
Computing Dynamic Meanings

Adrian Brasoveanu, Jakub Dotlačil1

February 2, 2017

1ACKNOWLEDGMENTS to be inserted here . . . This document has been created with LaTeX and
PythonTex (Poore, 2013). The usual disclaimers apply.

2

Contents

1 Introduction 7
1.1 Using pyactr – people familiar with Python . 7
1.2 Using pyactr – beginners . 7

I Basics of ACT-R and modeling syntactic processing in self-paced reading
tasks 11

2 Basics of ACT-R 13
2.1 Introduction . 13
2.2 Why do we care about ACT-R, and cognitive architectures and modeling in

general . 14
2.3 Knowledge in ACT-R . 16

2.3.1 Representing declarative knowledge: chunks 16
2.3.2 Representing procedural knowledge: productions 17

2.4 The basics of pyactr: declaring chunks . 17
2.5 Modules and buffers . 21
2.6 Writing productions in pyactr . 22
2.7 Running our first model . 25

3

4 CONTENTS

List of Figures

1.1 Opening Bash in PythonAnywhere. 8

5

6 LIST OF FIGURES

Chapter 1

Introduction

– overview of the book, intended audience, getting started (installation instructions etc.)

1.1 Using pyactr – people familiar with Python

If you are familiar with Python, you can install pyactr (the Python package that enables
ACT-R) and proceed to Chapter 2. pyactr is a Python 3 package and can be installed using
pip (for Python 3): type the command below in your terminal.

$ pip3 install pyactr 1

Alternatively, you can download the package here: https://github.com/jakdot/pyactr
and follow the instructions there to install the package.

If you are not familiar with Python, you should consider the steps below.

1.2 Using pyactr – beginners

pyactr is a package for Python 3. To get started, you should consider a web-based service for
Python 3 like PythonAnywhere. In this type of services, computation is hosted on separate
servers and you don’t have to install anything on your computer (of course, you’ll need
Internet access). If you find you like working with Python and pyactr, you can install them
on your computer at a later point together with a good text editor for code – or install an
integrated desktop environment (IDE) for Python – a common choice is pyactr, which comes
with a variety of ways of working interactively with Python (IDE with Spyder as the editor,
anaconda notebooks etc.). But none of this is required to run ipython and the code in this
book.

a. Go to www.pythonanywhere.com and sign up there.

b. You’ll receive a confirmation e-mail. Confirm your account / e-mail address.

c. Log into your account on www.pythonanywhere.com.

7

https://github.com/jakdot/pyactr
www.pythonanywhere.com
www.pythonanywhere.com

8 CHAPTER 1. INTRODUCTION

d. You should see a window like the one below. Click on Bash (below “Start a new Con-
sole”).

Figure 1.1: Opening Bash in PythonAnywhere.

e. In Bash, type:

$ pip3 install --user pyactr 1

This will install pyactr in your Python account (not on your computer). The output of
this command should be similar to this:

Collecting pyactr 1

Downloading pyactr-0.1.9-py3-none-any.whl (50kB) 2

100% 3

Requirement already satisfied (use --upgrade to upgrade): 4

pyparsing in /usr/local/lib/python3.5/dist-packages (from pyactr) 5

Requirement already satisfied (use --upgrade to upgrade): 6

simpy in /usr/local/lib/python3.5/dist-packages (from pyactr) 7

Requirement already satisfied (use --upgrade to upgrade): 8

numpy in /usr/local/lib/python3.5/dist-packages (from pyactr) 9

Installing collected packages: pyactr 10

Successfully installed pyactr 11

f. Go back to Consoles. Start Python by clicking on any version higher than 3.2.

1.2. USING PYACTR – BEGINNERS 9

g. A console should open. Type:

pyactr 1

If no errors appear, you are set and can proceed to Chapter 2. You might get a warning
about the lack of tkinter support and that the simulation GUI is set to false:

import pyactr 1

Ignore it.

Throughout the book, we will introduce and discuss various ACT-R models coded in
Python. You can either type them in line by line or even better, load them as files in your
session on PythonAnywhere. Scripts are uploaded under the tab Files. You should be aware
that the free account of PythonAnywhere allows you to run only two consoles, and there is
a limit on the amount of CPU you might use per day. The limit should suffice for the tutori-
als but if you find this too constraining, you should consider installing Python (Python 3) and

~/.local/lib/python3.5/site-packages/pyactr/simulation.py:10:
UserWarning: Simulation cannot start a new window because tkinter
is not installed. You will have no GUI for environment. If you want
to change that, install tkinter. warnings.warn("Simulation cannot
start a new window because tkinter is not installed. You will have
no GUI for environment. If you want to change that, install tkinter.")

~/.local/lib/python3.5/site-packages/pyactr/simulation.py:11:
UserWarning: Simulation GUI is set to False.

warnings.warn("Simulation GUI is set to False.") on
your computer and running scripts directly there.

10 CHAPTER 1. INTRODUCTION

Part I

Basics of ACT-R and modeling
syntactic processing in self-paced

reading tasks

11

Chapter 2

Basics of ACT-R

2.1 Introduction

Adaptive Control of Thought – Rational (ACT-R1) is a cognitive architecture: it is a the-
ory of the structure of the human mind/brain that explains and predicts human cognition.
The ACT-R theory has been implemented in several programming languages, including Java
(jACT-R, Java ACT-R), Swift (PRIM), Python2 (ccm). The canonical implementation has been
created and is maintained in Lisp. In this book, we will use a novel Python (Python3) imple-
mentation (pyactr). This implementation is very close to the official implementation in Lisp,
so once you learn it you should be able to transfer your skills very quickly to code models
in Lisp ACT-R if you wish to do that. At the same time, since Python is currently much
more widespread than Lisp and has a much larger and more diverse ecosystem of libraries,
coding parts that do not directly pertain to the ACT-R model (like data manipulation / data
munging, interactions with the operating system, displaying simulation results, incorporat-
ing them into tex / pdf documents etc.) are much better supported than in Lisp. Because
of this, the programming language and programming-related issues stand less in the way of
learning ACT-R. You can therefore focus on doing cognitive modeling for linguistic applica-
tions, examining and evaluating your models, and communicating your results, rather than
spending a significant amount of time on issues having to do with the computational tools
you need to run.

