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1 Introduction

The Stellar Light-curve Simulator (SLS) aims at simulating stochastically-excited oscillations together
with stellar granulation background and white noise. It allows the simulation of two different types of
oscillation spectra: i) oscillation spectra computed on the basis of the so-called Universal Pattern by
Mosser et al. [16]) including in option mixed-modes following the asymptotic gravity mode spacing
[19]. ii) oscillation spectra computed using a given set of theoretical frequencies pre-computed with
the ADIPLS code [9].

2 General principle

The stochastic nature of the different simulated phenomenon (i.e. white noise, stellar granulation and
stochastically-excited oscillations) are simulated following Anderson et al. [1, see also Baudin et al.
[4]]. As detailed below, the properties of the simulated stellar signal are first modelled in the Fourier
domain, we next add a random noise to simulate the stochastic nature of the signal, and finally we
perform an inverse Fourier transform to come back in the time domain and derive the corresponding
time-series (light-curve).

Let F(ν) be the Fourier Transform of the simulated light-curve S(t), and P(ν) the expectation of
the Power Spectral Density (PSD) associated with the stellar signal (i.e. the PSD one would have in
average over an infinite number of realisations). If the frequency bins of the PSD are un-correlated,
we can show then that

F(ν) =
√
P (u+ I v) , (1)

where u, and v are two un-correlated Normal distributions of mean zero and variance unit, and I is
the imaginary unit (I2 = −1). We finally compute the inverse Fourier Transform of F̂ (ν) to derive
the the simulated light-curve S(t) for a given realisation. Note that the PSD P(ν) associated with
a given realisation verifies

P(ν) = |F(ν)|2 = P
(
u2 + v2

)
. (2)

Our PSD is “single-sided”, which means that the integral of the PSD from ν = 0 (excluded) to the
Nyquist frequency is equal to the variance of the time-series.

The expectation P(ν) is here the sum of a white noise component W , granulation background
G(ν), and the oscillations spectrum O(ν), that is

P(ν) = W +G(ν) +O(ν) . (3)

Consistently with our initial hypothesis, all these components are by construction un-correlated. We
describe in the following the way each component is modelled.

3 White noise

The white noise is supposed to be composed by the contribution of the shot-noise (photon noise)
and a non-photonic contribution (instrumental component). If P is the level of the shot noise and
N that of the non-photonic noise in the PSD, the total level of the white noise in the PSD is then

W = P +N . (4)

The variance of the shot noise varies as the photon counts, and hence proportionally to the star flux.
Let P0 be the reference level of the shot noise in the PSD (in ppm2/Hz). The stellar flux being
related to the stellar magnitude V by

F = F0 100.4 (V0−V ) , (5)
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Instrument Reference magnitude P0 σP,0
(V0) ppm2/µHz ppm per hour

CoRoT - seismology channel 6 0.42 7.7
PLATO - 2 F-cameras 8 26.3 60.5

PLATO - 32 N-cameras 11 5.25 27
Kepler 12 8.3 34

Table 1: Reference photon noise levels of different instruments in terms of white noise in the power
spectrum (P0) and standard deviation at a sampling time of 1 hour (σP,0).

the level of shot noise is related to the star magnitude according to

P = P0 100.4 (V−V0) . (6)

For CoRoT the reference photon noise level is P0 = 0.42 ppm2/µHz at the reference magnitude
V0 = 6. Note that for a single sided spectrum, a reference white noise level of P0 in the power
spectrum corresponds to a standard deviation of σP,0 =

√
(W/2) 106/3600 at a sampling time of

one hour. For CoRoT, this correspond to σP,0 = 7.7 ppm per hour. Table 1 reports the reference
photon noise levels of different instruments. Concerning the non-photonic noise, the latter is supposed
to scale as the star flux, and accordingly its level in the PSD scales as

N = N0 100.8 (V−V0) , (7)

where N0 is the reference level of the non-photonic noise (i.e. specified at the reference magnitude
V0).

