Dal.io
Release 0.0.1

Renato Mateus Zimmermann

Jul 19, 2020

MODULES

1 Quick Links 1
1.1 UserModules. e e 1
1.2 Developer Modules e 56
1.3 Understanding Graphs e e 71
L4 Base Classes v v v v it e e e e e e e e 72
1.5 ExtraClasses and CONCEPLS v v v v v v v v et e e e e e e e e e e e e e e e e 75
1.6 Tipsand Tricks o o o e e e e e e 76
1.7 CoreClasses and Concepts ottt i ittt e e e 82
1.8 Development Noteson Base Classes it 83
1.9 Key Concepts, Differences and Philosophy 83
2 Table of Contents 85
3 Introduction 87
4 Installation 89
5 A Guided Example 91
6 Next Steps 95
7 Indices and tables 97
Python Module Index 99
Index 101

CHAPTER
ONE

QUICK LINKS

1.1 User Modules

1.1.1 dalio.external package

Submodules
dalio.external.external module

Define abstract External class

External instances manage connections between your environment and an external source. Class instacnes will often
be redundant with existing connection handlers, but at least subclasses will allow for more integrated connection
handling and collection, so that you can have a single connection object for each external connection.

class dalio.external.external .External (config=None)
Bases: dalio.base.node._Node

Represents external data input or output

External instances have one external input and one internal output or one internal input and one external output.

_connection
connection with outside source of data

_config
authentication settings for outside sources

Type dict

authenticate ()
Establish a connection with the source.

Returns True if authenication is successful or if it is already existent False if the authentication
fails.

check ()
Check if connection is ready to request data

Returns Whether data is ready to be requested

request (**kwargs)
Request data to or from an external source

update_config (new_conf)
Update configuration dict with new data

Dal.io, Release 0.0.1

Parameters new_conf — dictionary with new configurations or file containing configuration

settings translatable to a dictionary

Raises TypeError — if config is a non-existent file or not a dict.

dalio.external.file module

Define File 10 classes
Files are external sources of data that can be processed in several ways as raw data used in a graph.

class dalio.external.file.FileWriter (out_file=<_io.TextIOWrapper name=
mode="w' encoding="UTF-8'>)
Bases: dalio.external.external.External

File string writer

_connection
any file instance that can be written on

check ()
Check if there is an open file as the connection

request (**kwargs)
Write a request string onto a file

set_connection (new_connection)
Set current connection

Set connection to opened file or open a new file given the path to one.
Parameters new_connection — open file instance or path to an existing file.
Raises
* IOError — if specified path does not exist.
* TypeError — if specified “new_connection” argument is of an invalid type

class dalio.external.file.PandasInFile (in_file)
Bases: dalio.external.external.External

Get data from a file using the pandas package

_connection
path to a file that can be read by some pandas function.

Type str

check ()
Check if connection is ready to request data

Returns Whether data is ready to be requested

request (**kwargs)
Get data input from a file according to its extension

Parameters *xkwargs — arguments to the inport function.

'<stdout>'

2 Chapter 1

. Quick Links

Dal.io, Release 0.0.1

dalio.external.image module

Define classes for image pieces

Images, be it a plot, picture or video are considered external outputs as the figure itself is not contained in the python
session, and must be shown in a screen or server.

class dalio.external.image.PyP£fOptGraph (figsize=None)
Bases: dalio.external.image.PyPlotGraph

Graphs data from the PyPfOpt package

plot (data, coords=None, kind=None, **kwargs)
Graph data from pypfopt

Parameters data — plottable data from pypfopt package
Raises TypeError — if data is not of a plottable class from pypfopt

class dalio.external.image.PyPlotGraph (figsize=None)
Bases: dalio.external.image._Figure

Figure from the matplotlib.pyplot package.

_connection
graph figure

Type matplotlib.pyplot.Figure

_axes
figure axis

Type matplotlib.axes._subplots.AxesSubplot

plot (data, kind=None, **graph_opts)
Plot x onto the x-axis and y onto the y-axis, if applicable.

Parameters

* data (matrix or array like)— either data to be plotted on the x axis or a tuple
of x and y data to be plotted or the x and y axis.

* kind (str) - kind of graph.
* xxgraph_opts — plt plotting arguments for this kind of graph.

request (**kwargs)
Processed request for data.

This adds the SHOW request to the base class implementation

reset ()
Set connection and axes to a single figure and axis

class dalio.external.image.PySubplotGraph (rows, cols, figsize=None)
Bases: dalio.external.image._MultiFigure

A matplotlib.pyplot.Figure containing multiple subplots.

This has a set number of axes, rows and columns which can be accessed individually to have data plotted on.
These will often be used inside of applications that require more than one subplot all contained in the same
instance.

_rows
number of rows in the subplot

1.1. User Modules 3

Dal.io, Release 0.0.1

Type int

_cols
number of columns in the subplot

Type int

_loc
array of the figure’s axes

Type np.array

get_1loc (coords)
Gets a specific axis from the _loc attribute at given coordinates

make_manager (coords)
Create a SubPlotManager to manage this instance’s subplots

plot (data, coords=None, kind=None, **graph_opts)
Plot on a specified subplot axis

Parameters coords (tuple) — tuple of subplot coordinates to plot data
Raises ValueError - if coordinates are out of range.

reset ()
Resets figure and all axes

class dalio.external.image.SubplotManager (subplot, coords)
Bases: dalio.external.image.PyPlotGraph

A manager object for treating a subplot axis like a single plot.