This book and the cognitive models we build and discuss are not intended as a compre-
hensive introduction and/or reference manual for ACT-R. For learning the theory behind
ACT-R and its main applications in cognitive psychology, consider Anderson (1990); Ander-
son and Lebiere (1998); Anderson et al. (2004); Anderson (2007) among others. The main
goal of this book is to take a hands-on approach to introducing ACT-R by constructing mod-
els that aim to solve linguistic problems.

We will interleave theoretical notes and pyactr code throughout the book. We will there-
fore often display python code and its associated output in numbered examples and / or
numbered blocks so that we can refer to specific parts of the code / output and link them

1‘Control of thought’ is used here in a descriptive way, similar to the sense of ‘control’ in the notion of ‘control
flow’ in imperative programming languages: it determines the order in which programming statements (or
cognitive actions) are executed / evaluated, and thus captures essential properties of an algorithm and its specific
implementation in a program (or cognitive system). ‘Control of thought’ is definitely not used in a prescriptive
way roughly equivalent to ‘mind control’ / indoctrination.

13

14 CHAPTER 2. BASICS OF ACT-R

to various components of the ACT-R theory or of the linguistic phenomenon or linguistic
analysis we are modeling.

For example, when we want to discuss the code, we will display it as:

(1) pyactr 1

Note the numbers on the far right – we can use them to refer to specific lines of code, e.g.:
the equality in (1), line 1 is true, while the equality in (1), line 2 is false. We will sometime

also include in-line Python code, displayed like this:
2 + 2 == 4
3 + 2 == 6.

When we want to discuss both the code and its output, we will display the code and out-
put in the same way they would appear in your interactive Python interpreter, for example:

[py1] >>> 2 + 2 == 4 1

True 2

>>> 3 + 2 == 6 3

False 4

Once again, all lines are numbered (both the Python code and its output) so that we can
refer back to it.

Examples – whether formulas, linguistic examples, examples of code etc. – are numbered
as shown in (1) above. Blocks of python code meant to be run interactively, together with
their associated output, are numbered separately as shown in [py1] above.

2.2 Why do we care about ACT-R, and cognitive architectures and
modeling in general

Linguistics is part of the larger field of cognitive science. So the answer to the question
“Why do we care about ACT-R and cognitive architectures / modeling in general?” is one
that applies to cognitive sciences in general. Here is one recent formulation of what we
take to be the right answer, taken from chapter 1 of Lewandowsky and Farrell (2010). That
chapter mounts an argument for process models as the proper scientific target to aim for
in the cognitive sciences – roughly, models of human language performance – rather than
characterization models – roughly, models of human language competence. Both process and
characterization models are better than simply descriptive models,

“whose sole purpose is to replace the intricacies of a full data set with a simpler
representation in terms of the model’s parameters. Although those models them-
selves have no psychological content, they may well have compelling psycholog-
ical implications. [Both characterization and process models] seek to illuminate
the workings of the mind, rather than data, but do so to a greatly varying ex-
tent. Models that characterize processes identify and measure cognitive stages,
but they are neutral with respect to the exact mechanics of those stages. [Process]
models, by contrast, describe all cognitive processes in great detail and leave
nothing within their scope unspecified. Other distinctions between models are
possible and have been proposed [. . .], and we make no claim that our classifi-
cation is better than other accounts. Unlike other accounts, however, our three

2.2. WHY DO WE CARE ABOUT ACT-R, AND COGNITIVE ARCHITECTURES AND MODELING IN GENERAL15

classes of models map into three distinct tasks that confront cognitive scientists.
Do we want to describe data? Do we want to identify and characterize broad
stages of processing? Do we want to explain how exactly a set of postulated cog-
nitive processes interact to produce the behavior of interest?” (Lewandowsky
and Farrell, 2010, 25)

The advantages and disadvantages of process (performance) models relative to charac-
terization (competence) models can be summarized as follows:

“Like characterization models, [the power of process models] rests on hypothet-
ical cognitive constructs, but by providing a detailed explanation of those con-
structs, they are no longer neutral. [. . .] At first glance, one might wonder why
not every model belongs to this class. After all, if one can specify a process, why
not do that rather than just identify and characterize it? The answer is twofold.
First, it is not always possible to specify a presumed process at the level of de-
tail required for [a process] model [. . .] Second, there are cases in which a coarse
characterization may be preferable to a detailed specification. For example, it is
vastly more important for a weatherman to know whether it is raining or snow-
ing, rather than being confronted with the exact details of the water molecules’
Brownian motion. Likewise, in psychology [and linguistics!], modeling at this
level has allowed theorists to identify common principles across seemingly dis-
parate areas. That said, we believe that in most instances, cognitive scientists
would ultimately prefer an explanatory process model over mere characteriza-
tion.” (Lewandowsky and Farrell, 2010, 19)

However, there is a more basic reason why generative linguists should consider process
/ performance models in addition to and at the same time as characterization / competence
models. The reason is that a priori, we cannot know whether the best analysis of a linguistic
phenomenon is exclusively a matter of competence or performance or both, in much the
same way that we do not know in advance whether certain phenomena are best analyzed in
syntactic terms or semantic terms or both.2 Such determinations can only be done a posteriori:
a variety of accounts need to be devised first, spanning various points on the competence-
performance spectrum; then they have to be empirically and methodologically evaluated in
specific ways, as accounts of the specific phenomena they target.

Characterization / competence models have been the focus of linguistic theorizing over
the 60 years in which the field of generative linguistics matured, and will rightly continue
to be one of its main foci for the foreseeable future. We believe that the field of generative
linguistics in general – and formal semantics in particular – is now mature enough to start
considering process / performance models in a more systematic fashion.

