

AcqKnowledge File Format
AS COMPLEX AS THE OCEAN IS DEEP 😊

Mike Davison | Independent Developer | 2017

PAGE 1

Copyright and Disclaimer

BIOPAC and AcqKnowledge™ are trademarks of BIOPAC Systems, Inc. The author of

this information has no affiliation with BIOPAC Systems, Inc, and that company neither

supports nor endorses any of the information contained within.

The information about structure of the *.acq files was developed using various sources

of information as listed below. Many parts of the file structure are based on

experimentation and pure guess work. Therefore, under the terms of the GNU General

Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version, this document is distributed free in the

hope that it will be useful but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

NOTE: THIS DOCUMENT IS WORK IN PROGRESS. NOT FOR GENERAL

DISTRIBUTION.

Acknowledgements

“If I have seen a little further it is by standing on the shoulders of Giants."

Isaac Newton 1676

I cannot claim to creating this information in isolation. Many thanks to the following

sources for information and inspiration.

− Application Note 156 from BIOPAC.

− BIOREAD developed by Nate Vack and John Ollinger.

− BLINKY developed by Mike Davison for Murdoch University.

Many non-thanks to BIOPAC for not publishing the file formats of later versions. We can

only hope…

http://www.biopac.com/Manuals/app_pdf/app156.pdf
https://github.com/njvack/bioread

PAGE 2

Table of Contents

Copyright and Disclaimer .. 1

Acknowledgements ... 1

Introduction ... 5

ENDIAN or endian ... 7

General File Structure ... 8

Common Elements .. 8

Unknown Fields ... 10

Unknown Blocks .. 11

4 byte blocks. ... 11

8 Byte Blocks. .. 11

10 Byte Blocks. .. 11

12 Byte Blocks. .. 11

Compressed Data .. 11

Embedded Files and Objects ... 12

Graph data .. 12

Uncompressed Data .. 12

Compressed Data .. 13

Data Types .. 15

Data Structures ... 15

Graph Header (Sequence 1) .. 15

Purpose.. 15

Structure .. 15

Special Notes ... 19

Unknown (Sequence 2) ... 20

Channel Header (Sequence 3) .. 20

Special Notes ... 21

Foreign Data (Sequence 4) .. 22

Channel Type Header (Sequence 5) ... 22

Channel Data (Sequence 6) .. 22

Marker Header (Sequence 7) .. 23

PAGE 3

Marker Item (Sequence 8) ... 23

Version 3 marker structure. .. 23

Version 4 marker structure. .. 23

Version 4 Marker Types ... 24

Marker Header 2 (Sequence 9).. 28

Extra Marker Item Configuration (Sequence 10) .. 28

Journal (Sequence 11) .. 29

Version 3 Journal ... 29

Version 4 Early Journal .. 29

Version 4 Late Journal ... 30

Journal Objects (Sequence 12).. 31

Unknown Header (Sequence 13) ... 32

Snapshots (Sequence 14) .. 32

Snapshot Master Header ... 32

Snapshot Header ... 33

Dataset Compression Header .. 33

Compressed Graph Information Header ... 34

Measurement (Sequence 15) .. 35

AutoMarker Header (Sequence 16) ... 35

AutoMarker (Sequence 17) .. 35

Unknown Blocks (Sequence 18-22) ... 36

PDF HEADER (Sequence 23) ... 36

PDF Objects (Sequence 24) .. 37

Unknown Block (Sequence 25) .. 37

Key Values (Sequence 26) .. 37

Text Annotations (Sequence 27) .. 37

Unknown Block (Sequence 28) .. 38

MEDIA (Sequence 29) ... 38

GRaph History (Sequence 30) ... 38

Unknown Block (Sequence 31) .. 39

Unknown Block (Sequence 32) .. 39

Focus Area (Sequence 33) .. 39

PAGE 4

Timers (Sequence 34) ... 40

Output Control Presets (Sequence 35) .. 40

Final Block Foreign Data.. 41

Purpose.. 41

Structure .. 41

PAGE 5

Introduction

BIOPAC's AcqKnowledge™ software saves its files in a complex binary file format that

follows some order of structure, however much of the details of structures are

undocumented and mysterious. Older file versions up to 3.9.1 were partially documented

in BIOPAC’s Application Note 156. As of writing this document AcqKnowledge™ is now

up to release version 5.0.1, so there is a huge gap in information for later versions.

Fortunately, trailblazers before me made inroads by spending hours analyzing the file

structures using hex editors so there I more information now available. I have myself

messed around trying to fathom the structures and have collated the information created

by myself and others, along with blind guessing into one source document. Please note

that this document is work in progress so I strongly encourage you to test the structure

yourself.

The most frustrating aspect of interpreting the file structure is that it appears to be

created by “committee” with little defined standards for data structures. By data

structures I mean the configuration and parameter data structures as well as the raw

collected data. In addition, there is a mixture of configurations, collected data,

attachments, but not necessarily in any logical order.

Another bugbear is having no consistency over the structure of some fields such as text

strings and boolean values.

For some reason string information is stored in one of three ways:

- Fixed length. A set number of bytes are stored.

- Variable length null terminated. These strings are stored as bytes terminated by

a zero byte.

- Declared length (with or without null termination). A string length is specified

usually as an int16 or int32 prior to the text followed by utf-8 text bytes.

Sometimes string length includes the null termination zero byte, other times the

length excludes the trailing zero byte, and other times there is no zero byte.

Boolean values are equally a challenge. Even in application notes app151 there is

evidence of inconsistency way back to early version 3 releases. Boolean values are

either 2 byte short or a 4 byte int. In most cases a true is represented by the value 1 and

false by the value 0. However, there are cases where the boolean value false is

sometimes represented by -1 (0xFF).

The next challenge is that in earlier versions of files numbers are stored in little endian

order whereas later versions are stored big endian. The byte order also changes

depending on what platform the application runs on (windows, mac etc).

PAGE 6

And finally, in later versions some configuration data is stored as binary whilst others are

stored as XML.

After all of the hurdles I think we have sufficient understanding of the structure to provide

reasonably accurate interpretation. If you do use this information to write your own file

reader application, hopefully it will be of use, but I strongly recommend you spend a lot

of time testing and debugging.

Again, I repeat…. NO GUARANTEES OR WARRANTIES EXPRESSED OR IMPLIED

AS TO THE ACCURACY OR USABILITY OF THIS INFORMATION

Onwards!!

PAGE 7

ENDIAN or endian

Before we get into the data structures I would like to touch on the topic of Big/Little

Endian file formatting and an EASY way to find out which one the file is.

To cater for different platforms the files are stored as either BIG EDIAN or LITTLE

ENDIAN depending on version and also operating system that created the file. Earlier

version 3 files all seem to be LITTLE on the Windows platform.