Applications will often take in single plots and have their functionality catered to such. Subplots, while useful,
will often be used for specific applications. A subplot manager allows you to create multiple subplots and pass
each one individually onto applications that take a single subplot axis and still have access to the underlying
figure.

reset ()
Set connection and axes to a single figure and axis

dalio.external.web module

Define web external request classes

class dalio.external.web.QuandlAPI (config=None)
Bases: dalio.external.external .External

Set up the Quandl APT and request table data from quandl.

_quandl_conf
Quandl API config object

authenticate ()
Set the api key if it is available in the config dictionary

Returns True if key was successfully set, False otherwise

check ()
Check if the api key is set

request (**kwargs)
Request table data from quandl

4 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Parameters *xkwargs —keyword arguments for quandl request. query: table to get data from.
filter: dictionary of filters for data. Depends on table. columns: columns to select.

Raises
e IOError —if api key is not set.
* ValueError — if filters kwarg is not a dict.

class dalio.external.web.YahooDR (config=None)
Bases: dalio.external.web._PDR

Represents financial data from Yahoo! Finance

request (**kwargs)
Get data from specified tickers

Module contents

class dalio.external .FileWriter (out_file=<_io.TextIOWrapper name='<stdout>' mode="w'
encoding="UTF-8">)
Bases: dalio.external.external.External

File string writer

_connection
any file instance that can be written on

check ()
Check if there is an open file as the connection

request (**kwargs)
Write a request string onto a file

set_connection (new_connection)
Set current connection

Set connection to opened file or open a new file given the path to one.
Parameters new_connection — open file instance or path to an existing file.
Raises
e IOError —if specified path does not exist.

* TypeError — if specified “new_connection” argument is of an invalid type

class dalio.external .PandasInFile (in_file)
Bases: dalio.external.external.External

Get data from a file using the pandas package

_connection
path to a file that can be read by some pandas function.

Type str

check ()
Check if connection is ready to request data

Returns Whether data is ready to be requested

request (**kwargs)
Get data input from a file according to its extension

1.1. User Modules 5

Dal.io, Release 0.0.1

Parameters *xkwargs — arguments to the inport function.

class dalio.external .PyPlotGraph (figsize=None)
Bases: dalio.external.image._Figure

Figure from the matplotlib.pyplot package.

_connection
graph figure

Type matplotlib.pyplot.Figure

_axes
figure axis

Type matplotlib.axes._subplots.AxesSubplot

plot (data, kind=None, **graph_opts)
Plot x onto the x-axis and y onto the y-axis, if applicable.

Parameters

* data (matrix or array like) — either data to be plotted on the x axis or a tuple
of x and y data to be plotted or the x and y axis.

* kind (str) - kind of graph.
* xxgraph_opts — plt plotting arguments for this kind of graph.

request (**kwargs)
Processed request for data.

This adds the SHOW request to the base class implementation

reset ()
Set connection and axes to a single figure and axis

class dalio.external.PySubplotGraph (rows, cols, figsize=None)
Bases: dalio.external.image._MultiFigure

A matplotlib.pyplot.Figure containing multiple subplots.

This has a set number of axes, rows and columns which can be accessed individually to have data plotted on.
These will often be used inside of applications that require more than one subplot all contained in the same
instance.

_rows
number of rows in the subplot

Type int
_cols
number of columns in the subplot
Type int
_loc

array of the figure’s axes

Type np.array

get_1loc (coords)
Gets a specific axis from the _loc attribute at given coordinates

make_manager (coords)
Create a SubPlotManager to manage this instance’s subplots

6 Chapter 1. Quick Links

Dal.io, Release 0.0.1

plot (data, coords=None, kind=None, **graph_opts)
Plot on a specified subplot axis

Parameters coords (tuple) - tuple of subplot coordinates to plot data
Raises ValueError - if coordinates are out of range.

reset ()
Resets figure and all axes

class dalio.external .PyP£fOptGraph (figsize=None)
Bases: dalio.external.image.PyPlotGraph

Graphs data from the PyPfOpt package

plot (data, coords=None, kind=None, **kwargs)
Graph data from pypfopt

Parameters data — plottable data from pypfopt package
Raises TypeError —if data is not of a plottable class from pypfopt

class dalio.external.YahooDR (config=None)
Bases: dalio.external.web._PDR

Represents financial data from Yahoo! Finance

request (**kwargs)
Get data from specified tickers

class dalio.external.QuandlAPI (config=None)
Bases: dalio.external.external.External

Set up the Quandl API and request table data from quandl.

_quandl_conf
Quandl API config object

authenticate ()
Set the api key if it is available in the config dictionary

Returns True if key was successfully set, False otherwise

check ()
Check if the api key is set

request (**kwargs)
Request table data from quandl

Parameters *xkwargs —keyword arguments for quandl request. query: table to get data from.
filter: dictionary of filters for data. Depends on table. columns: columns to select.

Raises
e IOError —if api key is not set.

* ValueError - if filters kwarg is not a dict.

1.1. User Modules

Dal.io, Release 0.0.1

1.1.2 dalio.translator package

Submodules
dalio.translator.file module

Translator for common file imports

These will often be very specific to the file being imported, but should strive to still be as flexible as possible. These
will often hold the format translated to constant and try being adaptable with the data to fit it. So it is more importat to
begin with the output and then adapt to the input, not the other way.

class dalio.translator.file.StockStreamFileTranslator (date_col=None,

att_name=None)
Bases: dalio.translator.translator.Translator

Create a DataFrame conforming to the STOCK_STREAM validator preset.
The STOCK_STREAM preset includes:

a) having a time series index,

b) being a dataframe,

¢) having a multiindex column with levels named ATTRIBUTE and TICKER. Such that an im-
ported excel file will have column names renamed that or assume a single column name row
is of ticker names.

date_col
column name to get date data from.