4 Stellar granulation

The granulation background is simulated by assuming two pseudo-Lorenztian functions

G(ν) =
∑
i=1,2

hi
1 + (2πτiν)

αi
, (8)

where hi is the height, τi the characteristic time-scale, and αi the slope of the Lorenztian function.
The values of hi and τi are determined from the scaling relations established by Kallinger et al. [14]
with Kepler observations of red giants, sub-giants and main-sequence stars. These scaling relations
are function of peak frequency νmax of the oscillations and the stellar mass M . Following Kallinger
et al. [14], the values of the two slopes (α1 and α2) are both fixed to four.

5 Solar-like oscillations

Each individual resolved mode of frequency νi is described by Lorentzian profile

Li(ν) =
Hi

1 + (2 (ν − νi) /Γi)2 , (9)

where Hi is the mode height, and Γi its linewidth. Unresolved modes are modelled using the following
profile [see, e.g. 8]

Li(ν) =
π ΓiHi

2δν
sinc2 [π (ν − νi)] (10)
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where δν is the resolution of the spectrum. Finally, the oscillation spectrum is the sum over the
different modes included

O(ν) =
∑
i

Li(ν) . (11)

Depending of the choice of the user, the mode heights, linewidths and frequencies can be deter-
mined by two different methods. One of this method relies on the so-called Universal Pattern [16]
while the second relies on a set of theoretical mode frequencies computed with the ADIPLS adiabatic
pulsation code. We describe below these two methods.

5.1 Universal pattern

Each mode frequency νn,` is computed according to the Universal Pattern proposed by Mosser et al.
[16]

νn,` = n+
`

2
+ ε(∆ν)− d0`(∆ν) +

α`
2

(
n− νmax

∆ν

)2

∆ν + δn,` , (12)

where n and ` are respectively the radial order and the degree of a given mode, ε is an offset, d0`,
the small separation, α` the curvature, ∆ν is the large separation, and finally the term δn,` accounts
for a possible coupling with the gravity modes, which results in the deviation of the mode frequency
from its uncoupled solution (“pure” acoustic mode) and gives the mode its mixed-mode nature. For
a dipole mode, δn,` is computed according to the asymptotic gravity-mode spacing [19]

δn,` =
∆ν

π
arctan

[
q tanπ

(
1

∆Π1νn,`
− εg

)]
, (13)

where q is the coupling coefficient, ∆Π1 the asymptotic period spacing of the (pure) dipole g modes,
and εg is an offset fixed here to zero. For a radial modes obviously δn,0 = 0, while for all modes with
angular degree ` ≥ 2 we neglect the deviation and assume δn,` = 0.

The variation of the mode heights with frequency are modelled with a Gaussian envelope G(ν),
centered at νmax

G(ν) = exp

[
−(ν − νmax)2

δν2
env/4 ln 2

]
, (14)

where δνenv is the full width at half maximum, which is supposed to scale as [18]:

δνenv = 0.66 ν0.88
max . (15)

Accordingly, the mode height of each given mode (n, `,m) is given by

Hn,` = G(νn,`)V
2
l Hmax , (16)

where Vl, is mode visibility determined from Mosser et al. [18] and Hmax is the maximum of the
mode heights derived from the scaling relation established by Mosser et al. [20], that is

Hmax = αν−2.38
max (17)

where α = 2.03 108 is an had-doc scaling parameter tuned such as to have mode height compatible
with CoRoT observations.

Concerning the mode linewidths Γn,`, they are supposed to be constant with frequency. This
constant value is determined from the theoretical scaling relations of Belkacem [6], which is only
function of the effective temperature, Teff as follows

Γmax = Γmax,0

(
Teff

4800 K

)10.8

, (18)
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where Γmax,0 = 0.19 µHz. The dipolar mixed modes have, however, a much smaller linewidths than
their associated “pure” acoustic modes. This is mainly because their inertia is much larger as a
consequence of the fact they behave as gravity in the inner layers. Indeed, the mode linewidth scales

as the inverse of the mode inertia [see, e.g., 7]. Let Imn,` (resp. Γ
(m)
n,` ) be the mode inertia (resp.

