SWAT-EM API Documentation
Release 0.4.0

Martin Baun

Jan 11, 2020






CONTENTS

1 Table of Contents 3
1.1 Installation . . . . . . . . . e e e e e e e e e e e 3
1.2 Basicusage . . . . . . . e e e e 3
1.3 Getting Results . . . . . . . e 7
1.4 Plots . . . o o e e e e 7
1.5 FileIO . . . . . e 12
1.6  Reference . . . . . . . . . e e e e e 12
2 Indices and tables 19
Python Module Index 21
Index 23







SWAT-EM API Documentation, Release 0.4.0

This documentation is for scripting “SWAT-EM”. SWAT-EM is a software for designing and analyzing winding
systems for electrical machines. Currently supported are rotating field windings (permanent-magnet motors, induction
motors, synchronout reluctance motors) with any number of phases. This can be distributed full pitch or fractional slot
winding or tooth-coil winding. The design can be done by

* Generating with manual allocation of the coil sides to stator slots
¢ Defining individual number of turns for each coil
* Automatic winding generators
* Tables of possible winding systems for slot/pole combinations
Analyzing features
 Calculation of the winding factor based on the voltage star of slots
* Plot of the winding layout
* Plot of stator ampere-conductor distribution and the magnetomotive force (MMF)

* Plot of the slot voltage phasors

Plot of the winding factor

* Max. possible number of parallel circuit connection of coils

CONTENTS 1



SWAT-EM API Documentation, Release 0.4.0

2 CONTENTS



CHAPTER
ONE

TABLE OF CONTENTS

1.1 Installation

To install, you can do:

’$ pip install swat-em

or download it from https://gitlab.com/martinbaun/swat-em/ and install it from the project root directory:

’$ python setup.py install

If you running windows and don’t want to deal with a python interpreter you can download an *.exe installer or a
portable *.zip version which includes all python dependencies from https://sourceforge.net/projects/swat-em/

1.1.1 Run the programm

Run the programm by starting it from the command line:

’swat—em

or with:

’swat—em.exe

under windows. If you have installed swat-em with the windows installer you can use the desktop icon to start.

1.2 Basic usage

1.2.1 Simple overlapping winding

For the beginning let’s have a look how we can collect magnetic flux generated by a permanent-magnet rotor through
a coil. The highest flux we get, if we define the coil width TV equal to the pole pitch 7,,. However this in practise this
often isn’t the best choise because of the high harmonic content. Most windings have W < 7,,.

For a symmetric three-phase winding we have to add two more coil which are shifted by 120°. For two poles this is
one of the most simplest winding.

Let’s have a look how we can model this simple winding with swat-em. First of all we need to import swat-em. The
relevant part is the datamodel() object. It includes all data and methods for the winding:



https://gitlab.com/martinbaun/swat-em/
https://sourceforge.net/projects/swat-em/

SWAT-EM API Documentation, Release 0.4.0

= : - — Rotor iron

:| | | | T Magnets
- . Stator
~ Field lines

Fig. 1: How to get flux, based on the rotor, through a coil

overhang

Fig. 2: Overlapping winding with 6 slots, 2 poles and 3 phases

4 Chapter 1. Table of Contents



SWAT-EM API Documentation, Release 0.4.0

from swat_em import datamodel

The model has an built-in winding generator for almost every winding for rotating field motors such as permanent-
magnet, synchronous or induction machines:

>>> wdg = datamodel () # generate a datamodel for the winding
>>> Q = 6 # number of slots

>>> P = 2 # number of pole pairs

>>> wdg.genwdg(Q = Q, P = P, m = 3, layers = 1)

>>> print (wdg) # print infos for the winding

WINDING DATAMODEL

Title: Untitled
Number of slots:
Number of poles:
Number of phases:
Number of layers:
Winding step 3

Number of slots per pole per phase: 1
Fundamental winding factor: 1.0, 1.0, 1.0

= w N oy

JLILILILIL

1 2 3 L 5 [

Fig. 3: Generated overlapping winding

1.2.2 Simple tooth-coil winding

Besides of the overlapping winding there is another winding winding systems - tooth coils. To get such a winding the
winding step must be exactely W = 1. This means, that the distance between a wire and its reverse wire is one slot.

