
	Example:
	python sqema.py merge_otus -mt Clytia_sp.1 Clytia_sp.2 -nn Clytia_sp
	Result:
	Example:

	2.5 Simulation
	Parameters:
	Example:
	python sqema.py sim_samples -simR 50 -simN 100 -simC 30000 -sp 0.88 -pch 0.2
	Result:

	2.6 Community comparisons
	Parameters:
	Example:
	Result:
	Parameters:
	Example:
	python sqema.py arch_plot -cf1 ~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_EG_quantalluvial.csv -cf2 ~/Dropbox/Wild_Frontiers/sqema/SharkBay16S_HP_quantalluvial.csv -cn Names -cp Proportions -qt 0.01
	Result:

	2.7 Dispersion metrics
	Example:
	python sqema.py dispersions -in sqematest_1.csv -mo zipf -sp 3
	Result:

	2.8 OTU table biodiversity metrics
	Example:
	python sqema.py bdiv_metrics -in sqematest_1.csv
	Result:

	3.0 Example workflow
	4.0 Command list
	5.0 References