Our main goal for this book is to enable semanticists to more productively engage with
performance questions related to the linguistic phenomena they investigate. We do this
by making it possible and relatively easy for semanticists, and generative linguists in gen-
eral, to build integrated competence/performance linguistic models that formalize explicit

2We selected syntax and semantics only as a convenient example, since issues at the syntax/semantics inter-
face are by now a staple of generative linguistics. Any other linguistic subdisciplines and their interfaces, e.g.,
phonology or pragmatics, would serve equally well to make the same point.

16 CHAPTER 2. BASICS OF ACT-R

(quantitative) connections between semantic theorizing and experimental data. Our book
should also be of interest to cognitive scientists other than linguists who are interested to see
more ways in which contemporary generative linguistic theorizing can contribute back to
the broader field of cognitive science.

2.3 Knowledge in ACT-R

There are two types of knowledge in ACT-R: declarative knowledge and procedural knowl-
edge (see also Newell 1990).

The declarative knowledge represents our knowledge of facts. For example, if one knows
what the capital of the Netherlands is, this would be represented in one’s declarative knowl-
edge.

Procedural knowledge is knowledge that we display in our behavior (cf. Newell 1973).
It is often the case that our procedural knowledge is internalized, we are aware that we have
it but we would be hard pressed to explicitly and precisely describe it. Driving, swimming,
riding a bicycle are examples of procedural knowledge. Almost all people who can drive
/ swim / ride a bicycle do so in an automatic way. They are able to do it but they might
completely fail to describe how exactly they do it when asked. This distinction is closely
related to the distinction between explicit (‘know that’) and implicit (‘know how’) knowledge
in analytical philosophy (Ryle 1949; Polanyi 1967; see also Davies 2001 and references therein
for more recent discussions).

ACT-R represents these two types of knowledge in two very different ways. The declar-
ative knowledge is instantiated in chunks. The procedural knowledge is instantiated in pro-
duction rules, or productions for short.

2.3.1 Representing declarative knowledge: chunks

Chunks are lists of attribute-value pairs, familiar to linguists acquainted with feature-based
phrase structure grammars (e.g., GPSG, HPSG or LFG). However, in ACT-R, we use the
term slot instead of attribute. For example, we might think of one’s knowledge of the word
carLexeme as a chunk of type WORD with the value /ka:/ for the slot phonology, the value
[[carLexeme]] for the slot meaning, the value noun for the slot category and the value sg (singu-
lar) for the slot number. This is represented in (2) below:

(2) WORD/ka:/ JcarLexemeK

noun

sg

PHONOLOGY MEANING

CATEGORY

NUMBER

The slot values are the primitive elements /ka:/, JcarLexemeK, noun and sg, respectively.
Chunks (complex, non-primitive elements) are boxed, whereas primitive elements are sim-

2.4. THE BASICS OF pyactr: DECLARING CHUNKS 17

ple text. A simple arrow () signifies that the chunk at the start of the arrow has the value
at the end of the arrow in the slot with the name that labels the arrow.

The graph representation in (2) will be useful when we introduce activations and more
generally, ACT-R subsymbolic components (see Chapter ??). The same chunk can be repre-
sented as an attribute-value matrix (AVM), which is much more familiar to linguists. We will
overwhelmingly use AVM representations like the one in (3) from now on.

(3)
WORD

[
PHONOLOGY: /ka:/ meaning: JcarLexemeK category: noun number: sg

]
2.3.2 Representing procedural knowledge: productions

A production is an if -statement. It describes an action that takes place if the if ‘part’ (the
antecedent clause) is satisfied; this is why we think of such productions / conditionals as
〈precondition, action〉 pairs. For example, agreement on a verb can be (abstractly) expressed
as follows: if the subject number in the sentence currently under construction is sg (precon-
dition), then check that the verb number in the sentence is sg (action). Of course, this is only
half of the story – another production rule would state a similar 〈precondition, action〉 pair
for pl number. Thus, the basic idea behind production rules is that the if ‘part’ specify pre-
conditions and if these preconditions are true, then the action specified in the ‘then’ part of
the rule is triggered.

Having two rules to specify subject-verb agreement – as we suggested in the previous
paragraph – might seem like a cumbersome way of specifying agreement that misses a gen-
eralization: the fact is that the two rules are really just one rule with two distinct values for
the number morphology. Could we then just state that the verb should have the same num-
ber specification as the subject? ACT-R in fact allows us to state just that if we use variables.
A variable is assigned a value in the precondition part of a production and it has that same
value in the action part, i.e., the scope of any variable assignment is the production rule in
which that assignment happens. Given that (and given the convention that variables are
signaled in ACT-R using ‘=’), we can write: if the subject number in the sentence currently
under construction is = x, then check that the number specification on the (main) verb of the
sentence is also = x.

2.4 The basics of 2 + 2 == 4: declaring chunks

We introduce the remainder of the ACT-R architecture by discussing its implementation in
pyactr. In this section, we describe the details of declarative knowledge in ACT-R and the
implementation of those details in pyactr. We will then turn to a discussion of modules
and buffers, which are the building blocks of the mind in ACT-R (section §??). After this,
we can finally turn to the second type of knowledge in ACT-R: procedural knowledge /
productions.

To use pyactr, we have to import the relevant package:

[py2] >>> import pyactr as actr 1

We use the pyactr keyword so that every time we use functions etc. from the as package,
we can access them by simply invoking pyactr instead of the longer actr.

18 CHAPTER 2. BASICS OF ACT-R

Chunks / feature structures are typed (see Carpenter 1992 for an in-depth discussion of
typed feature structures): before introducing a specific chunk, we need to specify a chunk
type and all the slots / attributes that chunk type has. This is just good housekeeping: by
declaring the type and attributes associated with the type, we are clear from the start about
the kind of objects we assume declarative memory stores.