To correctly read the structure you need to establish the endianness of the file. Best wy

to do this is via the version field in the graph header.

The file structure begins with:

2 bytes – int16  header length on older files, o on newer files.

4 bytes – int32  file version number.

To work out byte order:

1. Read version number.

2. Change endian of reader and read version number again.

3. Lower of the two read values will tell the endianness of the file.

A list of current known version numbers based on experimentation:

Number in file Version number Comment

30 2.0a

31 2.0b

32 2.0r

33 2.07

34 3.0r

35 3.03

36 3.5x

37 3.6x

38 3.70

39 3.73

41 3.81

42 3.7P

43 3.82

44 3.8P

45 3.90

61 4.00B

68 4.00

76 4.01

PAGE 8

78 4.02 Best guess match

80 4.1a Best guess match

83 4.10

84 4.11

108 4.20 Best guess match

121 4.2x

124 4.30

128 4.40

132 5.01

General File Structure

The conceptual structure of the file consists of elements (blocks of data) that contains

configuration information and/or data. Each element is either fixed size, or have a

variable size defined by information within the element data. The location of sizing

information differs across element types. Sections in this document contains details of

element layout and clearly identifies how to calculate the size of each element. All

versions have elements listed in the sequence shown in the COMMON table below.

From version 4 the files have added elements storing configuration and other additional

elements.

COMMON ELEMENTS

Seq Type Description Count

1 Graph Header File data metrics plus User Interface (UI)
configuration parameters.

1 per file only

2 Unknown Unknown block in version 4.3 and above.
Consists of int32 byte count (always 40)
followed by unknown data (36 bytes)

1 per file.

3 Channel
Header

Channel data metrics plus Channel User
Interface (UI) configuration parameters.

1 per channel.
Multiple per
file.

4 Foreign Data Contains external configuration information
or data. Contains details of the data size
plus the actual data. Version 3 has data
however version 4 does not. Based on
analysis I believe that the “Foreign Data”
described in application note 156 from
BIOPAC is actually some of the
configuration data structures similar to that
described in ver 4 elements.

1 per file only.

PAGE 9

Seq Type Description Count

5 Channel Type
Header

Describes the type and configuration of
channel.

1 per channel.
Multiple per
file.

6 Channel Data Uncompressed data in an interleaved array.
Note: on compressed files all data is stores
as a “Snapshot” see the Snapshot element
description.

1 per file only.

7 Marker Header Marker data metrics, count plus marker
User Interface configuration parameters.

1 per file only.

8 Marker Item Marker style and location information. 1 per marker.
Multiple per
file.

9 Marker Header
2

Count and UI interface configuration for
later version 3 files. This is extra data for
each marker.

1 per file only.

10 Extra Marker
Item
Configuration

Additional marker configuration information.
Seems to be for version 3.8 and 3.9 files
only.

1 per marker.
Multiple per
file.

11 Journal Journal header and text information.
Version 3 raw text. Version 4 HTML.
Version 4.2 also supports embedded
images. The images are stored immediately
after the journal.

1 per file only.

12 Journal Objects Images stored as binary PNG objects.
Version 4.2 onwards only.

Multiple per
file

13 Unknown Unknown purpose Version 3.8 and 3.9 files
only.

1 per file.

14 Snapshots Compressed data files have the data stored
as a snapshot here. Later versions can also
have additional snapshots stored
regardless of whether primary data I
compressed or not.

Header plus
multiple
snapshots.

15 Measurement
UI Header

Defines the setup of the graph
measurement UI display stored as XML.
Version 4 onwards.

1 per file only.

16 Automarker
Header

From version 4 you can set up hotkey and
automated markers. This appears to be the
header for auto-marker information. Version
4 onwards.

1 per file only.

17 Automarkers Configuration of each auto-marker Multiple per
file.

18 Unknown Unknown purpose version 4.2 onwards 1 per file only.

19 Unknown Unknown purpose version 4.2 onwards 1 per file only.

20 Unknown Unknown purpose version 4.3onwards 1 per file only.

21 Unknown Unknown purpose version 4.3 onwards 1 per file only.

22 Unknown Unknown purpose version 4.3 onwards 1 per file only.

PAGE 10

Seq Type Description Count

23 PDF Header From version 4.4 you can attach pdf files to
be viewed alongside the journal. This
section contains a header for embedded pdf
files

1 per file

24 PDF From version 4.4 embedded pdf files stored
as binary images.

Multiple per
file

25 Unknown Version 4.4 unknown purpose 1 per file only.

26 Key Values Stores key values as XML. Version 4
onwards

1 per file only.

27 Text
Annotations

Configuration and count of text annotations
stored as XML. Version 4 onwards.

1 per file only.

28 Unknown Version 4.11 onwards. Unknown purpose 1 per file only.

39 Media Header Appears to be details of any media (audio/
video) associated with data collection
stored as XML. Version 4.11 onwards.

1 per file only.

30 Graph History Configuration and count of historical actions
on graph data. Stores data modification
history , eg transformations. Stored as XML.
From 4.11 onwards.

1 per file only.

31 Unknown Version 4.2 onwards. Unknown purpose.
Seems to be just a zero integer on its own.

1 per file only.

32 Unknown Version 4.2 onwards. Unknown purpose 1 per file only.

33 Focus Area
Header

Configuration and count of focus areas.
Stores details of any focus areas attached
to the graph. Stored as XML. Version 4.3
onwards.

1 per file only.

34 Timers Configuration of timers in XML format.
Version 4.3 onwards.

1 per file only.

35 Output Control
Presets

Stores output control presets. Stored as
XML. Version 4.3 onwards

1 per file only.

36 Foreign Data Large data block with general configuration
information. Version 4 onwards. NOTE: it
appears that because of the extra data
requirements of foreign data in later
versions, the data has been moved to the
end of the file. THEORY ONLY.

1 per file only.

UNKNOWN FIELDS

Whilst every effort has been made to identify each byte of configuration there are still

many fields and chunks of data within elements that need further work. In such cases

these chunks are listed as unknown fields or just as chunks of unknown byte data. Any

ideas would be greatly appreciated.

PAGE 11

UNKNOWN BLOCKS

Unknown blocks are areas where their purpose is not known. This information is

provided to assist in future development of our understanding of the blocks. Usually

where there are chunks of unknown purpose bytes between known elements I have tried

to group them into logical blocks to make it easier for future understanding.

Here is what I do know about the unknown block structures. The unknown ones come in

either 4, 8,10, or 12 byte blocks. They appear to be headers for information not stored or

configured in the particular file but act as place markers. THEORY ONLY SO NO

GUARANTEES.

