from scipy import interpolate
from .basetest import BaseTest
from ..calculators import AsymptoticCalculator
from ..parameters import POI
from ..exceptions import POIRangeError
[docs]class UpperLimit(BaseTest):
"""Class for upper limit calculation.
Args:
* **calculator** (`sktats.hypotests.BaseCalculator`): calculator to use for computing the pvalues
* **poinull** (List[`hypotests.POI`]): parameters of interest for the null hypothesis
* **poialt** (List[`hypotests.POI`]): parameters of interest for the alternative hypothesis
* **qtilde** (bool, optional): if `True` use the :math:`\widetilde{q}` test statistics else (default) use the :math:`q` test statistic
Example with `zfit`:
>>> import numpy as np
>>> import zfit
>>> from zfit.loss import ExtendedUnbinnedNLL
>>> from zfit.minimize import Minuit
>>> bounds = (0.1, 3.0)
>>> zfit.Space('x', limits=bounds)
>>> bkg = np.random.exponential(0.5, 300)
>>> peak = np.random.normal(1.2, 0.1, 10)
>>> data = np.concatenate((bkg, peak))
>>> data = data[(data > bounds[0]) & (data < bounds[1])]
>>> N = data.size
>>> data = zfit.data.Data.from_numpy(obs=obs, array=data)
>>> lambda_ = zfit.Parameter("lambda", -2.0, -4.0, -1.0)
>>> Nsig = zfit.Parameter("Ns", 20., -20., N)
>>> Nbkg = zfit.Parameter("Nbkg", N, 0., N*1.1)
>>> signal = Nsig * zfit.pdf.Gauss(obs=obs, mu=1.2, sigma=0.1)
>>> background = Nbkg * zfit.pdf.Exponential(obs=obs, lambda_=lambda_)
>>> loss = ExtendedUnbinnedNLL(model=signal + background, data=data)
>>> from hepstats.hypotests.calculators import AsymptoticCalculator
>>> from hepstats.hypotests import UpperLimit
>>> from hepstats.hypotests.parameters import POI, POIarray
>>> calculator = AsymptoticCalculator(loss, Minuit())
>>> poinull = POIarray(Nsig, np.linspace(0.0, 25, 20))
>>> poialt = POI(Nsig, 0)
>>> ul = UpperLimit(calculator, poinull, poialt)
>>> ul.upperlimit(alpha=0.05, CLs=True)
Observed upper limit: Nsig = 15.725784747406346
Expected upper limit: Nsig = 11.927442041887158
Expected upper limit +1 sigma: Nsig = 16.596396280677116
Expected upper limit -1 sigma: Nsig = 8.592750403611896
Expected upper limit +2 sigma: Nsig = 22.24864429383046
Expected upper limit -2 sigma: Nsig = 6.400549971360598
"""
def __init__(self, calculator, poinull, poialt, qtilde=False):
super(UpperLimit, self).__init__(calculator, poinull, poialt)
self._qtilde = qtilde
@property
def qtilde(self):
"""
Returns True if qtilde test statistic is used, else False.
"""
return self._qtilde
[docs] def pvalues(self, CLs=True):
"""
Returns p-values scanned for the values of the parameters of interest
in the null hypothesis.
Args:
* **CLs** (bool, optional): if `True` uses pvalues as :math:`p_{cls}=p_{null}/p_{alt}=p_{clsb}/p_{clb}` else as :math:`p_{clsb} = p_{null}`
Returns:
pvalues (Dict): CLsb, CLs, expected (+/- sigma bands) p-values
"""
pvalue_func = self.calculator.pvalue
pnull, palt = pvalue_func(poinull=self.poinull, poialt=self.poialt, qtilde=self.qtilde, onesided=True)
pvalues = {"clsb": pnull, "clb": palt}
sigmas = [0.0, 1.0, 2.0, -1.0, -2.0]
exppvalue_func = self.calculator.expected_pvalue
result = exppvalue_func(
poinull=self.poinull,
poialt=self.poialt,
nsigma=sigmas,
CLs=CLs,
qtilde=self.qtilde,
onesided=True,
)
pvalues["expected"] = result[0]
pvalues["expected_p1"] = result[1]
pvalues["expected_p2"] = result[2]
pvalues["expected_m1"] = result[3]
pvalues["expected_m2"] = result[4]
pvalues["cls"] = pnull / palt
return pvalues
[docs] def upperlimit(self, alpha=0.05, CLs=True, printlevel=1):
"""
Returns the upper limit of the parameter of interest.
Args:
* **alpha** (float, default=0.05): significance level
* **CLs** (bool, optional): if `True` uses pvalues as :math:`p_{cls}=p_{null}/p_{alt}=p_{clsb}/p_{clb}` else as :math:`p_{clsb} = p_{null}`
* **printlevel** (int, default=1): if > 0 print the result
Returns:
limits (Dict): observed, expected (+/- sigma bands) upper limits
"""
poinull = self.poinull
# create a filter for -1 and -2 sigma expected limits
bestfit = self.calculator.bestfit.params[poinull.parameter]["value"]
filter = poinull.values >= bestfit
if CLs:
observed_key = "cls"
else:
observed_key = "clsb"
to_interpolate = [observed_key] + [f"expected{i}" for i in ["", "_p1", "_m1", "_p2", "_m2"]]
limits = {}
for k in to_interpolate:
pvalues = self.pvalues(CLs)[k]
values = poinull.values
if k == observed_key:
k = "observed"
pvalues = pvalues[filter]
values = values[filter]
if min(pvalues) > alpha:
if k in ["expected", "observed"]:
msg = f"The minimum of the scanned p-values is {min(pvalues)} which is larger than the"
msg += f" confidence level alpha = {alpha}. Try to increase the maximum POI value."
raise POIRangeError(msg)
else:
limits[k] = None
continue
tck = interpolate.splrep(values, pvalues - alpha, s=0)
root = interpolate.sproot(tck)
if len(root) > 1:
root = root[0]
try:
limits[k] = float(root)
except TypeError:
limits[k] = None
if printlevel > 0:
print(f"\nObserved upper limit: {poinull.name} = {limits['observed']}")
print(f"Expected upper limit: {poinull.name} = {limits['expected']}")
for sigma in ["+1", "-1", "+2", "-2"]:
key = sigma.replace("+", "p").replace("-", "m")
print(f"Expected upper limit {sigma} sigma: {poinull.name} = {limits[f'expected_{key}']}")
return limits