Let’s create a chunk type that will correspond to our lexical knowledge. We don’t strive
here for a linguistically realistic theory of lexical representations, we just want to get things
off the ground and show the inner workings of ACT-R and PYACTR:

[py3] >>> actr.chunktype("word", "phonology, meaning, category, number") 1

The function pyactr creates a type chunktype, which consists of the following slots: word,
phonology, meaning, category. The type, namely number, is the first argument of the func-
tion; the list of slots, with the slots separated by commas, is the second argument. After
declaring the chunk type, we can create new chunks of this type.

[py4] >>> carLexeme = actr.makechunk(nameofchunk="car",\ 1

... typename="word",\ 2

... phonology="/ka:/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg") 6

>>> print(carLexeme) 7

word(category= noun, meaning= [[car]], number= sg, phonology= /ka:/) 8

The chunk is created using the function "word". Every makechunk has two fixed argu-
ments: makechunk ([py4], line 1) and nameofchunk ([py4], line 2). Other than these two slots
(with their corresponding values), the chunk consists of whatever slot-value pairs we need
it to contain – and they are specified as shown in [py4], lines 3-6. In general, we do not have
to specify all the slots that a chunk of a particular type should have; the unspecified slots
will be empty. If you want to inspect a chunk, you can print it – as shown in [py4], line 7.
Note that the order of slot-value pairs is different than the one we used when we declared
the chunk: we defined typename first (line 3), but that slot appears last in the output on line
8. This is because chunks are unordered lists of slot-value pairs, and Python assumes an
arbitrary (alphabetic) ordering when printing chunks.

Specifying chunk types is optional. In fact, the information contained in the chunk type
is relevant for phonology, but it has no theoretical significance in ACT-R – it is just ‘syntactic
sugar’. However, it is recommended to always declare a chunk type before instantiating
chunk of that type; declaring types clarifies what kind of AVMs are needed in your model
and provide a clear link between the phenomena and generalizations we are trying to model
and the computational model itself. For this reason, if we don’t specify the chunk type
before declaring a chunk, pyactr will print a warning message. Among other things, this
might help you debug your code – e.g., if you accidentally named your chunk type pyactr
instead of the type "morphreme" you previously declared, you would get a warning message
that a new chunk type has been created. We will not display warnings in the code output for
the remainder of the book.3

3See the "morpheme" and Python 3 documentation for more on warnings.

2.4. THE BASICS OF isa: DECLARING CHUNKS 19

It is also recommended that you only use attributes you defined in your chunk type
declaration – or when you first used a chunk of a particular type. However, you can always
add new attributes along the way if you need to: pyactr will assume that all the previously
declared chunks of the same type had no value for those attributes. For example, imagine
we realize half-way through our modeling sesssion that it would be useful to specify what
syntactic function a word has (something like the argument structure attribute ARG-ST in
HPSG). We didn’t have that slot in our pyactr chunk. So let’s create a new chunk carLexeme,
which is like carLexeme2 except it adds this extra piece of information in the slot carLexeme.
We will assume that the syncat value of syncat is carLexeme2:

[py5] >>> carLexeme2 = actr.makechunk(nameofchunk="car2",\ 1

... typename="word",\ 2

... phonology="/ka:/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg",\ 6

... syncat="subject") 7

>>> print(carLexeme2) 8

word(category= noun, meaning= [[car]], number= sg, phonology= /ka:/, 9

syncat= subject) 10

Line 7 in [py5] is the new part. We are adding a new slot "subject", and assign it the
value syncat. The command goes through successfully, as shown by the fact that we can
print "subject"), but a warning message is issued (not displayed above): UserWarning:
Chunk type word is extended with new attributes.

Another, perhaps more intuitive, way of specifying a chunk uses the function carLexeme2.
When declaring chunks with chunkstring, the chunk type is provided as the value of the
chunkstring-attribute. The rest of the 〈slot, value〉 pairs are listed immediately after that,
separated by commas. A 〈slot, value〉 pair is specified by separating the slot and value with
a blank space.

[py6] >>> carLexeme3 = actr.chunkstring(string=""" 1

... isa word 2

... phonology ’/ka:/’ 3

... meaning ’[[car]]’ 4

... category ’noun’ 5

... number ’sg’ 6

... syncat ’subject’""") 7

>>> print(carLexeme3) 8

word(category= noun, meaning= [[car]], number= sg, phonology= /ka:/, 9

syncat= subject) 10

The function isa provides the same functionality as chunkstring. The argument makechunk
defines what the chunk consists of. The value pairs are written as a plain string. Notice that
we use three quote marks, rather than one. These signal to Python that the string can ap-
pear on more than one line. The first slot-value pair ([py6], line 2) is special – it specifies the

20 CHAPTER 2. BASICS OF ACT-R

type of chunk, and a special slot is used for this, string. Notice that the resulting chunk is
identical to the previous one, as shown on [py6], line 8.

Defining chunks as feature structures / AVMs induces a natural notion of identity and
information-based ordering over the space of all chunks. A chunk is identical to another
chunk if and only if (iff) they have the same attributes and the same values for those at-
tributes. A chunk is a part of (less informative than) another chunk if the latter includes all
the 〈slot, value〉 pairs of the former and possibly more. PYACTR overloads standard compari-
son operators for these tasks, as shown below:

[py7] >>> carLexeme2 == carLexeme2 1

True 2

>>> carLexeme == carLexeme2 3

False 4

>>> carLexeme <= carLexeme2 5

True 6

>>> carLexeme < carLexeme2 7

True 8

>>> carLexeme2 < carLexeme 9

False 10

Note that chunk types are irrelevant for deciding identity or part-of relations. This might
be counter-intuitive, but that’s an essential feature of ACT-R works: chunk types are ‘syn-
tactic sugar’ useful only for the human modeler. This means that if we define a new chunk
type that happens to have the same slots as another chunk type, chunks of one type might
be identical to or part of chunks of the other type:

