| Home | Trees | Indices | Help |
|
|---|
|
|
Triaxal ellipsoid classes JacobiConformal, Jacobi's conformal projection, trancoded from Charles Karney's C++ class JacobiConformal to pure Python, ordered Triaxial and unordered Triaxial_ and miscellaneous classes BetaOmega2Tuple, BetaOmega3Tuple, Jacobi2Tuple and TriaxialError.
See Also: Geodesics on a triaxial ellipsoid and Triaxial coordinate systems and their geometrical interpretation.
Version: 23.04.02
| Classes | |
|
BetaOmega2Tuple 2-Tuple (beta, omega) with ellipsoidal lat- and
longitude beta and omega both in
Radians (or Degrees).
|
|
|
BetaOmega3Tuple 3-Tuple (beta, omega, height) with ellipsoidal
lat- and longitude beta and omega both in
Radians (or Degrees) and the
height, rather the (signed) distance to the
triaxial's surface (measured along the radial line to the
triaxial's center) in meter, conventionally.
|
|
|
Jacobi2Tuple 2-Tuple (x, y) with a Jacobi Conformal x
and y projection, both in Radians (or
Degrees).
|
|
|
Triaxial_ Unordered triaxial ellipsoid and base class. |
|
|
Triaxial Ordered triaxial ellipsoid. |
|
|
JacobiConformal This is a conformal projection of a triaxial ellipsoid to a plane in which the X and Y grid lines are
straight.
|
|
|
TriaxialError Raised for Triaxial issues. |
|
| Functions | |||
|
|||
| Variables | |
__all__ = _ALL_LAZY.triaxials
|
|
Triaxials = Some pre-defined Triaxials, all lazily instantiated. |
|
|
Triaxials.Amalthea Triaxial(name='Amalthea', a=125000, b=73000, c=64000, e2ab=0.658944, e2bc=0.231375493, e2ac=0.737856, volume=2446253479595252, area=93239507787.490371704, area_p=93212299402.670425415) |
|
|
Triaxials.Ariel Triaxial(name='Ariel', a=581100, b=577900, c=577700, e2ab=0.01098327, e2bc=0.000692042, e2ac=0.011667711, volume=812633172614203904, area=4211301462766.580078125, area_p=4211301574065.829589844) |
|
|
Triaxials.Earth Triaxial(name='Earth', a=6378173.435, b=6378103.9, c=6356754.399999999, e2ab=0.000021804, e2bc=0.006683418, e2ac=0.006705077, volume=1083208241574987694080, area=510065911057441.0625, area_p=510065915922713.6875) |
|
|
Triaxials.Enceladus Triaxial(name='Enceladus', a=256600, b=251400, c=248300, e2ab=0.040119337, e2bc=0.024509841, e2ac=0.06364586, volume=67094551514082248, area=798618496278.596679688, area_p=798619018175.109863281) |
|
|
Triaxials.Europa Triaxial(name='Europa', a=1564130, b=1561230, c=1560930, e2ab=0.003704694, e2bc=0.000384275, e2ac=0.004087546, volume=15966575194402123776, area=30663773697323.51953125, area_p=30663773794562.45703125) |
|
|
Triaxials.Io Triaxial(name='Io', a=1829400, b=1819300, c=1815700, e2ab=0.011011391, e2bc=0.003953651, e2ac=0.014921506, volume=25313121117889765376, area=41691875849096.7421875, area_p=41691877397441.2109375) |
|
|
Triaxials.Mars Triaxial(name='Mars', a=3394600, b=3393300, c=3376300, e2ab=0.000765776, e2bc=0.009994646, e2ac=0.010752768, volume=162907283585817247744, area=144249140795107.4375, area_p=144249144150662.15625) |
|
|
Triaxials.Mimas Triaxial(name='Mimas', a=207400, b=196800, c=190600, e2ab=0.09960581, e2bc=0.062015624, e2ac=0.155444317, volume=32587072869017956, area=493855762247.691894531, area_p=493857714107.9375) |
|
|
Triaxials.Miranda Triaxial(name='Miranda', a=240400, b=234200, c=232900, e2ab=0.050915557, e2bc=0.011070811, e2ac=0.061422691, volume=54926187094835456, area=698880863325.756958008, area_p=698881306767.950317383) |
|
|
Triaxials.Moon Triaxial(name='Moon', a=1735550, b=1735324, c=1734898, e2ab=0.000260419, e2bc=0.000490914, e2ac=0.000751206, volume=21886698675223740416, area=37838824729886.09375, area_p=37838824733332.2265625) |
|
|
Triaxials.Tethys Triaxial(name='Tethys', a=535600, b=528200, c=525800, e2ab=0.027441672, e2bc=0.009066821, e2ac=0.036259685, volume=623086233855821440, area=3528073490771.394042969, area_p=3528074261832.738769531) |
|
|
Triaxials.WGS84_35 Triaxial(name='WGS84_35', a=6378172, b=6378102, c=6356752.314245179, e2ab=0.00002195, e2bc=0.006683478, e2ac=0.006705281, volume=1083207319768789942272, area=510065621722018.125, area_p=510065626587483.3125) |
|
| Function Details |
Compute the intersection of a tri-/biaxial ellipsoid and a Line-Of-Sight from a Point-Of-View outside.
See Also:
Function pygeodesy.hartzell, pygeodesy.tyr3d for |
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 5 14:30:19 2023 | http://epydoc.sourceforge.net |