Type str

att_name
name of the attribute column if imported dataframe column has only one level.

Type str

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Request pandas data from file and format it into a dataframe that complies with the STOCK_STREAM
validator preset

Parameters *xkwargs — Optional request arguments TICKER: single ticker or iterable of tick-
ers to filter for

in data.

translations = None

8 Chapter 1. Quick Links

Dal.io, Release 0.0.1

dalio.translator.pdr module

Define translators for data from the pandas_datareader package

class dalio.translator.pdr.YahooStockTranslator
Bases: dalio.translator.translator.Translator

Translate stock data gathered from Yahoo! Finance

run (**kwargs)
Request data subset and translate columns

Parameters *xkwargs — optional run arguments. TICKER: ticker to get data from.

translations = None

dalio.translator.quandl module

Define Translator instances for data imported from quandl.

These should be designed with both input and output in mind as quandl inputs can, for a good extent, known from
the table and query, both of which are known from the time of request. This means that these translators should be
designed to be more specific to the query instead of being flexible.

class dalio.translator.quandl.QuandlSharadarSFlTranslator
Bases: dalio.translator.translator.Translator

Import and translate data from the SHARADAR/SF1 table

run (**kwargs)
Get input from quandl’s SHARADAR/SF1 table, and format according to the STOCK_STREAM validator
preset.

translations = None

class dalio.translator.quandl.QuandlTickerInfoTranslator
Bases: dalio.translator.translator.Translator

Import and translate data from the SHARADAR/TICKERS table

run (**kwargs)
Get input from quandl’s SHARADAR/TICKER table, and format according to the STOCK_INFO valida-
tor preset.

translations = None

dalio.translator.translator module

Define Translator class

Translators are the root of all data that feeds your graph. Objects of this take in data from some external source then
“translates” it into a format that can be used universaly by other elements in this package. Please consult the translation
manual to make this as usabel as possible and make extensive use of the base tools to build translations.

class dalio.translator.translator.Translator
Bases: dalio.base.transformer. Transformer

_source
Connection used to retrieve raw data from outide source.

1.1. User Modules 9

Dal.io, Release 0.0.1

translations
dictionary of translations from vocabulaary used in the data source to base constants. These should be
created from initialization and kept unmodified. This is to ensure data coming through a translator is
though of before usage to ensure integrity.

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

set_input (new_input)
See base class

translate_item (item)
Translate all items of an iterable

Parameters item (dict, any) - item or iterator of items to translate.
Returns A list with the translated names.
translations: Dict[str, str] = None

update_translations (new_translations)
Update translations dictionary with new dictrionary

with_input (new_input)
See base class

Module contents

class dalio.translator.QuandlSharadarSFlTranslator
Bases: dalio.translator.translator.Translator
Import and translate data from the SHARADAR/SF1 table

run (**kwargs)
Get input from quandl’s SHARADAR/SF]1 table, and format according to the STOCK_STREAM validator
preset.

translations = None

class dalio.translator.QuandlTickerInfoTranslator
Bases: dalio.translator.translator.Translator

Import and translate data from the SHARADAR/TICKERS table

run (**kwargs)
Get input from quandl’s SHARADAR/TICKER table, and format according to the STOCK_INFO valida-
tor preset.

translations = None

10 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.translator.YahooStockTranslator
Bases: dalio.translator.translator.Translator

Translate stock data gathered from Yahoo! Finance

run (**kwargs)
Request data subset and translate columns

Parameters xxkwargs — optional run arguments. TICKER: ticker to get data from.
translations = None

class dalio.translator.StockStreamFileTranslator (date_col=None, att_ name=None)
Bases: dalio.translator.translator.Translator

Create a DataFrame conforming to the STOCK_STREAM validator preset.
The STOCK_STREAM preset includes:

a) having a time series index,

b) being a dataframe,

¢) having a multiindex column with levels named ATTRIBUTE and TICKER. Such that an im-
ported excel file will have column names renamed that or assume a single column name row
is of ticker names.

date_col
column name to get date data from.

Type str

att_name
name of the attribute column if imported dataframe column has only one level.

Type str

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Request pandas data from file and format it into a dataframe that complies with the STOCK_STREAM
validator preset

Parameters *xkwargs — Optional request arguments TICKER: single ticker or iterable of tick-
ers to filter for

in data.

translations = None

1.1. User Modules 11

Dal.io, Release 0.0.1

1.1.3 dalio.pipe package

Submodules

dalio.pipe.builders module

Builder Pipes

class dalio.pipe.builders.CovShrink (frequency=252)

Bases: dalio.pipe.pipe.PipeBuilder
Perform Covariance Shrinkage on data

Builder with a single piece: shirnkage. Shrinkage defines what kind of shrinkage to apply on a resultant covari-
ance matrix. If none is set, covariance will not be shrunk.

frequency
data time period frequency

Type int

build_model (data, **kwargs)
Builds Covariance Srhinkage object and returns selected shrinkage strategy

Returns Function fitted on the data.

check_name (param, name)
Check if name and parameter combination is valid.

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments
before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.
* name (str)—name option to be set to the piece.

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

frequency: int = None

transform (data, **kwargs)
Build model using data get results.

Returns A covariance matrix

12

Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.pipe.builders.ExpectedReturns
Bases: dalio.pipe.pipe.PipeBuilder

Get stock’s time series expected returns.
Builder with a single piece: return_model. return_model is what model to get the expected returns from.

build_model (data, **kwargs)
Assemble pieces into a model given some data

The data will opten be optional, but several builder models will require it to be fitted on initialization.
Which further shows why builders are necessary for context-agnostic graphs.