mode linewidth) of a dipolar mixed-modes and I0
n,` (resp. Γ

(0)
n,`) this of the “pure” acoustic mode of

same radial order, we have then

Γ
(m)
n,` = Γ

(0)
n,`

(
I0
n,`

Imn,`

)
, (19)

where according to our previous assumption Γ
(0)
n,` = Γmax for all couple (n, `). Now, according to

Goupil et al. [13],
I0
n,`

Imn,`
' 1− Icore

I
= 1− ζ (20)

where Icore is the contribution of the core to the mode inertia, and ζ is defined as

ζ =
1

1 + α0 χ2
(21)

χ = 2
(νn,`

∆ν

)
cos

(
π

∆Π1 νn,`

)
(22)

α0 = ∆ν∆Π1 (23)

The oscillation spectrum is then constructed by summing the Lorentzian profile of each modes.
We include modes from the radial order n = 1 up to the radial order n = integer (νc/∆ν) where νc
is the cuttoff-frequency (see Eq. 28) and from the angular degree ` = 0 to ` = 3.

The simulator requires three main input parameters, νmax, Teff and ∆ν, from which all the
other parameters are established using scaling relations, except ∆Π1 and q which can be provided as
optional inputs (otherwise no mixed modes are included). In case ∆ν is not provided, it is computed
according to the scaling relation [20]

∆ν = 0.274 ν0.757
max (24)

The stellar mass used for the granulation scaling relations is determined by combining the scaling
relation for νmax [see 6, and reference therein]

νmax = νmax,�
g

g�

√
Teff,�

Teff
, (25)

with the scaling relation for ∆ν

∆ν = ∆ν�

√
M

R3
(26)

where g is surface gravity, log g� = 4.438, Teff,� = 5777 K, νmax,� = 3100 µHz, and ∆ν� =
135 µHz. Indeed, combining the two scaling relations yields [see, e.g., 17]

m = M�

(
νmax

νmax,�

)3 (
∆ν

∆ν�

)−4 (
Teff

Teff,�

)3/2

. (27)

Finally, the cutoff frequency νc is derived from the following scaling relation

νc = νc,�
g

g�

√
Teff,�

Teff
, (28)

where νc,� = 5300 µHz.
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5.2 Theoretical set of mode frequencies

The oscillation spectrum is directly constructed using a set of theoretical eigenfrequencies computed
with the ADIPLS code [9]. The program allows one to including constant mode spilling given as
input the surface rotation period Trot = 2π/Ωsurf where Ωsurf is the surface rotation rate. The set
of frequencies including in the model are

ν
(0)
n,`,m = νn,` +

m

Trot
( 1− cn,`) (29)

where m is the azimuthal order, and cn,` is the Ledoux’s constant [21, see, e.g.] provided by ADIPLS.
We considered all the modes of radial order n ≥ 1 up to the cutoff frequency and consider modes
with angular degrees ranging from ` = 0 to ` = 3 (included). Near-surface effects are eventually
added as follows

νn,`,m = ν
(0)
n,`,m + a νmax

1− 1

1 +
(
ν

(0)
n,`,m/νmax

)b
 , (30)

where a and b are two free parameters, which are given as inputs to the program.
The mode height of each given mode is computed according to

Hn,`,m = G(νn,`,m)V 2
l r

2
n,`,m(i)Hmax (31)

where G is the Gaussian envelope defined in Eq. (14), Vl the mode visibility (same values than those
used with the universal pattern), Hmax the mode height a the peak frequency, and rn,`,m is the
(relative) visibility of a multiplet of azimuthal order m for a given inclination angle i. The ratio rn,`,m
is computed according to Dziembowski [11, see also Gizon & Solanki [12]] and represents – at fixed
value of n and ` – the ratio of the mode height for a given inclination angle i to the mode height at
the angle i=0 degree.