120°el

i Winding
: overhang

Fig. 4: Tooth-coil winding with 3 slots, 2 poles and 3 phases

1.2. Basic usage 5




SWAT-EM API Documentation, Release 0.4.0

We can set the winding step explicite with the keyword ‘stepwidth’. Compared to the overlapping winding we need
only 3 slots for the two poles. To get a coil around every tooth, we need two winding layers:

>>> wdg = datamodel () # generate a datamodel for the winding
>>> Q = 3 # number of slots

>>> P = 2 # number of pole pairs

>>> w = 1 # step width for the coil in slots

>>> # generate winding automatically

>>> wdg.genwdg (Q = Q, P = P, m = 3, layers = 2, W = W)
>>> print (wdg) # print infos for the winding
WINDING DATAMODEL

Title: Untitled

Number of slots: 3
Number of poles: 2
Number of phases: 3
Number of layers: 1
Winding step 1

Number of slots per pole per phase: 1/2
Fundamental winding factor: 0.866, 0.866, 0.866

Fig. 5: Winding layout with 3 slots, 2 poles and 3 phases

1.2.3 A more complex winding

A more complex winding (overlapping full pitch winding with coil shortening)

>>> wdg = datamodel ()

>>> Q = 12
>>> P = 2
>>> w = 5 # without shortening w would be 6 for this winding

>>> wdg.genwdg(Q = Q, P = P, m = 3, layers = 2, W = W)
>>> print (wdg)
WINDING DATAMODEL

Title: Untitled

Number of slots: 12

Number of poles: 2

Number of phases: 3

Number of layers: 2

Winding step : 5

Number of slots per pole per phase: 2
Fundamental winding factor: 0.933, 0.933, 0.933

Fig. 6: Winding layout with 12 slots, 2 poles and 3 phases

6 Chapter 1. Table of Contents




SWAT-EM API Documentation, Release 0.4.0

1.3 Getting Results

After generating a winding, swat-em analyze it and provides the results:

>>> wdg = datamodel ()
>>> wdg.genwdg(Q = 12, P = 2, m = 3, layers = 1)

>>> print ('fundamental winding factor: ', wdg.get_fundamental_windingfactor())
fundamental winding factor: [0.9659258262890683, 0.9659258262890683, 0.
—9659258262890684]

>>> print ('winding step: ', wdg.get_windingstep())
winding step: 6

Get the generated winding layout: For each phase there is a list of the 1st and the 2nd layer. In this example there is
only 1 layer, so the second list is empty. An entry of the lists define the slot number in which is a coil-side of the phase
is located. A negative number means, that the winding direction is reversed in the slot.

>>> print ('winding layout:', wdg.get_phases())
winding layout: [[([1, 2, -7, -8], [1], [I[5, 6, -11, -121, (11, [[-3, -4, 9, 101, [1]]

The winding factor depends on the harmonic number. There are two possible interpretations for the harmonic number:
The ‘electrical” harmonic numbers the ‘mechanical’ ordinal numbers multiplyed with number of pole pairs ‘p’. Use
the ‘mechanical’ winding factor if you want du determine the possible number of poles your winding can drive and use
the electrical winding factor if you know your number of pole pairs and if you want to analyze the harmonic content
of the winding for example. Attention: The winding factor is calculated for each phase seperately.

>>> nu, kw = wdg.get_windingfactor_el ()
>>> for k in range(len(nu)) :

>>> print (nulk], kw([k])

0.96592583 0.96592583 0.96592583]
0.70710678 -0.70710678 -0.70710678]
0.25881905 -0.25881905 -0.25881905]
0.25881905 0.25881905 0.25881905]
-0.70710678 -0.70710678 -0.70710678]

O J 0w

[
[
[
[
[

The datamodel() object stores the data in dictionaries. The user have direct access:

>>> print ('Data for the machine: ', wdg.machinedata.keys())

Data for the machine: dict_keys(['Q', 'p', 'm', 'phases', 'wstep', 'turns',

— 'phasenames'])

>>> # ... and all results:

>>> print ('Data for the machine: ', wdg.results.keys())

Data for the machine: dict_keys(['qg', 'nu_el', 'Ei_el', 'kw_el', 'phaseangle_el',