Parameters
* data — data that might be used to build the model.
* xxkwargs — any additional argument used in building

check_name (param, name)
Check if name and parameter combination is valid.

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments
before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.
* name (str)—name option to be set to the piece.

transform (data, **kwargs)
Builds model using data and gets expected returns from it

class dalio.pipe.builders.ExpectedShortfall (quantiles=None)
Bases: dalio.pipe.builders.ValueAtRisk

Get expected shortfal for given quantiles
See base class for more in depth explanation.

transform (data, **kwargs)
Get the value at risk given by an arch model and calculate the expected shortfall at given quantiles.

class dalio.pipe.builders.MakeARCH
Bases: dalio.pipe.pipe.PipeBuilder

Build arch model and make it based on input data.

This class allows for the creation of arch models by configuring three pieces: the mean, volatility and distribu-
tion. These are set after initialization through the _Builder interface.

_piece
see _Builder class.

Type list

assimilate (model)
Assimilate core pieces of an existent ARCH Model.

Assimilation means setting this model’s’ pieces in accordance to an existing model’s pieces. Assimilation
is shallow, so only the main pieces are assimilated, not their parameters.

1.1. User Modules 13

Dal.io, Release 0.0.1

Parameters model (ARCHMode 1) — Existing ARCH Model.

build_model (data, **kwargs)
Build ARCH Model using data, set pieces and their arguments

Returns A built arch model from the arch package.

transform (data, **kwargs)
Build model with sourced data

class dalio.pipe.builders.OptimumWeights
Bases: dalio.pipe.pipe.PipeBuilder

Get optimum portfolio weights from an efficient frontier or CLA. This is also a builder with one piece: strategy.
The strategy piece refers to the optimization strategy.

build_model (data, **kwargs)
Assemble pieces into a model given some data

The data will opten be optional, but several builder models will require it to be fitted on initialization.
Which further shows why builders are necessary for context-agnostic graphs.

Parameters
* data - data that might be used to build the model.
* xxkwargs — any additional argument used in building

check_name (param, name)
Check if name and parameter combination is valid.

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments
before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.
* name (str)—name option to be set to the piece.

transform (data, **kwargs)
Get efficient frontier, fit it to model and get weights

class dalio.pipe.builders.PandasLinearModel
Bases: dalio.pipe.pipe.PipeBuilder

Create a linear model from input pandas dataframe, using its index as the X value.

This builder is made up of a single piece: strategy. This piece sets which linear model should be used to fit the
data.

build_model (data, **kwargs)
Build model by returning the chosen model and initialization parameters

Returns Unfitted linear model

transform (data, **kwargs)
Set up fitting parameters and fit built model.

Returns Fitted linear model

14 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.pipe.builders.StockComps (strategy='sic_code', max_ticks=6)
Bases: dalio.pipe.pipe.Pipe

Get a list of a ticker’s comparable stocks

This can utilize any strategy of getting stock comparative companies and return up to a certain ammount of
comps.

_strateqgy
comparisson strategy name or function.

Type str, callable

max_ticks
maximum number of tickers to return.

Type int

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.
max_ticks: int = None
run (**kwargs)

Gets ticker argument and passes an empty ticker request to transform.

Empty ticker requests are supposed to return all tickers available in a source, so this allows the compariis-
son to be made in all stocks from a certain source.

Raises ValueError —if ticker is more than a single symbol.

transform (data, **kwargs)
Get comps according to the set strategy

class dalio.pipe.builders.ValueAtRisk (quantiles=None)
Bases: dalio.pipe.pipe.Pipe

Get the value at risk for data based on an ARHC Model

This takes in an ARCH Model maker, not data, which might be unintuitive, yet necessary, as this allows users
to modify the ARCH model generating these values separately. A useful strategy that allows for this is using a
pipeline with an arch model as its first input and a ValueAtRisk instance as its second layer. This allows us to
treat the PipeLine as a data input with VaR output and still have control over the ARCH Model pieces (given
you left a local variable for it behind.)

_quantiles
list of quantiles to check the value at risk for.

Type list

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

1.1. User Modules 15

Dal.io, Release 0.0.1

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

transform (data, **kwargs)
Get values at risk at each quantile and each results maximum exedence from the mean.

The maximum exedence columns tells which quantile the loss is placed on. The word “maximum” might
be misleading as it is compared to the minimum quantile, however, this definition is accurate as the column
essentially answers the question: “what quantile furthest away from the mean does the data exeed?”

Thank you for the creators of the arch package for the beautiful visualizations and ideas!
Raises

¢ ValueError - if ARCH model does not have returns. This is often the case for unfitted
models. Ensure your graph is complete.

* TypeError — if ARCH model has unsuported distribution parameter.

dalio.pipe.col_generation module

Implement transformations that generates new colums from exising ones

class dalio.pipe.col_generation.Bin (bin_map, *args, bin_strat="normal’, columns=None,
new_cols=None, drop=True, reintegrate=False,

**kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that adds a binned version of a column or columns.

If drop is set to True the new columns retain the names of the source columns; otherwise, the resulting column
gain the suffix ‘_bin’

bin_map
implicitly projects a left-most bin containing all elements smaller than the left-most end point and a right-
most bin containing all elements larger that the right-most end point. For example, the list [0, 5, 8] is
interpreted as the bins (-0o, 0), [0-5), [5-8) and [8, 00).

Type array-like

bin_strat
binning strategy to use. “normal’ uses the default binning strategy per a list of value separations or number
of bins. “quantile” uses a list of quantiles or a preset quantile range (4 for quartiles and 10 for deciles).