[py8] >>> actr.chunktype("synlabel", "category") 1

>>> noun = actr.makechunk(nameofchunk="noun", 2

... typename="synlabel", 3

... category="noun") 4

>>> noun < carLexeme 5

True 6

>>> noun < carLexeme2 7

True 8

!!! add content addressable memory to motivate chunk identity !!! add parallel vs. serial
to motivate serial production application and single-chunk buffers !!! why a new implemen-
tation in Python: LISP implementation not easy to learn (Python is much more common)
and not easy to interface (many more libraries in the Python ecosystem); also, ACT-R is a
mathematical theory, not a black-box like software package; it can be easily reimplemented;
the Python 2 ACT-R version wasn’t trivial to update / refine, it wasn’t aligned with the basic
LISP ACT-R syntax and it’s subsymbolic systems were not fully behaving in the LISP ACT-R
way

2.5. MODULES AND BUFFERS 21

2.5 Modules and buffers

Chunks do not live in a vacuum, they are always part of an ACT-R mental architecture.
The ACT-R building blocks for the human mind are modules and buffers. Each module in
ACT-R serves a different mental function. But these modules cannot be accessed or updated
directly: input/output operations associated with a module are always mediated by a buffer
– and each module comes equipped with one such buffer (think of it as the input/output
interface for that mental module). A buffer is a limited throughput capacity: at any given
time, it can carry only one chunk.

For ACT-R, the human mind is a specific system of modules and associated buffers within
and across which chunks are stored and transacted. This flow of information is driven by
productions. In this chapter, we will be concerned with only two major components of (the
ACT-R architecture for) the human mind: procedural memory and declarative memory. Pro-
cedural memory stores productions. It is technically speaking a module, but it is the core /
control module for human cognition so it does not have to be explicitly declared because is
always assumed to be part of any mental architecture. The buffer associated with the pro-
cedural module is the goal buffer (the ACT-R view of human higher cognition is that it is
fundamentally goal driven). Declarative memory stores chunks, and the buffer associated
with the declarative memory module is the retrieval buffer.

Let’s build a mind. The first thing we need to do is to create a container for the mind,
which in pyactr terminology is a model:

[py9] >>> agreement = actr.ACTRModel() 1

The mind we intend to build is simply supposed to check for number agreement, hence
the name of the variable for the ACT-R model (pyactr). We can now start fleshing out the
anatomy and physiology of this very simple agreeing mind. That is, we will add information
about modules, buffers, chunks and productions.

As mentioned above, any ACT-R model has a procedural memory module, but for con-
venience it also comes equipped by default with a declarative memory module and the goal
and retrieval buffers. When initialized, these buffers/modules are empty. We can check that
for declarative memory, for example:

[py10] >>> agreement.decmem 1

{} 2

agreement is an attribute of our decmem ACT-R model, and it stores the declarative mem-
ory module. The agreement and retrieval attributes store the retrieval and the goal buffer,
respectively.

[py11] >>> agreement.goal 1

set() 2

>>> agreement.retrieval 3

set() 4

It is convenient to have a shorter alias for the declarative memory module, which we can
do by introducing a new variable goal and assigning it the dm module:

22 CHAPTER 2. BASICS OF ACT-R

[py12] >>> dm = agreement.decmem 1

We might want to add a chunk to our declarative memory, e.g., our decmem chunk. We
add chunks by invoking the carLexeme2 method associated with the declarative memory
module; the argument of this function call is the chunk that should be added:

[py13] >>> dm.add(carLexeme2) 1

>>> print(dm) 2

{word(category= noun, meaning= [[car]], number= sg, phonology= /ka:/, 3

syncat= subject): {0.0}} 4

Note that when we inspect add, we can see the chunk we just added. The chunk encoding
is associated with the simulation time of the encoding. Since we have not yet run the model
/ started the model simulation, that time is 0.

2.6 Writing productions in dm

Recall that productions are essentially conditionals (if -statements), with the preconditions
that need to be satisfied in the antecedent of the conditional and the action that is triggered if
the preconditions are satisfied in the consequent. Consequently, productions have two parts:
the preconditions precede the double arrow (pyactr) and the actions follow the arrow.

Let’s now add some productions to our model that simulate a basic form of verb agree-
ment.4 Our model of subject-verb agreement will be blatantly oversimplified, but for now
we focus on assembling and getting off the ground the basic architecture of the model /
mind rather than on realistic processing models of linguistic behavior. We restrict ourselves
to agreement in number for 3rd person present tense verbs. We make no attempt to model
syntactic parsing, we will just assume that our declarative memory stores the subject of the
clause and the current verb is already present in the goal buffer, where it is being actively
assembled/specified.

What should agreement do? One production should state that if the goal buffer has a
chunk of category ‘verb’ in it and the current task is to agree, then the subject should be
retrieved. The second production should state that if the number specification on the subject
in the retrieval buffer is ==>, then the number of the verb in the goal buffer should be the
same, namely is =x (recall that the = sign before a string indicates that the string is the name
of a variable). The third rule should say that if the verb is assigned a number, the task is
done.

Let’s start with the first production: noun retrieval. As shown in ([py14]), line 1 below,
we give the production a descriptive name =x that will make the simulation output more
readable. In general, productions are created by the method "retrieve" associated with our
ACT-R model, and they have two arguments (there is actually a third argument; more on
that later): productionstring (the name of the production) and name, which provides the
actual content of the production.

[py14] >>> agreement.productionstring(name="retrieve", string=""" 1

... =g> 2

4See the appendix to this chapter.