The breakdown of the unknown blocks appears to be:

4 byte blocks.

- A single int32 usually 0x00000000 indicating nothing in the block. I have only

used this type to properly align the known blocks to make it easier to read the

file.

8 Byte Blocks.

- An int32 possibly for number of bytes in the block (if populated).

- A 4 byte, or int32 with a block id. Many of the known blocks seem to have a

unique ID to indicate or make sure correct data is read from the block. So

assuming this is the same for empty unknown blocks. Binary dumps of the blocks

support this theory.

10 Byte Blocks.

- An int32 possibly for number of bytes in the block (if populated).

- A 4 byte, or int32 with a block id.

- A short (int16 or 2 byte Boolean) could be to flag whether there is additional data

or not or a count of sub elements within the block.

12 Byte Blocks.

- An int32 possibly for number of bytes in the block (if populated).

- A 4 byte, or int32 with a block id.

- A int32 (or 4 byte Boolean) could be to flag whether there is additional data or

not or as an indicator of amount of additional data (if populated).

COMPRESSED DATA

Data is compressed with zlib compression, and is little-endian regardless of the

endianness of the rest of the file. Snapshots consist of a series of zlib compressed

structures.

PAGE 12

EMBEDDED FILES AND OBJECTS

Later versions of the file can have embedded files which are images for the journal and

pdf files attached to the journal. The embedded objects are binary compatible with how

they would be stored as a separate file.

PDF’s – same structure as a file with .pdf extension.

Images – same structure as a file with .png extension.

Graph data

UNCOMPRESSED DATA

In uncompressed files, the data is interleaved in the sequence as the channels appear in

the headers , at the sample rate matching the frequency divider. That is; for files where

all channels are sampled at the same rate the interleaving is in order. If you have say 4

channels the data sequence would be laid out as

1 2 3 4 1 2 3 4 1 2 3 4 ….. patterns repeating

Mapping this to the data in the file. You would see the following sequence:

S#*1 1 2 3 4 5 6 7 8 9 10 11 12 13 …

Ch*2

1 P1*3 P2 P3 P4

2 P1 P2 P3 P4

3 P1 P2 P3

4 P1 P2 P3

*1. S# = Data read sequence number *2. Ch = Channel *3. Px = Data read point

number

Mapping this to a timeline of data:

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 …

Channel

1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 etc

2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 etc

3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 etc

4 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 etc

However the file can also contain different sample rates for each channel and is

specified by the channels frequency_divider parameter. The frequency divider can be

powers of 2 only.

PAGE 13

If you say have 3 channels with the frequency dividers of 1,2 and 4 respectively then the

channels with a frequency divider > 1 will have gaps in their data (when measuring

across time). For the above example of 3 channels the data layout is:

1 2 3 1 1 2 1 1 2 3 1 1 2 1 1 2 3 1 1 2 1 1 2 3 1 1 2 1 ….patterns repeating

Mapping this to the data in the file. You would see:

S#*1 1 2 3 4 5 6 7 8 9 10 11 12 13 …

Ch*2

1 P1 P2 P3 P4 P5 P6 P7 P8

2 P1 P3 P5 P7

3 P1 P5

*1. S# = Data read sequence number *2. Ch = Channel *3. Px = Data read point

number

Mapping this to a timeline of data:

Time T
1

T2 T3 T4 T
5

T6 T7 T8 T
9

T1
0

T1
1

T1
2

T1
3

…

Chann
el

1 P
1

P2 P3 P4 P
5

P6 P7 P8 P
9

P1
0

P1
1

P1
2

P1
3

et
c

2 P
1

Ga
p

P3 Ga
p

P
5

Ga
p

P7 Ga
p

P
9

Ga
p

P1
1

Ga
p

P1
3

et
c

3 P
1

Ga
p

Ga
p

Ga
p

P
5

Ga
p

Ga
p

Ga
p

P
9

Ga
p

Ga
p

Ga
p

P1
3

et
c

*Gap = no data available for that particular timeslice.

Data channels can also have differing data types. Data types can be either 2 byte int16

(e.g java short) , or 8 byte IEEE floating point (e.g java double) numbers. Be aware of

the endianness of the file when reading data.

To obtain the actual value for 2 byte data you need to multiply by the channel’s

amplitude value then add the channel’s offset value.

COMPRESSED DATA

When the file is flagged “compressed” this means that the channel data is stored in a

“snapshot”. See the snapshot section for a breakdown of snapshot structures.

Each channel of data is stored in its own zlib compressed data chunk. You still need to

know whether the channel is int16 or double(32) data. Also be aware that all

compressed data is little endian.

If the file only contains one snapshot this this snapshot is you primary data.

PAGE 14

If the file contains multiple snapshots then the last snapshot is you most recent view of

primary data. Prior snapshots are historical views of the data.

PAGE 15

Data Types

These are the different data types that appear to be used in the files. Data types are:

Type Size in bytes Similar to

Int16 2 Int16, short

Int32 4 Int32, long

double 8 F32, double

byte 1 byte, char

bool4 4 int32

bool2 2 Int16, bool, boolean

Fixed Length String Preset by
config

char[n]. Strings have a predefined size.
Any unused characters are filled with
null (ox00)

Variable length string n Size of the string is stored in another
field.

Data Structures

This section provides details of the structure of header and item data structures. Fields

are listed in the order they appear in the file. When new versions of Acqknowledge were

released, additional fields were added to the header structure. The Version Notes tells

you which version additional fields are added.

GRAPH HEADER (SEQUENCE 1)

Purpose

General information about the file and configuration.

Structure

Field Description/ Purpose Data Type Version Notes

itemHeaderLen Unused int16 All

version Version number. int32 All

extITemHeaderLen Header Length int32 All

numChannels Number of channels
stored

 int16 All

horizAxisType Horizontal scale type 1 int16 All

PAGE 16

Field Description/ Purpose Data Type Version Notes

currChannel UI Currently selected
channel

 int16 All

sampleTime The number of
milliseconds per sample.

 double All

timeOffset The initial time offset in
milliseconds.

 double All

timeScale UI time scale in
milliseconds per division.

 double All

timeCursor1 UI Cursor 1 time position
in milliseconds

 double All

timeCursor2 UI Cursor 2 time position
in milliseconds

 double All

chartWindow The chart's size and
position relative to the
AcqKnowledge client
area. When each RECT
field is set
to 0, the chart is
displayed with default a
size and position.

 8 bytes All

measurement Describes the currently
selected measurements.
Note: set to zero in V4
files because
measurements are
defined I XML in v4 files.