Type str, default “normal”

16 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[-3],([4],I[5], (911, [1,2,3, 41, ['speed'])
>>> pdp.Bin({'speed': [5]}, drop=False) .apply (df)
speed speed_bin
1 -3 <5
2 4 <5
3 5 5
4 9 5
>>> pdp.Bin({'speed': [0,5,8]}, drop=False) .apply (df)
speed speed_bin
1 -3 <0
2 4 0-5
3 5 5-8
4 9 8
class dalio.pipe.col_generation.BoxCox (*args, columns=None, new_cols=None,

non_neg=False, const_shift=None, drop=True,

reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that applies the BoxCox transformation on data.

const_shift
If given, each transformed column is first shifted by this constant. If non_neg is True then that transforma-
tion is applied first, and only then is the column shifted by this constant.

Type int, optional

class dalio.pipe.col_generation.Change (*args, strategy="diff", columns=None,
new_cols=None, drop=True, reintegrate=False,
*tkwargs)

Bases: dalio.pipe.col_generation._ColGeneration
Perform item-by-item change
This has two main forms, percentage change and absolute change (difference).

_strategy
change strategy.

Type str, callable

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

1.1. User Modules 17

Dal.io, Release 0.0.1

class dalio.pipe.col_generation.Custom (func, *args, columns=None, new_cols=None, strat-
egy="apply’', axis=0, drop=True, reintegrate=False,
**kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Apply custom function.

strategy
strategy for applying value function. One of [“apply”, “transform”, “agg”, “pipe”]

Type str, default “pipe”

Example

>>> import pandas as pd; from dalio.pipe import Custom;

>>> data = [[3, 2143], [10, 13211, [7, 1255]]
>>> df = pd.DataFrame (data, [1,2,3], ['years', 'avg_revenue'])
>>> total_rev = lambda row: row['years'] % row['avg_revenue']

>>> add_total_rev = Custom(total_rev, 'total_ revenue', axis=1)
>>> add_total_rev.transform(df)
years avg_revenue total_revenue

1 3 2143 6429
2 10 1321 13210
3 7 1255 8785
>>> def halfer (row) :
new = {'year/2': row['years']/2,
'rev/2': row['avg_revenue']/2}

.. return pd.Series (new)
>>> half_cols = Custom(halfer, axis=1, drop=False)
>>> half cols.transform(df)

years avg_revenue rev/2 year/2
1 3 2143 1071.5 1.5
2 10 1321 660.5 5.0
3 7 1255 627.5 3.5
>>> data = [[3, 31, [2, 41, [1, 5]1]
>>> df = pd.DataFrame (data, [1,2,3], ["A","B"])
>>> func = lambda df: df['A'] == df['B']

>>> add_equal = Custom(func, "A==B", strategy="pipe", drop=False)
>>> add_equal.transform(df)

A B A==B
1 3 3 True
2 2 4 False
3 1 5 False

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy

* xxkwargs — Keyword arguments to be passed to initialize copy

18 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.col_generation.CustomByCols (func, *args, strategy='apply’',
columns=None, new_cols=None,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col _generation.Custom

A pipeline stage applying a function to individual columns iteratively.

func
The function to be applied to each element of the given columns.

Type function

strategy
Application strategy. Different from Custom class’ strategy parameter (which here is kept at “apply”) as
this will now be done on a series (each column). Extra care should be taken to ensure resulting column
lengths match.

Type str

Example

>>> import pandas as pd; import pdpipe as pdp; import math;
>>> data = [[3.2, "acd"], [7.2, "alk"], [12.1, "alk"]]

>>> df = pd.DataFrame(data, [1,2,3], ["ph","1b1l"])

>>> round_ph = pdp.ApplyByCols ("ph", math.ceil)

>>> round_ph (df)

ph 1bl
1 4 acd
2 8 alk
3 13 alk

class dalio.pipe.col_generation.Index (index_at, *args, columns=None, new_cols=None,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.col_generation.Log (*args, columns=None, new_cols=None, non_neg=False,
const_shift=None, drop=True, reintegrate=False,

**kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that log-transforms numeric data.

1.1. User Modules 19

Dal.io, Release 0.0.1

non_neg
If True, each transformed column is first shifted by smallest negative value it includes (non-negative
columns are thus not shifted).

Type bool, default False

const_shift
If given, each transformed column is first shifted by this constant. If non_neg is True then that transforma-
tion is applied first, and only then is the column shifted by this constant.

Type int, optional

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> data = [[3.2, "acd"], [7.2, "alk"], [12.1, "alk"]]
>>> df = pd.DataFrame (data, [1,2,3], ["ph","1bl"])
>>> log_stage = pdp.Log("ph", drop=True)
>>> log_stage (df)
ph 1bl
1 1.163151 acd
1.974081 alk
3 2.493205 alk

N

class dalio.pipe.col_generation.MapColVals (value_map, *args, columns=None,
new_cols=None, drop=True, reinte-

grate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that reintegrates the values of a column by a map.

value_map
A dictionary mapping existing values to new ones. Values not in the dictionary as keys will be converted
to NaN. If a function is given, it is applied element-wise to given columns. If a Series is given, values are
mapped by its index to its values.

Type dict, function or pandas.Series

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1], [3], [2]], ['UK', 'USSR', 'US'], ['Medal'l)

>>> value_map = {1l: 'Gold', 2: 'Silver', 3: 'Bronze'}

>>> pdp.MapColVals ('Medal', value_map) .apply (df)
Medal

UK Gold

USSR Bronze

Us Silver

class dalio.pipe.col_generation.Period (period, *args, agg_func=<function mean>,
columns=None, new_cols=None, axis=0,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Resample input time series data to a different period

Attributes: agg_func (callable): function to aggregate data to one period.