2.6. WRITING PRODUCTIONS IN ’noun’ 23

... isa goal_lexeme 3

... category ’verb’ 4

... task agree 5

... ?retrieval> 6

... buffer empty 7

... ==> 8

... =g> 9

... isa goal_lexeme 10

... task trigger_agreement 11

... category ’verb’ 12

... +retrieval> 13

... isa word 14

... category ’noun’ 15

... syncat ’subject’ 16

... """) 17

{’=g’: goal_lexeme(category= verb, task= agree), ’?retrieval’: {’buffer’: 18

’empty’}} 19

==> 20

{’=g’: goal_lexeme(category= verb, task= trigger_agreement), ’+retrieval’: 21

word(category= noun, meaning= , number= , phonology= , syncat= subject)} 22

The preconditions (left hand side of the rule / antecedent of the conditional) and the ac-
tions (right hand side of the rule / consequent of the conditional) are separated by string on
line 8 of [py14] above. The rule has two preconditions. The first one starts on line 2: ==> indi-
cates that this precondition will check that the chunk currently stored in the goal buffer (that
what =g> encodes) is (that’s what g encodes) of a particular kind: the chunk has to be a = (line
3) of category goal_lexeme (line 4), and the current task for this lexeme should be ’verb’
(line 5). The second precondition starts on line 6: agree indicates that this precondition will
check whether the ?retrieval> buffer is in a certain state (retrieval). The state is specified
on line 7: the retrieval buffer needs to be ? (no chunk should be stored there). In general, we
can check for a variety of states that buffers could be in, for example: empty checks whether
the goal buffer is full (whether it carries a chunk), ’?g> buffer full’ checks if the retrieval
buffer is working on retrieving a chunk, and ’?retrieval> state busy’ checks if the last
retrieval has failed (no chunk has been found).

If these two preconditions are met, the rule triggers two actions. The first action is stated
starting on line 9 of [py14]: we modify the ’?retrieval> state error’ chunk by changing
the current task from goal_lexeme to agree; the other features of the trigger_agreement
chunk remain the same. And the triggered agreement on the goal_lexeme chunk needs to
identify a subject noun so that it can agree with that noun in number. Which leads us to the
second action, starting on line 13: goal_lexeme indicates that we access the retrieval buffer
(recall that we just verified that this buffer is empty) and we add a new chunk to it (that’s
what +retrieval> means). This chunk is our memory cue / query: we want to retrieve from
declarative memory a chunk of type + that is a word and a ’noun’.5

5Strictly speaking, it is not necessary to ensure that the retrieval buffer is empty before placing a retrieval
request. The model would work just as well if the retrieval buffer is non-empty – the buffer would just be
flushed first, and the memory cue would then be placed in it.

24 CHAPTER 2. BASICS OF ACT-R

Memory queries / cues always consist of chunks, i.e., feature structures, and the retrieval
process asks the declarative memory module to provide a larger chunk that the cue chunk is
a part of. In our specific case, the cue requests the retrieval of a chunk that has at least the
following 〈slot, value〉 pairs: the chunk should be of type ’subject’, its category should be
PYACTR and its syntactic category should be word.

We are now in a state in which a subject noun will be retrieved from declarative memory
and placed in the retrieval buffer, and the goal lexeme is in an ‘active’ state of triggered
agreement. The second production rule performs the agreement:

[py15] >>> agreement.productionstring(name="agree", string=""" 1

... =g> 2

... isa goal_lexeme 3

... task trigger_agreement 4

... category ’verb’ 5

... =retrieval> 6

... isa word 7

... category ’noun’ 8

... syncat ’subject’ 9

... number =x 10

... ==> 11

... =g> 12

... isa goal_lexeme 13

... task done 14

... category ’verb’ 15

... number =x 16

... """) 17

{’=g’: goal_lexeme(category= verb, task= trigger_agreement), ’=retrieval’: 18

word(category= noun, meaning= , number= =x, phonology= , syncat= 19

subject)} 20

==> 21

{’=g’: goal_lexeme(category= verb, number= =x, task= done)} 22

The two preconditions of the rule in [py15] above ensure that we are in the correct state:

• lines 2-5: the chunk in the goal buffer is (’subject’) a = of category goal_lexeme that
is in an active state of agreeing (the current task is ’verb’)

• lines 6-10: the chunk in the retrieval buffer is (trigger_agreement) a = of category
word that is a ’noun’ and that has a number specification; call that number specification
(whatever it is) ’subject’ (more precisely: take that number specification and assign it
as value to the variable =x; we mark variable names in ACT-R by prefixing their names
with x)

After checking we are in the correct state, we trigger the agreeing action: lines 12-16 in
[py15] tell us that the chunk that is currently in the goal buffer should be maintained there
(the = sign in = on line 12) and its feature structure should be updated as follows: the type
and category should stay the same (=g> and goal_lexeme, respectively), but a new number

2.7. RUNNING OUR FIRST MODEL 25

specification should be added that has the same number specification ’verb’ as the subject
noun we have retrieved from declarative memory. This completes the agreement operation,
so the task on the agreeing goal lexeme should also be updated and marked as =x.

The third and final production rule just mops things up: we are done, so the goal buffer
is flushed and our simulation can end.

[py16] >>> agreement.productionstring(name="done", string=""" 1

... =g> 2

... isa goal_lexeme 3

... task done 4

... category ’verb’ 5

... number =x 6

... ==> 7

... ~g>""") 8

{’=g’: goal_lexeme(category= verb, number= =x, task= done)} 9

==> 10

{’~g’: None} 11

The action on line 8 in [py16], namely done, simply discards the chunk present in the goal
buffer.

2.7 Running our first model

To start running the agreement model, we just have to add an appropriate chunk to the goal
buffer. Recall that the ACT-R view of higher cognition is that it is goal-driven: if there is no
goal, no productions will fire and the mind will not change state. We do this in [py17] below:
we first declare our ~g> type (line 1 in [py17]) and then add one such chunk to the goal buffer
(lines 2-5; chunk are always added to buffers / modules using the method goal_lexeme). We
check that the chunk has been added to the goal buffer by printing its contents (line 6); note
that the number specification on line 7 is empty.