6 * int16 All

highlight Gray non-selected
waveforms:
0 = Don't gray
1 = Gray

 int16 All

firstTimeOffset Initial time offset in
milliseconds. If not
starting at 0.

 double All

rescale Autoscale after
transforms:
0 = Don't autoscale
1 = Autoscale

 int16 All

horizUnits1 Horizontal units text. 40 bytes
fixed length
string

All

horizUnits2 Horizontal units text
(abbreviated).

 10 bytes
fixed length
string

All

inMemory Keep data file in memory:
0 = Keep
1 = Don't keep

 int16 All

grid Enable grid display.
0 = Enable

 int16 All

PAGE 17

Field Description/ Purpose Data Type Version Notes

1 = Disable

markers Enable marker display.
0 = Enable
1 = Disable

 int16 All

plotDraft Enable draft plotting.
0 = Enable
1 = Disable

 int16 All

displayMode Display mode:
0 = Scope
1 = Chart.

 int16 All

reserved Reserved. int16 All

showToolbar

Show Toolbar
0 = Hide
1 = Show

int16 3.0 to 3.9

showChanButt

Show channel select
buttons
0 = Hide
1 = Show

int16 3.0 to 3.9

showMeasurement

Show Measurements
0 = Hide
1 = Show

int16 3.0 to 3.9

showMarker

Show Markers
0 = Hide
1 = Show

int16 3.0 to 3.9

showJournal

Show Journal
0 = Hide
1 = Show

int16 3.0 to 3.9

curXChannel Current selected channel int16 3.0 to 3.9

mmtPrecision
Number of decimal
places in measurements.

int16 3.0 to 3.9

measurementRow
Number of measurement
rows

int16 3.0.2 to 3.9

mmt

Measurement functions
displayed 1 per
measurement

40 * int16 3.0.2 to 3.9

mmtChan

Channel each
measurement is acting
on 1 per measurement

40 * int16 3.0.2 to 3.9

mmtCalcOpnd1

First operand of
measurement calc per
measurement

40 * int16 3.5 to 3.9

mmtCalcOpnd2

Second operand of
measurement calc per
measurement

40 * int16 3.5 to 3.9

mmtCalcOpt

Measurement calc
operation per
measurement

40 * int16 3.5 to 3.9

PAGE 18

Field Description/ Purpose Data Type Version Notes

mmtCalcConstant

Constant used in
calculation per
measurement

40 * double 3.5 to 3.9

newGridMinor New grid with minor lines. bool4 3.7 to 3.9

colorMajorGrid
Major grid colour 4 byte

COLORREF
3.7 to 3.9

colorMinorGrid
Minor grid colour 4 byte

COLORREF
3.7 to 3.9

majorGridStyle Major Grid Style 3 int16 3.7 to 3.9

minorGridStyle Minor Grid Style 3 int16 3.7 to 3.9

majorGridWidth width of line in Pixels Int16 3.7 to 3.9

minorGridWidth width of line in Pixels Int16 3.7 to 3.9

fixedUnitsDiv
Locked/Unlocked grid
lines

bool4 3.7 to 3.9

midRangeShow
show gridlines as
MidPoint and Range

bool4 3.7 to 3.9

startMiddlePoint Startpoint to draw grid double 3.7 to 3.9

offsetPoint
Offset of VERTICAL
value per channel

60 * double 3.7 to 3.9

hGrid Horizontal grid spacing double 3.7 to 3.9

vGrid
Vertical grid spacing per
channel

60 * double 3.7 to 3.9

enableWaveTool
Enable Wavetools during
acquisition

bool4 3.7 to 3.9

horizPrecision
digits of precision for
units in Horizontal Axis

Int16 3.7.3 to 3.9

reserved RESERVED 20 * byte 3.8.1 to 3.9

overlapMode Overlap Mode bool4 3.8.1 to 3.9

showHardware Hardware visibility bool4 3.8.1 to 3.9

xAutoPlot
Autoplot during
acquisition

bool4 3.8.1 to 3.9

xAutoScroll
Autoscroll during
acquisition

bool4 3.8.1 to 3.9

startButtVisible Start button visibility bool4 3.8.1 to 3.9

compressed The file is compressed bool4 3.8.1 to 3.9

alwaysStartButtVisible Always show start button bool4 3.8.1 to 3.9

pathVideo
Path to playback video
file

260 byte
string

3.8.2 to 3.9

optSyncDelay

use sync delay between
start of video file and
graph start.

bool4 3.8.2 to 3.9

syncDelay Value of sync delay (ms) double 3.8.2 to 3.9

hrpPasteMeasurement

paste measurements to
journal (when Hold
Relative Position is
selected)

bool4 3.8.2 to 3.9

PAGE 19

Field Description/ Purpose Data Type Version Notes

graphType

Type of the graph. The
graph type identifies the
source of the graph and
whether any special
transformations apply.

Int32 3.8.1 to 3.9

mmtCalcExpr

Measurements
parameters: holds the
expression entered by
the user.

40 Fixed
length strings
256
characters

3.8.1 to 3.9

mmtMomentOrder

Measurements
parameters: the order of
the moment for moment
measurements.

40 * int32 3.8.1 to 3.9

mmtTimeDelay

Measurements
parameters: the time
delay to use for the
computation in
sample intervals

40 * int32 3.8.1 to 3.9

mmtEmbedDim

Measurements
parameters: the
embedding dimension for
a measurement.

40 * int32 3.8.1 to 3.9

mmtMiDelay

Measurements
parameters: the delay for
which the mutual
information should
be computed.

40 * int32 3.8.1 to 3.9

V4blob

Byte array of all
remaining bytes in
header. See *note below.

Byte[] V4 onwards

Special Notes

*Note: As of this time the information in the header after reserved (from version 3.0

onwards) is unknown and differs from Version 4 sequence. The field

extITemHeaderLen contains the size of the header element. Until the information

structure is resolved you should use the following sequence:

- read until “reserved” field.

- skip 822 bytes

- read the compressed (int32 4 byte Boolean) to determine if file is compressed.

- skip forward to the length of the header.

PAGE 20

1 horizAxisType:
0 = Time in seconds
1 = Time in HMS format
2 = Frequency
3 = Arbitrary

2 measurement:
0 = No measurement
1 = Value Absolute voltage
2 = Delta Voltage difference
3 = Peak to peak voltage
4 = Maximum voltage
5 = Minimum voltage
6 = Mean voltage
7 = Standard deviation
8 = Integral
9 = Area
10 = Slope
11 = LinReg
13 = Median
15 = Time
16 = Delta Time
17 = Freq
18 = BPM
19 = Samples
20 = Delta Samples
21 = Time of Median
22 = Time of Max
23 = Time of Min
25 = Calculation
26 = Correlation

3 Grid Styles (TYPEDEF)
PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT

UNKNOWN (SEQUENCE 2)

This is the 40 bytes immediately after the graph header.