—'nu_mech', 'Ei_mech', 'kw_mech', 'phaseangle_mech', 'wvalid', 'error', 't', 'wdg_is_
—symmetric', 'wdg_periodic', 'MMK', 'basic_char'])

1.4 Plots

1.4.1 Winding layout

SWAT-EM provides some possibilities for graphical representations. After creating a winding one would like to have
a look on the layout, for example. This plot includes all coil sides of all phases in the slots:

1.3. Getting Results 7




SWAT-EM API Documentation, Release 0.4.0

>>> wdg = datamodel ()
>>> wdg.genwdg(Q = 12, P = 2, m = 3, layers
>>> wdg.plot_layout ('plot_layout.png')

1)

65 P A A4 4 B

Fig. 7: Plot of the winding layout

1.4.2 Voltage phasors of the star of slot

SWAT-EM calculates the winding factor by the slot voltage phasors. The following is the corresponding visualization.

>>> wdg.plot_star('plot_star.png')

/f’hase 1
/’f’hase 2

/f’hase 3

Fig. 8: Plot of the voltage phasors

8 Chapter 1. Table of Contents



SWAT-EM API Documentation, Release 0.4.0

1.4.3 Winding factor

For the winding factor one have to decide between the mechanical or the electrical winding factor. Attention: For a
2-pole machine the electrical and mechanical winding factor is equal.

>>> wdg.plot_windingfactor ('plot_wf.png', mechanical = False)

/f’hase 1
1

gfactor kw
=
oo

Windin
=]
o

0.4

0.2

0 2 4 6 8 10 12 14 16 18 205,@RaRdmbeey 28 30 32 34 36 38 40

Fig. 9: Plot of the electrical winding factor

1.4.4 Magnetomotive force

The winding generates a current linkage in the slots. The integral of it leads to a magnetic field in the airgap, which
is called the ‘Magnetomotive force (MMF)’. It’s a good indicator for the harmonic content of the winding. Also the
resultion of the image can be definded:

>>> wdg.plot_MMK ('plot MMK.png', res = [800, 600], phase = 0)

It also could be usefull to plot at different phase angles

>>> wdg.plot_MMK ('plot MMK 20deg.png', res = [800, 600], phase = 20)

1.4. Plots 9




SWAT-EM API Documentation, Release 0.4.0

2 - -
% 0 £ / \ N
= -
=

1

2

1 2 3 4 5 6

circumferential stator slots

Currentin slot in A

0 1 2 3 4 5 6 7 8 9 10 11 12

circumferential stator slots

Fig. 10: Plot of the current linkage in the slots and the resulting Magnetomotove force

10 Chapter 1. Table of Contents



SWAT-EM API Documentation, Release 0.4.0

el /CC !
1 — <
< - -
=
w 0
= |
= |
- - :
~ ",
! . ///'
—— —_-17‘{_
1 2 3 4 5 3] 7 g 9 10 11 12

circumferential stator slots

Currentin slot in A

0 1 2 3 4 5 6 7 8 9 10 11 12

circumferential stator slots

Fig. 11: Plot of the current linkage in the slots and the resulting Magnetomotove force with phaseangle = 20°.

1.4. Plots 11



SWAT-EM API Documentation, Release 0.4.0

1.5 File 10

1.5.1 Save/load a winding

After creating a winding we can save it as a *.wdg file This file can be used with the GUI for example. swat-em uses
the “json” format for the *.wdg files.

>>> wdg = datamodel ()
>>> wdg.genwdg(Q = 12, P = 2, m = 3, layers = 1)
>>> wdg.save_to_file('myfile.wdg')

We can also load an existing winding from file:

>>> wdg2 = datamodel ()

Proof, that the data of the two objects is equal:

>>> print ('same data?:', wdg.machinedata == wdg2.machinedata)
same data?: True
>>> print ('same results?:', wdg.results == wdg2.results)

same results?: True

1.5.2 Export to Excel file

The data of an existing winding can exported to an Excel file (*.xIsx). Attention: The old *.xls format is not supported!

>>> wdg.export_xlsx ('export.xlsx")

1.5.3 Text report

A summary of the winding can be exported as a text report:

>>> wdg.export_text_report ('report.txt')

1.5.4 HTML report

Similar to the text report we can create a html report. This also includes the graphics.