20 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Quandl Input

Default set to np.mean.
_period (str): period to resample data to. Can be either daily, monthly, quarterly or yearly.

agg_func: Callable[[Iterable], Any] = None

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.col_generation.Rolling (func, *args, columns=None, new_cols=None,
rolling_window=2, axis=0, drop=True, reinte-

grate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Apply rolling function

rolling_ window
rolling window to apply function. If none, no rolling window is applied.

Type int, defailt None

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.col_generation.StockReturns (columns=None, new_cols=None,

drop=True, reintegrate=False)
Bases: dalio.pipe.col_generation._ColGeneration

Perform percent change and minor aesthetic changes to data

1.1. User Modules 21

Dal.io, Release 0.0.1

dalio.pipe.forecast module

Transformations makes forecasts based on data

class dalio.pipe.forecast.Forecast (horizon=10)
Bases: dalio.pipe.pipe.Pipe

Generalized forecasting class.
This should be used mostly for subclassing or very generic forecasting interfaces.

horizon
how many steps ahead to forecast

Type int
horizon: int = None

transform (data, **kwargs)
Return forecast of data

class dalio.pipe.forecast.GARCHForecast (start=None, horizon=1)
Bases: dalio.pipe.forecast.Forecast

Forecast data based on a fitted GARCH model

_start
forecast start time and date.

Type pd.Timestamp

transform (data, **kwargs)
Make a mean, variance and residual variance forecast.

Forecast will be made for the specified horizon starting at the specified time. This means that will only get
data for the steps starting at the specified start date and the steps after it.

Returns A DataFrame with the columns MEAN, VARIANCE and RESIDUAL_VARIANCE
for the time horizon after the start date.

dalio.pipe.pipe module

Defines the Pipe and PipeLine classes

Pipes are perhaps the most common classes in graphs and represent any transformation with one input and one output.
Pipes™ main functionality revolves around the .transform() method, which actually applies a transformation to data
retrieved from a source. Pipes must also implement propper data checks by adding descriptions to their source.

class dalio.pipe.pipe.Pipe
Bases: dalio.base.transformer._Transformer

Pipes represend data modifications with one internal input and one internal output.

_source
input data definition

Type _DataDef

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

22 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

get_input ()
Return the input transformer

pipeline (*args)
Returns a PipeLine instance with self as the input source and any other Pipe instances as part of its pipeline.

Parameters *args — any additional Pipe to be added to the pipeline, in that order.

run (**kwargs)
Get data from source, transform it, and return it

This will often be left alone unless there are specific keyword arguments or checks done in addition to the
actual transformation. Keep in mind this is rare, as keyword arguments are often required by Translators,
and checks are performed by DataDefs.

set_input (new_input)
Set the input data source in place.

Parameters new_input (_Transformer) — new transformer to be set as input to source
connection.

Raises TypeError — if new_input is not an instance of _Transformer.

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

with_input (new_input)
Return copy of this transformer with the new data source.

class dalio.pipe.pipe.PipeBuilder
Bases: dalio.pipe.pipe.Pipe,dalio.base.builder._Builder

Hybrid builder type for complementing _Transformer instances.
These specify extra methods implemented by _Transformer instances.

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

1.1. User Modules 23

Dal.io, Release 0.0.1

with_piece (param, name, *args, **kwargs)
Copy self and return with a new piece set

class dalio.pipe.pipe.PipeLine (*args)
Bases: dalio.pipe.pipe.Pipe

Collection of Pipe transformations.

PipeLine instances represent multiple Pipe transformations being performed consecutively. Pipelines essentially
execute multiple transformations one after the other, and thus do not check for data integrity in between them;
so keep in mind that order matters and only the first data definition will be enforced.

pipeline
list of Pipe instaces this pipeline is composed of

Type list

copy (*args, **kwargs)
Make a copy of this Pipeline

extend (*args, deep=False)
Extend existing pipeline with one or more Pipe instances

Keep in mind that this will not mean that

transform (data, **kwargs)
Pass data sourced from first pipe through every Pipe’s .transform() method in order.

Parameters data — data sourced and checked from first source.

dalio.pipe.select module

Defines various ways of getting a subset of data based on some condition

class dalio.pipe.select.ColDrop (columns)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that drops columns by name.

Parameters columns (str, iterable or callable)- The label, or an iterable of labels,
of columns to drop. Alternatively, columns can be assigned a callable returning bool values for
pandas.Series objects; if this is the case, every column for which it return True will be dropped.

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,'a"], [5,'b']], [1,2], ['num', 'char'])
>>> pdp.ColDrop ('num') .apply (df)

char
1 a
2 b

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

24 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.pipe.select.ColRename (map_dict)
Bases: dalio.pipe.pipe.Pipe

A pipeline stage that renames a column or columns.

rename_map
Maps old column names to new ones.

Type dict

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,"'a']l, [5,'b"]], [1,2], ['num', 'char'])

>>> pdp.ColRename ({'num': 'len', 'char': 'initial'}) .apply (df)
len initial

1 8 a

2 5 b

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.select.ColReorder (map_dict, level=0)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that reorders columns.

positions
A mapping of column names to their desired positions after reordering Columns not included in the map-
ping will maintain their relative positions over the non-mapped colums.