Field Description/ Purpose Data Type Version Notes

itemLength Length of element block Int32 4.3 on

data Unknown data Byte[36*] All

* itemLength minus 4 bytes. Check itemLength field in case this changes.

CHANNEL HEADER (SEQUENCE 3)

Each channel has a header containing configuration information. 1 per channel, multiple

per file.

PAGE 21

Field Description/ Purpose Data Type Version Notes

ChanHeaderLen Length of channel header. Int32 All

Channelnumber Channel number (in
sequence).

Int16 All

name Comment text. Channel
name.

40 bytes
string

All

rgbColor Color. Byte[4] All

DisplayOption Display option. Int16 All

VoltOffset Amplitude offset (volts). double All

VoltScale Amplitude scale
(volts/div).

double All

UnitsText Units text. 20 byte string All

BufLength Number of data samples
in channel

Int32 All

AmplScale Units/count. Used to
calculate when using int
data

Double All

AmplOffset Units. Used to calculate
when using int data

Double All

ChanOrder Displayed channel
number.

Int16 All

DispSize Channel partition size. Int16 All

unknown Unknown block in Ver4
files. sampleDivider
follows immediately after.

40 bytes 4.0 on

plotMode Plot mode Int16 3.0 to 3.9

vMid Mid point on graph double 3.0 to 3.9

description Description of channel 128 byte
string

3.7 to 3.9

sampleDivider Divider for frequency of
data

Int16 3.7 on

vertPrecision Precision of vertical scale Int16 3.73 to 3.9

segmentColor Active segment colour 4 bytes
RGBA

3.82 to 3.9

segmentStyle Style of segment line Int32 3.82 to 3.9

Special Notes

*Note: As of this time the information in the header after reserved (from version 3.0

onwards) is unknown and differs from Version 4 sequence. The field ChanHeaderLen

contains the size of the header element. Until the information structure is resolved you

should use the following sequence:

- read until “dispSize” field.

- skip 40 bytes

- read the sampleDivider (int32).

PAGE 22

- skip forward to the length of the header.

FOREIGN DATA (SEQUENCE 4)

In version 3 files foreign data comes after the channel headers and has the following

structure.

Field Description/ Purpose Data Type Version Notes

length Length of foreign data
block including header

Int16 3.0-3.9

id Foreign data id Int16 3.0-3.9

data Foreign data Byte[length -4 3.0-3.9

In version 4 files foreign data is slightly different and always appear to be empty after the

header with 4 bytes of 0. I think this is because the larger foreign data for V4 is now at

end of file. See Sequence 37 block.

Field Description/ Purpose Data Type Version Notes

length Length of foreign data
including header

Int32 4.0 on

data Foreign data Byte[length -4] 4.0 on

CHANNEL TYPE HEADER (SEQUENCE 5)

For each channel there is a header describing the type of data stored for the channel.

Field Description/ Purpose Data Type Version Notes

dataPointSize Size of each data point.
8 if double and 2 if
int16.

Int16 All

dataPointType Tells you what type of
data. 1 = double, 2 =
integer. * See note.

Int16 All

*Warning. In some files the dataPointType is 0. This means it double data so your test

should include a test for 0.

CHANNEL DATA (SEQUENCE 6)

If the file is not compressed data is stored here as interlaced data. See the Graph Data

section for how the data is laid out.

To calculate the total bytes of all data:

Sum (For each channel : bufLength * dataPointSize).

PAGE 23

MARKER HEADER (SEQUENCE 7)

There are 3 sections required to read markers. The Marker Header section tells you how

many markers. One header per file.

Field Description/ Purpose Data Type Version Notes

markersByteLength Size of all markers
including header

Int32 All

markersCount Count of markers Int32 All

MARKER ITEM (SEQUENCE 8)

Marker Items. One per marker. Multiple per file. Version 3 markers are only global.

Version 3 marker structure.

Field Description/ Purpose Data Type Version Notes

sampleIndex

Location of marker.
This is the datapoint
from the start of the
data

Int32 3.0 to 3.9

selected

Boolean defines if this
particular marker is
selected.

Bool2 3.0 to 3.9

textLocked

Boolean defines if this
particular marker text
locked.

Bool2 3.0 to 3.9

positionLocked

Boolean defines if this
particular marker is
position locked.

Bool2 3.0 to 3.9

markerTextLength Length of text Int16 3.0 to 3.9

markerText Text comment
attached to the
marker.

 n byte string
length defined by
markerTextLength
+ 1 (there is a null
terminator).*

3.0 to 3.9

• Note Ap151 says string length includes null but this is not the case. You need to

add 1 to the length.

Version 4 marker structure.

From version 4 markers can be associated with a specific channel. The new structure is:

PAGE 24

Field Description/ Purpose Data Type Version Notes

sampleIndex

Location of marker.
This is the datapoint
from the start of the
data

Int32 V4 on

unknown

Unknown int32 Int32 V4 on

channelNumber

Channel this marker
belongs to . -1 means
global marker.

Int16 V4 on

markerType

A 4 byte sting of the
marker type. See
marker type table
below.

Bool2 V4 on

channelNumber2 Appears to be second
copy of channel
number

Int16 Only V4.3 on

colour RGBA colour of
marker

Int32 4 byte
colour

Only V4.3 on

Unknown Short unknown reason Int16 Only V4.3 on

Unknown 2 x int32 unknown
reason

2 x Int32 Only V4.4 on

markerTextLength Length of text Int16 V4 on

markerText Text comment
attached to the
marker.

 n byte string
length defined by
markerTextLength
(this time includes
null in length field)