Since the mode linewidth is inversely proportional to the mode inertia, we model it as

Γn,`,m = Γmax

(
Imax

In,`

)
γ(νn,`,m) , (32)

where In,` is the mode inertia, Imax is the mode inertia of the radial modes interpolated at ν = νmax,
Γmax is the mode linewidth at ν = νmax derived from tow different scaling relations (see below), and
the function γ(ν) models in an empirical way the existence of a plateau. The latter is defined as
follows

γ(ν) = 1 +A (1−G′(ν)) (33)

where G′(ν) is a Gaussian function defined as in Eq. (14) but with a width two times larger, that is
δν′env = 2δνenv, where δνenv is given by the scaling relation of Eq. (15).

The mode linewidth a the peak frequency, Γmax, is determined on the basis of the scaling relation
derived by Appourchaux et al. [2] from main-sequence Kepler targets, i.e.

Γmax = Γmax,0 + β

(
Teff

Teff,�

)s
, (34)

where Γmax,0 = 0.20µHz, β = 0.97, and s = 13.0.
For a single-side PSD, the mode height is related to the mode linewidth as [see, e.g. 5]1

Hmax =
2A2

max

π Γmax
(35)

1The additional factor two comes from the fact we assume here as single-side PSD while Baudin et al. [5] assumed
a double-sided PSD.
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Teff νmax ∆ν ∆Π q
K µHz µHz s

4800 61.2 5.72 232.2 0.27

Duration Sampling Magnitude Noise level Reference magnitude
days s ppm per hour
150 512 12 7.7 6

Table 2: Parameters of the simulation displayed in Fig. 2.

where Amax is the rms of the mode amplitude at the peak frequency. The latter is related to the
bolometric amplitude Amax,bol using the correction proposed for Kepler spectral band by Ballot et al.
[3]

Amax = Amax,bol

(
Teff

5934 K

)−0.8

. (36)

Note that the CoRoT spectral band results in very similar corrections [see 15]. Finally, Amax,bol is
derived from the scaling relations derived by Corsaro et al. [10] and defined as

ln(Amax,bol) = ln(Amax,bol,�) + (2s− 3t) ln(νmax/νmax,�) +

(4t− 4s) ln(∆ν/∆ν�) + (5s− 1.5t− r + 0.2) ln(Teff/Teff,�) + ln(β) (37)

where Amax,bol,� = 2.53 ppm (rms) is the maximum of the bolometric solar mode amplitude [15],
and s, t, r and β are coefficients that depends on the star evolutionary status (see Table 3 & 4 in
Corsaro et al. [10]).

6 Illustration

6.1 Universal pattern

The Fig. 1 show the theoretical spectrum obtained with the method based on the Universal Pattern.
Figure 2 presents the power spectrum generated from the theoretical spectrum shown. The parameters
of this simulations are given in Table 2.

6.2 A theoretical set of mode frequencies

The Fig. 3 presents the theoretical spectrum derived from a theoretical set of eigenfrequencie. Fig-
ure 4 shows the power spectrum generated from the theoretical spectrum. The parameters of this
simulations are given in Table 3.
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Figure 1: Theoretical spectrum (expectation) derived with the method based on the Universal Pattern.

Figure 2: The blue curve correspond to the simulated power spectrum (i.e. a given realisation) gen-
erated with the method based the Universal Pattern and the red curve corresponds to the associated
theoretical spectrum (expectation).

Teff νmax ∆ν Mass radius
K µHz µHz

5954 2027 95.1 1.182 1.335

Duration Sampling Magnitude Noise level Reference magnitude
days s ppm per hour
150 512 6 7.7 6

Table 3: Parameters of the simulation displayed in Fig. 4.
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Figure 3: Theoretical spectrum (expectation) derived with the method relying on a input set of
theoretical frequencies computed with ADIPLS.

Figure 4: The blue curve correspond to the simulated power spectrum (i.e. a given realisation)
generated the method relying on a input set of theoretical frequencies computed with ADIPLS and
the red curve corresponds to the associated theoretical spectrum (expectation).
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