Type dict

1.1. User Modules 25

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,4,3,7]], columns=['a', 'b', 'c', 'd'l)
>>> pdp.ColReorder ({'b': 0, 'c': 3}).apply(df)
b a d c¢
0o 4 8 7 3

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.select.ColSelect (columns)
Bases: dalio.pipe.select._ColSelection

Select columns

transform (data, **kwargs)
Selects the specified columns or returns data as is if no column was specified.

Returns Data of the same format as before but only only containing the specified columns.

class dalio.pipe.select.DateSelect (start=None, end=None)
Bases: dalio.pipe.pipe.Pipe

Select a date range.
This is commonly left as a local variable to control date range being used at a piece of a graph.

_start
start date.

Type pd.Timestamp

_end
end date.

Type pd.Timestamp

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

26 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

set_end (end)
Set the _end attribute

set_start (start)
Set the _start attribute

transform (data, **kwargs)
Slices time series into selected date range.

Returns Time series of the same format as input containing a subset of the original dates.

class dalio.pipe.select .DropNa (**kwargs)
Bases: dalio.pipe.pipe.Pipe

A pipeline stage that drops null values.

Supports all parameter supported by pandas.dropna function.

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],[4,None], [1,11]], [1,2,3], ['a','b'])
>>> pdp.DropNa () .apply (df)
a b
1 1 4.0
3 1 11.0

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.select.FregDrop (values, columns=None)
Bases: dalio.pipe.select._ColvValSelection

A pipeline stage that drops rows by value frequency.
Parameters
* threshold (int)— The minimum frequency required for a value to be kept.

* column (str)— The name of the colums to check for the given value frequency.

1.1. User Modules 27

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4]1,[4,5],11,1111, [1,2,31, ['a','D'])
>>> pdp.FregDrop (2, 'a').apply(df)
a
1 1 4
3 1 11

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data - data returned by source.

class dalio.pipe.select.RowDrop (conditions, columns=None, reduce_strat=None)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that drop rows by callable conditions.
Parameters

* conditions (Iist-like or dict)- The list of conditions that make a row eligible
to be dropped. Each condition must be a callable that take a cell value and return a bool
value. If a list of callables is given, the conditions are checked for each column value of
each row. If a dict mapping column labels to callables is given, then each condition is only
checked for the column values of the designated column.

e reduce ('any', 'all' or 'xor', default 'any') — Determines how row
conditions are reduced. If set to ‘all’, a row must satisfy all given conditions to be dropped.
If set to ‘any’, rows satisfying at least one of the conditions are dropped. If set to ‘xor’, rows
satisfying exactly one of the conditions will be dropped. Set to ‘any’ by default.

e columns (str or iterable, optional) - The label, or an iterable of labels, of
columns. Optional. If given, input conditions will be applied to the sub-dataframe made up
of these columns to determine which rows to drop.

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],[4,5],([5,111]1, [1,2,3]1, ['a','Db'])
>>> pdp.RowDrop ([lambda x: x < 2]) .apply (df)
a b
2 4 5
3 5 11
>>> pdp.RowDrop ({'a': lambda x: x == 4}) .apply (df)
a
1 1 4
3 5 11

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

28 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.pipe.select.ValDrop (values, columns=None)

Bases: dalio.pipe.select._ColvalSelection
A pipeline stage that drops rows by value.
Parameters
* values (1ist—-1ike)— A list of the values to drop.

e columns (str or list-like, default None) — The name, or an iterable of
names, of columns to check for the given values. If set to None, all columns are checked.

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> df = pd.DataFrame(([[1,4],[4,5],[(18,11]1], [1,2,3]1, ['a','b"'])
>>> pdp.ValDrop([4], 'a').apply(df)
a b
1 1 4
3 18 11
>>> pdp.ValDrop([4]) .apply (df)
a b
3 18 11

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.select.ValKeep (values, columns=None)

Bases: dalio.pipe.select._ColValSelection
A pipeline stage that keeps rows by value.
Parameters
* values (1ist—-1ike)— A list of the values to keep.

e columns (str or list-like, default None) — The name, or an iterable of
names, of columns to check for the given values. If set to None, all columns are checked.

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> df = pd.DataFrame([[1,4],[4,5],[5,1111, [1,2,31, ['a','D'])
>>> pdp.ValKeep([4, 5], 'a').apply(df)
a b
2 4 5
3 5 11
>>> pdp.ValKeep ([4, 5]) .apply (df)
a b
2 4 5

transform (data, **kwargs)
Apply a transformation to data returned from source.

1.1.

User Modules 29

Dal.io, Release 0.0.1

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data - data returned by source.

Module contents

class dalio.pipe.PipeLine (*args)

Bases: dalio.pipe.pipe.Pipe
Collection of Pipe transformations.

PipeLine instances represent multiple Pipe transformations being performed consecutively. Pipelines essentially
execute multiple transformations one after the other, and thus do not check for data integrity in between them;
so keep in mind that order matters and only the first data definition will be enforced.

pipeline
list of Pipe instaces this pipeline is composed of

Type list

copy (*args, **kwargs)
Make a copy of this Pipeline

extend (*args, deep=False)
Extend existing pipeline with one or more Pipe instances

Keep in mind that this will not mean that

transform (data, **kwargs)
Pass data sourced from first pipe through every Pipe’s .transform() method in order.