V4 on

Version 4 Marker Types

Type Description

"apnd" Append

"defl" Default

"wfon" Waveform Onset

"wfof" Waveform End

"nois" Change in Signal Quality

"rhyt" Change in Rhythm

"recv" Recovery

"max " Maximum

"min " Minimum

"rset" Reset

"cmlb" Communication Lost Begin

"cmle" Communication Lost End

PAGE 25

Type Description

"ansh" Short Arrow

"anmd" Medium Arrow

"anlg" Long Arrow

"flag" Flag

"star" Star

"usr1" User Type 1

"usr2" User Type 2

"usr3" User Type 3

"usr4" User Type 4

"usr5" User Type 5

"usr6" User Type 6

"usr7" User Type 7

"usr8" User Type 8

"usr9" User Type 9

"qrsb" QRS Onset

"qrs " QRS Peak

"qrse" QRS End

"tbeg" T-wave Onset

"t " T-wave Peak

"tend" T-wave End

"pbeg" P-wave Onset

"p " P-wave Peak

"pend" P-wave End

"q " Q-wave Peak

"s " S-wave Peak

"u " U-wave Peak

"pq " PQ Junction

"jpt " J-point

"stch" ST Segment Change

"tch " T-wave Change

"nrml" Normal Beat

"pace" Paced Beat

"pfus" Fusion of Paced and Normal Beat

"lbbb" Left Bundle Branch Block Beat

"rbbb" Right Bundle Branch Block Beat

"bbb " Bundle Branch Block Beat

"apc " Atrial Premature Beat

"aber" Aberrated Atrial Prematuire Beat

"npc " Nodal Premature Beat

PAGE 26

Type Description

"svpb" Supraventricular Premature Beat

"pvc " Premature Ventricular Contraction

"ront" R-on-T Premature Ventricular Contraction

"fusi" Fusion of Ventricular and Normal Beat

"aesc" Atrial Escape Beat

"nesc" Nodal Escape Beat

"sves" Supraventricular Escape Beat

"vesc" Ventricular Escape Beat

"syst" Systole

"dias" Diastole

"edp " End Diastolic Pressure

"aptz" A-point

"bptz" B-point

"cptz" C-point

"xptz" X-point

"yptz" Y-point

"optz" O-point

"plat" Plateau

"upst" Upstroke

"vfon" Start of Ventricular Flutter

"flwa" Ventricular Flutter Wave

"vfof" End of Ventricular Flutter

"pesp" Pacemaker Artifact

"arfc" Isolated QRS-like Artifact

"napc" Non-conducted P-wave

"base" Baseline

"dose" Dose

"wash" Wash

"apon" Spike Episode Begin

"apof" Spike Episode End

"rein" Inspire Start

"reot" Expire Start

"reap" Apnea Start

"stim" Stimulus Delivery

"resp" Response

"scr " Skin Conductance Response

"sscr" Specific SCR

"ctr1" Cluster 1

"ctr2" Cluster 2

PAGE 27

Type Description

"ctr3" Cluster 3

"ctr4" Cluster 4

"ctr5" Cluster 5

"ctr6" Cluster 6

"ctr7" Cluster 7

"ctr8" Cluster 8

"ctr9" Cluster 9

"ctrn" Cluster n

"cend" End Cluster

"outl" Outlier

"tran" Training Set

"cut " Cut

"vb " Paste Begin

"ve " Paste End

"selb" Selection Begin

"sele" Selection End

"steb" Start of Eye Blink Artifact

"eneb" End of Eye Blink Artifact

"sexc" Start of Excursion Artifact

"eexc" End of Excursion Artifact

"ssat" Start of Saturation Artifact

"esat" End of Saturation Artifact

"sspk" Start of Spike Artifact

"espk" End of Spike Artifact

"semg" Start of EMG Artifact

"eemg" End of EMG Artifact

"wles" Workload - EMG Start

"wlee" Workload - EMG End

"ipss" Workload - Invalid PSD Start

"ipse" Workload - Invalid PSD End

"ddst" Dummy Data Start

"dded" Dummy Data End

"idst" Misaligned Data

"bprs" Button Pressed

"leho" Left Eye Hit Object

"reho" Right Eye Hit Object

"smis" SMI Stimulus Image Has Been Presented to the Subject

"mors" Start Out of Range

"more" End Out of Range;

PAGE 28

MARKER HEADER 2 (SEQUENCE 9)

V3 files from version 3.81 (41) to version 3.9 (45) have extra marker information in a

separate section immediately following the primary marker sections. It consists of a

marker header followed by extra marker items.

The extra header is:

Field Description/ Purpose Data Type Version Notes

headerId

4 byte block id Int32 V3.81 to V3.9

itemCount

Count of extra marker
item info. Always
seem to match
number of primary
markers

Int32 V3.81 to V3.9

unknown

Unknown headerdata 76 bytes V3.81 to V3.9

EXTRA MARKER ITEM CONFIGURATION (SEQUENCE 10)

V3 files from version 3.81 (41) to version 3.9 (45) have extra marker information in a

separate section immediately following the primary marker sections. It consists of a

marker header followed by extra marker items.

The extra items structure is:

Field Description/ Purpose Data Type Version Notes

unknown

Unknown purpose Int32 V3.81 to V3.9

markerNumber

A sequential number
that starts at 1 for the
first marker and
increments for each
marker item. I think
this I used to link back
to the primary marker
configuration.

Int32 V3.81 to V3.9

unknown

Unknown purpose 3 x Int32 V3.81 to V3.9

colour RGBA colour of
marker

Int32 V3.81 to V3.9

markerTag Id of marker Type Id
tag

Int16 V3.81 to V3.9

markerTypeId Index Number of the
type of marker

Int16 V3.81 to V3.9

PAGE 29

JOURNAL (SEQUENCE 11)

Version 3 Journal

Version 3 journals are just a simple structure of:

Field Description/ Purpose Data Type Version Notes

headerId

Id of journal header. It
always seems to be
0x44332211

Int32 V3.0 to V3.9

showJournal

Boolean seems to be
repeat of showJournal
flag in main file graph
header.

Int16 V3.0 to V3.9

textLength Length of journaltext
including any null
terminator

Int32 V3.0 to V3.9

text Journal Text textLength byte
string

V3.0 to V3.9

Version 4 Early Journal

Version 4 journals are much more complicated. Journals are stored as HTML and can

contain additional objects such as images and embedded pdf documents. I have put

information about embedded PDFs in a separate section because they appear much

later in the file structure.

There are also differences in structure between early (up to 4.11) and later (4.2

onwards).

Field Description/ Purpose Data Type Version Notes

journalLength

Length of all journal
information including
header

Int32 V4.0 to 4.11

journalCount

This could be a flag or
a count. If 0x00 the
journal is not present.
Do not read beyond
this field.

Int16 V4.0 to 4.11

journalUILength Length of journal UI
configuration block

Int32 V4.0 to 4.11

PAGE 30

Field Description/ Purpose Data Type Version Notes

including this length
indicator

journalUIBytes Block of data with the
UI configuration of
journal part of
program

Byte[jornalUILength]
-4

V4.0 to 4.11

journalText HTML structured
Journal text.
Occupies the
remainder of the
journalLength.

Calculated string
length. See note
below.

V4.0 to 4.11

The early header does not have the actual length of HTML text. You need to calculate

text length.

textLength = journalLength – 6 – journalUILength.

Version 4 Late Journal

From version 4.2 onwards the structure changes again. The journal is stored as HTML

and supported embedding images. Images are referenced within the journal HTML by a

unique ID. Example:

An int32 immediately after the journal text gives a count of the embedded objects. Each

image is stored as a binary object with identifying information. So far I have not found

anything that indicates the number of bytes within the object.

