dalio.validator package¶
Submodules¶
dalio.validator.array_val module¶
Definte validators applied to array-like inputs
-
class
dalio.validator.array_val.
HAS_DIMS
(dims, comparisson='==')¶ Bases:
dalio.validator.validator.Validator
Check if an array has a number of dimensions
-
_dims
¶ number of dimensions
- Type
int
-
_comparisson
¶ which comparisson to perform
- Type
str
-
validate
(data)¶ Validate data
Check if data fits a certain description.
- Returns
A description of any errors in the data according to this specific validation condition, and None if data is valid.
-
dalio.validator.base_val module¶
Define Validators used for general python objects
-
class
dalio.validator.base_val.
ELEMS_TYPE
(t)¶ Bases:
dalio.validator.base_val.HAS_ATTR
Checks if all elements of an iterator is of a certain type.
-
_t
¶ type to check iterator’s elements for
- Type
type, tuple
-
validate
(data)¶ Validates data if it is an iterable with all elements of type self._t
-
-
class
dalio.validator.base_val.
HAS_ATTR
(attr)¶ Bases:
dalio.validator.validator.Validator
Checks if data has an attribute
-
_attr
¶ attribute to check for
- Type
str
-
validate
(data)¶ Validates data if it contains attribute self._attr
-
-
class
dalio.validator.base_val.
IS_TYPE
(t)¶ Bases:
dalio.validator.validator.Validator
Checks if data is of a certain type
- Attribute:
t (type): type of data to check for
-
validate
(data)¶ Validates data if it is of type self._t
dalio.validator.pandas_val module¶
-
class
dalio.validator.pandas_val.
HAS_COLS
(cols, level=None)¶ Bases:
dalio.validator.pandas_val.IS_PD_DF
Checks if data has certain column names
-
_cols
¶ list of column names to check
-
validate
(data)¶ Validates data if all the columns in self._cols is present in the dataframe
-
-
class
dalio.validator.pandas_val.
HAS_INDEX_NAMES
(names, axis=0)¶ Bases:
dalio.validator.pandas_val.IS_PD_DF
Checks if an axis has specified names
-
_names
¶ names to check for
-
_axis
¶ axis to check for names
-
validate
(data)¶ Validates data if specified axis has the specified names
-
-
class
dalio.validator.pandas_val.
HAS_IN_COLS
(items, cols=None)¶ Bases:
dalio.validator.pandas_val.HAS_COLS
Check if certain items are present in certain columns
-
_cols
¶ See base class
-
_items
¶ items that must be present in each of the specified columns
-
validate
(data)¶ Validates data if items in self._items are not present in specified columns. Specified columns are all columns if self._cols is None.
-
-
class
dalio.validator.pandas_val.
HAS_LEVELS
(levels, axis=0, comparisson='<=')¶ Bases:
dalio.validator.pandas_val.IS_PD_DF
-
validate
(data)¶ Validates data if it is of type self._t
-
-
class
dalio.validator.pandas_val.
IS_PD_DF
¶ Bases:
dalio.validator.base_val.IS_TYPE
Checks if data is a pandas dataframe
-
See base class
-
-
class
dalio.validator.pandas_val.
IS_PD_TS
¶ Bases:
dalio.validator.base_val.IS_TYPE
Checks if data is a pandas time series
-
validate
(data)¶ Validates data if it’s index is of type pandas.DateTimeIndex
-
dalio.validator.presets module¶
Define Validator collection presets
These are useful to describe very specific data characteristics commonly used in some analysis.
dalio.validator.validator module¶
Define Validator class
Validators are the building blocks of data integrity in the graph. As modularity is key, validators ensure that the data that enters a node is what it is mean to be or that errors are targeted to make debugging easier.
-
class
dalio.validator.validator.
Validator
(fatal=True)¶ Bases:
object
Check for some characteristic of a piece of data
Validators can have any attribute needed, but functionality is stored in u the .validate function, which returns any errors in the data.
-
fatal
¶ Whether if invalid data is fatal. Decides whether invalid data can still be passed on (with a warning) or if it is grounds to stop the execution of the graph. False by default.
- Type
bool
-
test_desc
¶ Description of tests performed on data
- Type
str
-
fatal
: bool = None
-
fatal_off
()¶ Turn fatal off and return self
-
fatal_on
()¶ Turn fatal on and return self
-
is_on
: bool = None¶
-
test_desc
: str = None
-
validate
(data)¶ Validate data
Check if data fits a certain description.
- Returns
A description of any errors in the data according to this specific validation condition, and None if data is valid.
-