[py17] >>> actr.chunktype("goal_lexeme", "task, category, number") 1

>>> agreement.goal.add(actr.chunkstring(string=""" 2

... isa goal_lexeme 3

... task agree 4

... category ’verb’""")) 5

>>> agreement.goal 6

{goal_lexeme(category= verb, number= , task= agree)} 7

We can now run the model by invoking the add method (with no arguments) – line 1 in
[py18] below; this takes the model specification and initializes various parameters as dictated
by the model specification (e.g., simulation start time). We can then execute one run of the
simulation, as shown on line 2 in [py18].

[py18] >>> simulation = agreement.simulation() 1

>>> simulation.run() 2

26 CHAPTER 2. BASICS OF ACT-R

(0, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 3

(0, ’PROCEDURAL’, ’RULE SELECTED: retrieve’) 4

(0.05, ’PROCEDURAL’, ’RULE FIRED: retrieve’) 5

(0.05, ’g’, ’MODIFIED’) 6

(0.05, ’retrieval’, ’START RETRIEVAL’) 7

(0.05, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 8

(0.05, ’PROCEDURAL’, ’NO RULE FOUND’) 9

(0.1, ’retrieval’, ’CLEARED’) 10

(0.1, ’retrieval’, ’RETRIEVED: word(category= noun, meaning= [[car]], 11

number= sg, phonology= /ka:/, syncat= subject)’) 12

(0.1, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 13

(0.1, ’PROCEDURAL’, ’RULE SELECTED: agree’) 14

(0.15, ’PROCEDURAL’, ’RULE FIRED: agree’) 15

(0.15, ’g’, ’MODIFIED’) 16

(0.15, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 17

(0.15, ’PROCEDURAL’, ’RULE SELECTED: done’) 18

(0.2, ’PROCEDURAL’, ’RULE FIRED: done’) 19

(0.2, ’g’, ’CLEARED’) 20

(0.2, ’PROCEDURAL’, ’CONFLICT RESOLUTION’) 21

(0.2, ’PROCEDURAL’, ’NO RULE FOUND’) 22

The output of the simulation command is the temporal trace of our model simulation.
Each line specifies three elements: the first element is simulation time (in seconds); the sec-
ond element is the module that is affected; and the third element is a description of what is
happening to the module. Every cognitive step in the model takes by default 50 ms, i.e., 0.05
seconds.

The first line of our temporal trace (line 3 in [py18]) states that conflict resolution is taking
place in the procedural memory module (i.e., the module where all the production rules
reside); this happens at simulation time 0. We will talk more about conflict resolution in due
time; the main function of ‘conflict resolution’ is to examine the current state of the mind
(basically, the state of the buffers in our model) and to determine if any production rule
can apply, i.e., if the current state of the mind satisfies the preconditions of any production
rule. If the preconditions of multiple rules are satisfied, we have a conflict because only one
production rule can fire at any given time; in that case, we need to select one rule (‘resolve
the conflict’).

‘Conflict resolution’ is particularly simple in the present case: given the state of the goal
and retrieval buffers, only one rule can apply – our first production rule, which we named
run() in [py14] above; the rules is selected, as shown in [py18], line 4. The rule fires, and this
takes the ACT-R default time of 50 ms – [py18], line 5. The state of our mind has changed as
this time, and the following lines report on that new state: the goal buffer has been modified
(line 6; the goal lexeme has entered the active retrieve state) and the retrieval buffer has
started a memory retrieval procedure, which will take time to complete. The procedure
module then looks for production rules to apply, and none can be fired in the current mental
state (lines 8 and 9).

We therefore advance to the next simulation time (100 ms): at this point, the memory
retrieval has been completed (line 10) and the retrieved chunk is reported (lines 11-12). Since

2.7. RUNNING OUR FIRST MODEL 27

the mind is now in a new state, the conflict resolution procedure (rule collection & rule
selection) yields one new rule that can fire (lines 13-14), namely the second production rule
we discussed in [py15] above that we named trigger_agreement. The agree rule takes 50
ms to fire, so after a total simulation time of 150 ms (time 0.15), the rule has fired (line 15) and
the chunk in the goal buffer has been modified: its number specification has been updated
so that it is now the same number as the noun chunk in the retrieval buffer.

Agreement has been performed, so the third and final production rule is selected (lines
17-18). The rule takes 50 ms to fire, so at time 0.2 the goal buffer is cleared, and no further
rule can apply (lines 19-22).

When the goal buffer is cleared, the information stored in there does not disappear. The
ACT-R architecture specifies that the cleared information is automatically transferred to the
declarative memory. This is also the case here: our past goals become our present (newly
acquired) memory facts. We check the final state of the declarative memory to see that this
is indeed the case:

[py19] >>> dm 1

{goal_lexeme(category= verb, number= sg, task= done): {0.2}, word(category= 2

noun, meaning= [[car]], number= sg, phonology= /ka:/, syncat= subject): 3

{0.0}} 4

And that’s it: at its core, this is a simple framework for building process models. It is
overly simplistic in many ways, but the main point is: we can now build explicit computa-
tional models for linguistic processes and behaviors. It is very similar to classical first and
higher order logic: they are simple systems, and in many ways overly simplistic; but we can
now start thing about natural language meaning and interpretation.