Field Description/ Purpose Data Type Version Notes

journalLength

Length of all journal
information including
header

Int32 V4.2 on

journalCount

This could be a flag
or a count. If 0x00
the journal is not
present. Do not read
beyond this field.

Int16 V4.2 on

journalUILength Length of journal UI
configuration block
excluding this length
indicator

Int32 V4.2 on

journalUIBytes Block of data with the
UI configuration of
journal part of
program

Byte[journalUILength]

V4.2 on

PAGE 31

Field Description/ Purpose Data Type Version Notes

journalTextCount This could be a flag
or a count. If 0x0000
the journal text is not
present. Do not read
beyond this field.

Int32 V4.2 on

journalTextLength Length of journal
HTML text excluding
null terminator

Int32 V4.2 on

journalTextLength0 Length of journal
HTML text
INCLUDING null
terminator. Use this
to get correct length

Int32 V4.2 on

journalText HTML structured
Journal text.

Text of length
journalTextLength0 .

V4.2 on

objectCount Number of objects
embedded into
journal

Int32 V4.2 on

The early header does not have the actual length of HTML text. You need to calculate

text length.

textLength = journalLength – 6 – journalUILength.

JOURNAL OBJECTS (SEQUENCE 12)

From V4.0 onwards the journal is stored as HTML and supported embedding images.

Images are referenced within the journal HTML by a unique ID. Example:

An int32 immediately after the journal text gives a count of the embedded objects. Each

image is stored as a binary object with identifying information. So far I have not found

anything that indicates the number of bytes within the object.

Field Description/ Purpose Data Type Version Notes

objectType

Type of embedded object.
Image type = 1. Other types
unknown.

Int32 4.00 on

id Hexadecimal id. Byte[16] 4.00 on

object

For images: PNG binary.
Refer to PNG file structure
for a breakdown of the
bytes. Note: there is no
marker to tell you how
many bytes in each image.

Byte[] 4.00 on

PAGE 32

Field Description/ Purpose Data Type Version Notes

You need to read the PNG
structure to work out size.

UNKNOWN HEADER (SEQUENCE 13)

This is an extra 8 bytes that appeared in version 3.8 and 3.9 files just after the Journal.

Structure is:

Field Description/ Purpose Data Type Version Notes

headerLength

Length of header including
this field. (seem to be
0x00000008)

Int32 V3.8 to V3.9

itemCount

Count of objects in this
section. (seems to be
0x00000000)

Int32] V3.8 to V3.9

SNAPSHOTS (SEQUENCE 14)

Snapshots are sets of compressed data. Snapshots are used for two purposed.

Firstly, from version 3.8 compression is supported. if the file is compressed, there is no

interleaved data. The primary data is stored as a snapshot.

Second, the concept of taking point in time snapshots of data is also supported.

Both reasons are stored in the same manner. The first snapshot is always the

compressed primary dataset representing the current data if the file is flagged as

compressed.

Snapshots have header information that differs between version 3 and version 4 files.

The snapshot area also has a master header telling you how many snapshots there are.

Snapshot Master Header

One per file.

Field Description/ Purpose Data Type Version Notes

snapshotsLength

Length of all snapshots
including this field.

Int32 V3.8 on

snapshotsSetId

Id of this header
0xDEADED3D

Int32 V3.8 on

snapshotsCount
Count of number of
snapshot sets

Int16 V3.8 on

PAGE 33

Snapshot Header

One per snapshot.

Field Description/ Purpose Data Type Version Notes

snapHeaderLength

length (including this int)
of snap header.

Int32 V3.8 on

snapHeadertId

Id of this header Int32 V3.8 on

snapshotsCount
Count of number of
snapshot sets

Int16 V3.8 on

unknown Unknown purpose Int32 V3.8 on

channelCount
Number of channel
datasets in this snapshot

Int16 V3.8 on

timestampLength Length of timestamp text Int32 V3.8 on

descriptionLength Length of description text Int32 V4.0 on

markerName 4 byte name of a marker Text 4 bytes long V4.0 on

unknown Unknown info Byte[16] V4.0 on

unknown Unknown shorts 3 x Int16 V4.2 on

timestampText
timestamp Text of length

timestampLength
V3.8 on

descriptionText
description Text of length

descriptionLength
V4.0 on

Data Datasets
One data dataset per
channel

Dataset, one per
channel

V3.8 on

GraphInfo
* Set of configurations for
snapshot

5 x GraphInfo V4.0 on

GraphInfo
* extra configuration for
snapshot

1 x GraphInfo V4.3 on

GraphInfo
* extra configuration for
snapshot

1 x GraphInfo V4.4 on

*Note: From version 4 the snapshots have additional compressed dataset items which

appear to be graph info snapshots to go with the data snapshot set.

Ver 4 files have 5 graphInfo snapshots

Ver 4.3 has an additional graphInfo snapshot (for a total of 6)

Ver 4.4 has an additional graphInfo snapshot (for a total of 7)

Each configuration snapshot has compressed version of different information items such

as text annotations etc.

Dataset Compression Header

One per dataset (channel).

PAGE 34

Field Description/
Purpose

Data Type Version
Notes

compressionHeaderLength

length (including
this int) of
header.

Int32 V3.8 on

compHeadertId

Id of this header Int32 V3.8 on

unknown
Unknown short
(ver 3 files only)

Int16 V3.8 to
Ver 3.9

channelNumber Channel number Int16 V3.8 on

unknown
Header info still
to be analysed

32 x bytes in version3,
34 x bytes in version 4

V3.8 on

channelLabelLength

Length of
channel label
text

Int32 V3.8 on

unitLabelLength
Length of unit
label text

Int32 V3.8 on

uncompressedLength

Length of
uncompressed
data

Int32 V3.8 on

compressedLength
Length of
compressed data

Int32 V3.8 on

ChannelLabelText ChannelLabel text V3.8 on

UnitlabelnText unitLabel text V3.8 on

Data
Compressed zlib
structure.

Byte[compressedLength] V3.8 on

Compressed Graph Information Header

One per configuration Up to 7per snapshot.

Field Description/
Purpose

Data Type Version
Notes

compressionHeaderLength

length (including
this int) of
header.

Int32 V3.8 on

compHeadertId

Id of this header Int32 V3.8 on

uncompressedLength

Length of
uncompressed
data

Int32 V3.8 on

compressedLength
Length of
compressed data

Int32 V3.8 on

Data
Compressed zlib
structure.

Byte[compressedLength] V3.8 on

PAGE 35

MEASUREMENT (SEQUENCE 15)

Defines the setup of the graph measurement UI display stored as XML. Version 4

onwards.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.0 on

headerId

Id of this header Int32 V4.0 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.0 on

text

XML text Byte[textLengh] V4.0 on

AUTOMARKER HEADER (SEQUENCE 16)

From version 4 you can set up hotkey and automated markers. This appears to be the

header for auto-marker information.