>>> wdg.export_html_report ('report.html")

1.6 Reference

class swat_em.datamodel.datamodel
Provides a central place for all data. All analysis functions are connect with this class.

analyse_wdg ()
analyses the winding (winding factor etc.)

calc_num basic_windings_t ()
Calculates and returns the number of basic windings ‘t’ for the actual winding layout

12 Chapter 1. Table of Contents




SWAT-EM API Documentation, Release 0.4.0

Returns t — Periodicity for the winding layout
Return type integer

export_html_ report (fname=None)
Returns a winding report.

Parameters fname (string)—file name for html file. If not given a file is created in the temp
dir of the file system (the file name ist returned by this function)

Returns filnename — The file name of the html-file which is stored in tmp directory
Return type string

export_text_report (fname)
Export winding report as a text file.

Parameters fname (string) - file name

export_xlsx (fname)
Export the results to Excel xIsx file.

Parameters fname (string) - file name

genwdg (Q, P, m, layers, w=-1, turns=1)
Generates a winding layout and stores it in the datamodel

Parameters
e Q (integer)— number of slots
* P (integer)— number of poles
* m (integer)— number of phases
* w(integer)— winding step (1 for tooth coils)
* layers (integer)— number of coil sides per slot
* turns (integer)— number of turns per coil

get_basic_characteristics ()
Returns the basic charactericits of the winding as dictionary and a html string

get_double_linked leakage ()
Returns the coefficient of the double linkead leakage flux. This number is a measure of the harmonic
content of the MMF in the airgap caused by the winding. As higher the number as higher the harmonics.

Returns sigma_d — coefficient of the double linkead leakage flux
Return type float

get_fundamental_windingfactor ()
Returns the fundamental winding factors for each phase

Returns kw — windings factors, (one entry for each phase)
Return type list

get_layers ()
Returns the definition of the winding layout alternative to the ‘get_phases’ function. For every layer (with
the length of the number of slots) there is a sublist which contains the phase-number.

layers[0][0] contains the phase number for first layer and first slot layers[0][1] contains the phase num-
ber for first layer and second slot layers[0][Q-1] contains the phase number for first layer and last slot
layers[1][0] contains the phase number for second layer and first slot

1.6. Reference 13



SWAT-EM API Documentation, Release 0.4.0

Returns
* layers (numpy array) — winding layout
* slayers (numpy array) — same as ‘layers’ but as string
* layers_col (numpy array) — phase colors

get_notes ()
Get notes for the winding

Returns notes — Some notes
Return type string

get_num_layers ()
Returns the number of layers of the actual winding layout

get_num_phases ()
Returns the number of phases m

Returns m — number of phases
Return type integer

get_num polepairs ()
Returns the number of pole-pairs p

Returns p — number of pole-pairs
Return type integer

get_num_series_turns ()
Returns the number of turns in series per phase. If the number of coil sides per phase or number of turns
per phase is not identically than a mean value of turns of all phases is returned.

Returns w — number of turns in series per phase
Return type number

get_num_slots ()
Returns the number of slots Q

Returns Q — number of slots
Return type integer

get_phasenames ()
Returns the names of the phases as a series of characters ‘A’, ‘B’, ‘C’, ... with length of the number of
phases

Returns phasenames — names of the phases

Return type list

Examples

if there are m = 3 phases: >>> data.get_phasenames() [‘A’, ‘B’, ‘C’]

get_phases ()
Returns the definition of the winding layout. For every phase there is a sublist which contains the slot
number which are allocated to the phase. phases

phases[0] contains the slot numbers for the first phase phases[1] contains the slot numbers for the second
phase phases[m-1] contains the slot numbers for the last phase

14 Chapter 1. Table of Contents



SWAT-EM API Documentation, Release 0.4.0

Returns phases — winding layout
Return type list of lists

get_qg()
Returns the number of slots per pole per phase.

Returns layers — number of slots per pole per phase
Return type Fraction

get_radial_ force_modes (num_modes=None)
Returns the radial force modes caused by the winding. The results includes also the modes with a multiple
of the phase-number (which aren’t there if the machine is star-connected).