28 CHAPTER 2. BASICS OF ACT-R

Appendix: The agreement model

File ch2_agreement.py:

""" 1

A basic model that simulates subject-verb agreement. 2

We abstract away from syntactic parsing, among other things. 3

""" 4

5

import pyactr as actr 6

import random 7

8

actr.chunktype("word", "phonology, meaning, category, number, syncat") 9

actr.chunktype("goal_lexeme", "task, category, number") 10

11

carLexeme = actr.makechunk(12

nameofchunk="car", 13

typename="word", 14

phonology="/ka:/", 15

meaning="[[car]]", 16

category="noun", 17

number="sg", 18

syncat="subject") 19

20

agreement = actr.ACTRModel() 21

22

dm = agreement.decmem 23

dm.add(carLexeme) 24

25

agreement.goal.add(actr.chunkstring(string=""" 26

isa goal_lexeme 27

task agree 28

category ’verb’""")) 29

30

agreement.productionstring(name="retrieve", string=""" 31

=g> 32

isa goal_lexeme 33

category ’verb’ 34

task agree 35

?retrieval> 36

buffer empty 37

==> 38

=g> 39

isa goal_lexeme 40

task trigger_agreement 41

category ’verb’ 42

2.7. RUNNING OUR FIRST MODEL 29

+retrieval> 43

isa word 44

category ’noun’ 45

syncat ’subject’ 46

""") 47

48

agreement.productionstring(name="agree", string=""" 49

=g> 50

isa goal_lexeme 51

task trigger_agreement 52

category ’verb’ 53

=retrieval> 54

isa word 55

category ’noun’ 56

syncat ’subject’ 57

number =x 58

==> 59

=g> 60

isa goal_lexeme 61

task done 62

category ’verb’ 63

number =x 64

""") 65

66

agreement.productionstring(name="done", string=""" 67

=g> 68

isa goal_lexeme 69

task done 70

category ’verb’ 71

number =x 72

==> 73

~g>""") 74

75

if __name__ == "__main__": 76

x = agreement.simulation() 77

x.run() 78

30 CHAPTER 2. BASICS OF ACT-R

Bibliography

Anderson, John R. 1990. The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Anderson, John R. 2007. How can the human mind occur in the physical universe?. Oxford
University Press.

Anderson, John R., Daniel Bothell, and Michael D. Byrne. 2004. An integrated theory of the
mind. Psychological Review 111:1036–1060.

Anderson, John R., and Christian Lebiere. 1998. The atomic components of thought. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Carpenter, Bob. 1992. The logic of typed feature structures. New York, NY, USA: Cambridge
University Press.

Davies, Martin. 2001. Knowledge (explicit and implicit): Philosophical aspects. In Interna-
tional encyclopedia of the social and behavioral sciences, ed. N. J. Smelser and B. Baltes, 8126–
8132. Elsevier.

Forster, Kenneth I. 1990. Lexical processing.. The MIT Press.

Frazier, Lyn, and Janet Dean Fodor. 1978. The sausage machine: A new two-stage parsing
model. Cognition 6:291–325.

Fuchs, Albert. 1971. The saccadic system. The control of eye movements 343–362.

Hale, John. 2011. What a rational parser would do. Cognitive Science 35:399–443.

Hale, John T. 2014. Automaton theories of human sentence comprehension. Stanford: CSLI Publi-
cations.

Just, Marcel A., and Patricia A. Carpenter. 1980. A theory of reading: From eye fixations to
comprehension. Psychological Review 87:329–354.

Just, Marcel A., Patricia A. Carpenter, and Jacqueline D. Woolley. 1982. Paradigms and pro-
cesses in reading comprehension. Journal of Experimental Psychology: General 111:228–238.

Lewandowsky, S., and S. Farrell. 2010. Computational modeling in cognition: Principles and
practice. Thousand Oaks, CA, USA: SAGE Publications.

31

32 BIBLIOGRAPHY

Lewis, Richard, and Shravan Vasishth. 2005. An activation-based model of sentence process-
ing as skilled memory retrieval. Cognitive Science 29:1–45.

Marslen-Wilson, William. 1973. Linguistic structure and speech shadowing at very short
latencies. Nature 244:522–523.

Meyer, David E, and David E Kieras. 1997. A computational theory of executive cognitive
processes and multiple-task performance: Part i. basic mechanisms. Psychological review
104:3.

Murray, Wayne S, and Kenneth I Forster. 2004. Serial mechanisms in lexical access: the rank
hypothesis. Psychological Review 111:721.

Newell, A. 1990. Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, Alan. 1973. Production systems: Models of control structures. In Visual information
processing, ed. W.G. Chase et al., 463–526. New York: Academic Press.

Polanyi, Michael. 1967. The tacit dimension. London: Routledge and Kegan Paul.

Poore, Geoffrey M. 2013. Reproducible documents with pythontex. In Proceedings of the 12th
Python in Science Conference, ed. Stéfan van der Walt, Jarrod Millman, and Katy Huff, 78–84.

Rayner, Keith. 1998. Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin 124:372–422.

Reichle, Erik D, Alexander Pollatsek, Donald L Fisher, and Keith Rayner. 1998. Toward a
model of eye movement control in reading. Psychological review 105:125.

Resnik, Philip. 1992. Left-corner parsing and psychological plausibility. In Proceedings of the
Fourteenth International Conference on Computational Linguistics. Nantes, France.

Ryle, Gilbert. 1949. The concept of mind. London: Hutchinson’s University Library.

Salvucci, Dario D. 2001. An integrated model of eye movements and visual encoding. Cog-
nitive Systems Research 1:201–220.

Schilling, Hildur EH, Keith Rayner, and James I Chumbley. 1998. Comparing naming, lex-
ical decision, and eye fixation times: Word frequency effects and individual differences.
Memory & Cognition 26:1270–1281.

Staub, Adrian. 2011. Word recognition and syntactic attachment in reading: Evidence for a
staged architecture. Journal of Experimental Psychology: General 140:407–433.

Steedman, Mark. 2001. The syntactic process. Cambridge, MA: MIT Press.

Tanenhaus, M. K., M. J. Spivey-Knowlton, K. M. Eberhard, and J. C. Sedivy. 1995. Integration
of visual and linguistic information in spoken language comprehension. Science 268:1632–
1634.

	Introduction
	Using pyactr – people familiar with Python
	Using pyactr – beginners

	I Basics of ACT-R and modeling syntactic processing in self-paced reading tasks
	Basics of ACT-R
	Introduction
	Why do we care about ACT-R, and cognitive architectures and modeling in general
	Knowledge in ACT-R
	Representing declarative knowledge: chunks
	Representing procedural knowledge: productions

	The basics of pyactr: declaring chunks
	Modules and buffers
	Writing productions in pyactr
	Running our first model