Field Description/
Purpose

Data Type Version
Notes

markersLength

length of all
markers
including this
header

Int32 V4.0 on

headerId

Id of this header Int32 V4.0 on

markersCount

AutoMarkers Int32 V4.0 on

Automarkers

Automarkers.See
structure below

Automarkers x
markersCount

V4.0 on

AUTOMARKER (SEQUENCE 17)

From version 4 you can set up hotkey and automated markers. This appears to be the

structure of auto-marker information.

Field Description/
Purpose

Data Type Version
Notes

markerId

Id of marker or
type of marker

Int16 V4.0 on

PAGE 36

Field Description/
Purpose

Data Type Version
Notes

markerTypeText

Type of marker 4 byte string V4.0 on

Automarkers

Automarkers.See
structure below

Automarkers x
markersCount

V4.0 on

markerChannel

This s a guess
think it’s the
channel that the
marker should be
associated with .
Default is -1

Int16 V4.0 on

markerData

Data for marker.
Yet to be
decoded

Byte[].
For Ver 4.0 – 4.1 260
bytes
For Ver 4.2 270 bytes
For Ver 4.3 on 528 bytes

V4.0 on

UNKNOWN BLOCKS (SEQUENCE 18-22)

There are 5 small unknown blocks that most likely are headers for information not yet

worked out. See section on structure of unknown blocks.These are:

Sequence 18 – 12 bytes. Header Id 0xDDBB55FF. Ver 4.2 onwards

Sequence 19 – 8 bytes. Header Id 0x73F519BD. Ver 4.2 onwards.

Sequence 20 – 8 bytes. Header Id 0x036E94A3. Ver 4.3 onwards.

Sequence 21 – 12 bytes. Header Id 0x0598916D. Ver 4.3 onwards.

Sequence 22 – 4 bytes. Header Id 0x00000000. Ver 4.3 onwards.

PDF HEADER (SEQUENCE 23)

From version 4.4 you can attach pdf files to be viewed alongside the journal. This

section contains a header for embedded pdf files. One per file.

Field Description/
Purpose

Data Type Version
Notes

pdfLength

Total size of all
pdfs including
header

Int32 V4.4 on

headerId

Id for this header Int32 V4.4 on

pdfCount

Number of pdf
objects

Int32 V4.4 on

pdfs Pdf objects See below V4.4 on

PAGE 37

PDF OBJECTS (SEQUENCE 24)

Each PDF has a header followed by the binary of the pdf. The binary is exactly what you

would see in a .pdf file.

Field Description/
Purpose

Data Type Version
Notes

pdfHeader

Header
information about
the pdf. Yet to be
analysed.

Byte[264] V4.4 on

pdfLength

Length in bytes
of the pdf binary

Int32 V4.4 on

pdf PDF binary Byte[pdfLength] V4.4 on

UNKNOWN BLOCK (SEQUENCE 25)

There is small unknown blocks that most likely are headers for information not yet

worked out. See section on structure of unknown blocks. These are:

Sequence 25 – 12 bytes. Header Id 0x08911DDB. Ver 4.4 onwards

KEY VALUES (SEQUENCE 26)

Stores key values as XML. Version 4 onwards.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.0 on

headerId

Id of this header Int32 V4.0 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.0 on

text

XML text Byte[textLengh] V4.0 on

TEXT ANNOTATIONS (SEQUENCE 27)

Stores graph text annotations as XML. Version 4 onwards.

PAGE 38

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.0 on

headerId

Id of this header Int32 V4.0 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.0 on

text

XML text Byte[textLengh] V4.0 on

UNKNOWN BLOCK (SEQUENCE 28)

There is small unknown blocks that most likely are headers for information not yet

worked out. See section on structure of unknown blocks. These are:

Sequence 28 – 8 bytes. Header Id 0x50726F70. Ver 4.11 onwards.

MEDIA (SEQUENCE 29)

From 4.11 you can attach and sequence media such as video. Version 4.11 onwards.

This XML header contains configuration for any media associated with the graph file.

The XML appears to show video as external links, not embedded binary. THEORY.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.11 on

headerId

Id of this header Int32 V4.11 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.11 on

text

XML text Byte[textLengh] V4.11 on

GRAPH HISTORY (SEQUENCE 30)

From 4.11 you can store details of the history of major transformations to graph data

using filters etc. This XML information shows historically what filters were applied. It

does not track the resulting data change. That is the job for snapshots.

PAGE 39

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.11 on

headerId

Id of this header Int32 V4.11 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.11 on

text

XML text Byte[textLengh] V4.11 on

UNKNOWN BLOCK (SEQUENCE 31)

There is small unknown blocks that most likely are headers for information not yet

worked out. See section on structure of unknown blocks. These are:

Sequence 31 – 4 bytes. Header Id 0x000000. Ver 4.2 onwards.

UNKNOWN BLOCK (SEQUENCE 32)

There is small unknown blocks that most likely are headers for information not yet

worked out. See section on structure of unknown blocks. These are:

Sequence 32 – 8 bytes. Header Id 0x 53434F20. Ver 4.2 onwards.

FOCUS AREA (SEQUENCE 33)

From 4.3 you can store details of focus areas marking specific areas to graph data. This

XML information shows the configuration of focus areas.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.11 on

headerId

Id of this header Int32 V4.11 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.11 on

text

XML text Byte[textLengh] V4.11 on

PAGE 40

TIMERS (SEQUENCE 34)

From 4.3 you can associate timers to graph data. This XML information shows the

configuration of timers.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.11 on

headerId

Id of this header Int32 V4.11 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.11 on

text

XML text Byte[textLengh] V4.11 on

OUTPUT CONTROL PRESETS (SEQUENCE 35)

From 4.3 you can setup output control presets. This XML information shows the

configuration of presets.

Field Description/
Purpose

Data Type Version
Notes

textLength

length of text. Int32 V4.11 on

headerId

Id of this header Int32 V4.11 on

textLength2

length of text.
Seems to be
second copy of
length

Int32 V4.11 on

text

XML text Byte[textLengh] V4.11 on

PAGE 41

FINAL BLOCK FOREIGN DATA

Purpose

Large data block with general configuration information. Version 4 onwards. NOTE: it

appears that because of the extra data requirements of foreign data in later versions, the

data has been moved to the end of the file. THEORY ONLY.

Structure

Field Description/ Purpose Data Type Version Notes

blockLength
Block length in bytes
including this field.

Int32 4.00 on

data Size = blockLength - 4 Byte[] 4.00 on