Parameters num_modes (integer)— Max. number of modes. If not given the default value
from the config file is used

Returns MMK - radial force modes
Return type list

get_text_report ()
Returns a winding report.

Returns report — Report
Return type string

get_title ()
Get the title of the winding

Returns title — title
Return type string

get_turns ()
Returns the number of turns. If all coil sides has the same number of turns, the return value is a scalar. If
every coil side has an individual number of turns, the return value consists of lists with the same shape as
the winding layout (phases)

Returns turns — number of turns
Return type integer, float or list of lists

get_windingfactor_ el ()
Returns the windings factors with respect to the electrical ordinal numbers

Returns
* nu (numpy array) — ordinal numbers
e kw (2D numpy array) — windings factors, (one column for each phase)

get_windingfactor_mech ()
Returns the windings factors with respect to the electrical ordinal numbers

Returns
* nu (numpy array) — ordinal numbers
* kw (2D numpy array) — windings factors, (one column for each phase)

get_windingstep ()
Returns the winding step

Returns w — winding step

1.6.

Reference 15



SWAT-EM API Documentation, Release 0.4.0

Return type integer

load_from_f£file (fname, idx_in_file=0)
Load data from file.

Parameters fname (string) - file name

plot_MMK (filename, res=None, phase=0, show=False)
Generates a figure of the winding layout

Parameters
e filename (string) - file-name with extension to save the figure

* res (1ist)— Resolution for the figure in pixes for x and y direction example: res = [800,
600]

* phase (float) — phase angle for the current system in electical degree in the range
0..360°

* show (Bool)— If true the window pops up for interactive usage

plot_1layout (filename, res=None, show=False)
Generates a figure of the winding layout

Parameters
e filename (string) - file-name with extension to save the figure

* res (1ist)— Resolution for the figure in pixes for x and y direction example: res = [800,
600]

* show (Bool) - If true the window pops up for interactive usage

plot_star (filename, res=None, ForceX=True, show=False)
Generates a figure of the star voltage phasors

Parameters
e filename (string) - file-name with extension to save the figure

* res (1ist)— Resolution for the figure in pixes for x and y direction example: res = [800,
600]

* ForceX (Bool) — If true the voltage phasors are rotated in such way, that the resulting
phasor of the first phase matches the x-axis

* show (Bool)— If true the window pops up for interactive usage

plot_windingfactor (filename, res=None, mechanical=True, show=False)
Generates a figure of the winding layout

Parameters
* filename (string) - file-name with extension to save the figure

* m (11ist)— Resolution for the figure in pixes for x and y direction example: res = [800,
600]

* mechanical (Bool) - If true the winding factor is plotted with respect to the mechani-
cal ordinal numbers. If false the electrical ordinal numbers are used

* show (Boo1l) — If true the window pops up for interactive usage

reset_data()
resets all data of the datamodel

16 Chapter 1. Table of Contents



SWAT-EM API Documentation, Release 0.4.0

reset_results ()
Remove all existing results

save_to_file (fname)
Saves the data to file.

Parameters fname (string) - file name

set_machinedata (Q=None, p=None, m=None)
setting the machine data

Parameters
¢ Q (integer)— number of slots
* p (integer)—number of pole pairs
* m(integer)— number of phases

set_notes (notes)
Set additional notes for the winding

Parameters notes (string)— Some notes

set_num phases (m)
Sets the number of phases m

Parameters m (integer)— number of phases

set_num_polepairs (p)
Sets the number of pole pairs p

Parameters p (integer)— number of pole pairs

set_num slots (Q)
Sets the number of slots Q

Parameters Q (integer)— number of slots

set_phases (S, turns=1, wstep=None)
setting the winding layout

Parameters

* S(list of 1lists)- winding layout for every phase, for example: S = [[1,-2], [3,-4],
[5,-6]]. This means there are 3 phases with phase 1 in in slot 1 and in slot 2 with negativ
winding direction. For double layer windings there must be additional lists: S = [[[1, -4],
[-3, 611, [[3, -6], [-5, 211, [[-2, 5], [4, -1]]] Hint: [[[first layer], [second layer]], ... ]

* wstep (integer)— winding step (slots as unit)

set_title (title)
Set the title of the winding

Parameters title (string) —title

set_turns (furns)
Sets the number of turns. If all coil sides has the same number of turns, the parameter should be an scalar.
If every coil side has an individual number of turns, the parameter value have to consist of lists with the
same shape as the winding layout (phases)

Parameters turns (integer, float or list of 1ists)-number of turns

set_windingstep (w)
Sets the winding step w

1.6.

Reference 17



SWAT-EM API Documentation, Release 0.4.0

Parameters w (integer)— winding step

18 Chapter 1. Table of Contents



CHAPTER
TWO

INDICES AND TABLES

* genindex
¢ modindex

¢ search

19



SWAT-EM API Documentation, Release 0.4.0

20 Chapter 2. Indices and tables



PYTHON MODULE INDEX

S

swat_em, 12

21



SWAT-EM API Documentation, Release 0.4.0

22 Python Module Index



A

analyse_wdg ()
method), 12

(swat_em.datamodel.datamodel

C

calc_num_basic_windings_t ()
(swat_em.datamodel.datamodel
12

method),

D

datamodel (class in swat_em.datamodel), 12

E

export_html_report ()

(swat_em.datamodel.datamodel method),
13

export_text_report ()
(swat_em.datamodel.datamodel method),
13

export_xlsx () (swat_em.datamodel.datamodel
method), 13

G

genwdg () (swat_em.datamodel.datamodel method), 13
get_basic_characteristics()

(swat_em.datamodel.datamodel method),
13

get_double_linked_leakage ()
(swat_em.datamodel.datamodel method),
13

get_fundamental_windingfactor ()
(swat_em.datamodel.datamodel method),
13

get_layers|() (swat_em.datamodel.datamodel
method), 13

get_notes () (swat_em.datamodel.datamodel
method), 14

get_num_layers () (swat_em.datamodel.datamodel
method), 14

get_num_phases () (swat_em.datamodel.datamodel
method), 14

INDEX

get_num_polepairs()

(swat_em.datamodel.datamodel method),
14

get_num_series_turns()
(swat_em.datamodel.datamodel method),
14

get_num_slots () (swat_em.datamodel.datamodel
method), 14

get_phasenames () (swat_em.datamodel.datamodel
method), 14

get_phases () (swat_em.datamodel.datamodel
method), 14

get_qg () (swat_em.datamodel.datamodel method), 15
get_radial_ force_modes ()

(swat_em.datamodel.datamodel method),
15

get_text_report ()
(swat_em.datamodel.datamodel method),
15

get_title() (swat_em.datamodel.datamodel
method), 15

get_turns () (swat_em.datamodel.datamodel
method), 15

get_windingfactor_el ()
(swat_em.datamodel.datamodel
15

get_windingfactor_mech ()
(swat_em.datamodel.datamodel
15

get_windingstep ()
(swat_em.datamodel.datamodel
15

method),

method),

method),

L

load_from_ file ()
method), 16

(swat_em.datamodel.datamodel

P

plot_layout () (swat_em.datamodel.datamodel

method), 16
plot_MMK () (swat_em.datamodel.datamodel method),
16

23



SWAT-EM API Documentation, Release 0.4.0

plot_star () (swat_em.datamodel.datamodel
method), 16

plot_windingfactor ()
(swat_em.datamodel.datamodel method),
16

R

reset_data () (swat_em.datamodel.datamodel
method), 16

reset_results () (swat_em.datamodel.datamodel
method), 16

S

save_to_file() (swat_em.datamodel.datamodel
method), 17

set_machinedata ()
(swat_em.datamodel.datamodel method),
17

set_notes () (swat_em.datamodel.datamodel
method), 17

set_num_phases () (swat_em.datamodel.datamodel
method), 17

set_num_polepairs()
(swat_em.datamodel.datamodel method),
17

set_num_slots () (swat_em.datamodel.datamodel
method), 17

set_phases () (swat_em.datamodel.datamodel
method), 17

set_title() (swat_em.datamodel.datamodel
method), 17

set_turns () (swat_em.datamodel.datamodel
method), 17

set_windingstep ()
(swat_em.datamodel.datamodel method),
17

swat_em (module), 12

24

Index



	Table of Contents
	Installation
	Basic usage
	Getting Results
	Plots
	File IO
	Reference

	Indices and tables
	Python Module Index
	Index