Parameters data — data sourced and checked from first source.

class dalio.pipe.Custom (func, *args, columns=None, new_cols=None, strategy='apply', axis=0,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col _generation._ColGeneration

Apply custom function.

strategy
strategy for applying value function. One of [“apply”, “transform”, “agg”, “pipe”]

Type str, default “pipe”

Example

>>> import pandas as pd; from dalio.pipe import Custom;

>>> data = [[3, 2143], [10, 13211, [7, 1255]]
>>> df = pd.DataFrame (data, [1,2,3], ['years', 'avg_revenue'])
>>> total_rev = lambda row: row['years'] % row['avg_revenue']

>>> add_total_rev = Custom(total_rev, 'total_ revenue', axis=1)
>>> add_total_rev.transform(df)
years avg_revenue total_revenue

1 3 2143 6429
2 10 1321 13210
3 7 1255 8785
>>> def halfer (row) :
new = {'year/2': row['years']/2,
'rev/2': row['avg_revenue']/2}

(continues on next page)

30

Chapter 1. Quick Links

Dal.io, Release 0.0.1

(continued from previous page)

.. return pd.Series (new)
>>> half_cols = Custom(halfer, axis=1, drop=False)

>>> half_cols.transform(df)
years avg_revenue rev/2 vyear/2
1 3 2143 1071.5 1.5
2 10 1321 660.5 5.0
3 7 1255 627.5 3.5
>>> data = [[3, 3], [2, 4], [1, 5]1]
>>> df = pd.DataFrame (data, [1,2,3], ["A","B"])
>>> func = lambda df: df['A'] == df['B']

>>> add_equal = Custom(func, "A==B", strategy="pipe", drop=False)
>>> add_equal.transform(df)

A B A==B
1 3 3 True
2 2 4 False
3 1 5 False

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.Rolling (func, *args, columns=None, new_cols=None, rolling_window=2, axis=0,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Apply rolling function

rolling_window
rolling window to apply function. If none, no rolling window is applied.

Type int, defailt None

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

1.1. User Modules 31

Dal.io, Release 0.0.1

class dalio.pipe.ColSelect (columns)
Bases: dalio.pipe.select._ColSelection

Select columns

transform (data, **kwargs)
Selects the specified columns or returns data as is if no column was specified.

Returns Data of the same format as before but only only containing the specified columns.

class dalio.pipe.DateSelect (start=None, end=None)
Bases: dalio.pipe.pipe.Pipe

Select a date range.
This is commonly left as a local variable to control date range being used at a piece of a graph.

_start
start date.

Type pd.Timestamp

_end
end date.

Type pd.Timestamp

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

set_end (end)
Set the _end attribute

set_start (start)
Set the _start attribute

transform (data, **kwargs)
Slices time series into selected date range.

Returns Time series of the same format as input containing a subset of the original dates.

class dalio.pipe.ColDrop (columns)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that drops columns by name.

Parameters columns (str, iterable or callable)- The label, or an iterable of labels,
of columns to drop. Alternatively, columns can be assigned a callable returning bool values for
pandas.Series objects; if this is the case, every column for which it return True will be dropped.

32 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,"'a"], [5,'b"]], [1,2], ['num', 'char'])
>>> pdp.ColDrop ('num') .apply (df)
char
1 a
2 b

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data - data returned by source.

class dalio.pipe.ValDrop (values, columns=None)
Bases: dalio.pipe.select._ColvValSelection

A pipeline stage that drops rows by value.
Parameters
* values (1ist—-1ike)— A list of the values to drop.

e columns (str or list—-like, default None) — The name, or an iterable of
names, of columns to check for the given values. If set to None, all columns are checked.

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],([4,5],[18,1111, [1,2,31, ['a','b'])
>>> pdp.ValDrop([4], 'a').apply(df)
a b
1 1 4
3 18 11
>>> pdp.ValDrop([4]) .apply (df)
a b
3 18 11

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.ValKeep (values, columns=None)
Bases: dalio.pipe.select._ColvValSelection

A pipeline stage that keeps rows by value.
Parameters
* values (1ist—-1ike)— A list of the values to keep.

e columns (str or list—-like, default None) — The name, or an iterable of
names, of columns to check for the given values. If set to None, all columns are checked.

1.1. User Modules 33

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],[4,5],[5,1111, [1,2,3]1, ['a','b'])
>>> pdp.ValKeep ([4, 5], 'a').apply(df)

a b

2 4 5

3 5 11

>>> pdp.ValKeep([4, 5]) .apply(df)
a b

2 4 5

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.ColRename (map_dict)
Bases: dalio.pipe.pipe.Pipe

A pipeline stage that renames a column or columns.

rename_map
Maps old column names to new ones.

Type dict

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,"'a']l, [5,'b"]], [1,2], ['num', 'char'])

>>> pdp.ColRename ({'num': 'len', 'char': 'initial'}) .apply (df)
len initial

1 8 a

2 5 b

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data - data returned by source.

34 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.pipe.DropNa (**kwargs)
Bases: dalio.pipe.pipe.Pipe

A pipeline stage that drops null values.

Supports all parameter supported by pandas.dropna function.

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],[4,None], [1,11]], [1,2,3], ['a','b'])
>>> pdp.DropNa () .apply (df)
a b
1 1 4.0
3 1 11.0

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.FreqgDrop (values, columns=None)
Bases: dalio.pipe.select._ColvalSelection

A pipeline stage that drops rows by value frequency.
Parameters
* threshold (int)— The minimum frequency required for a value to be kept.

* column (str)— The name of the colums to check for the given value frequency.

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1,4],[4,5],([1,111], [1,2,3], ['a','Db"'])
>>> pdp.FregDrop (2, 'a').apply(df)
a
1 1 4
3 1 11

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.ColReorder (map_dict, level=0)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that reorders columns.

positions

A mapping of column names to their desired positions after reordering Columns not included in the map-
ping will maintain their relative positions over the non-mapped colums.

1.1. User Modules 35

Dal.io, Release 0.0.1

Type dict

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[8,4,3,7]], columns=['a', 'b', 'c', 'd'l)
>>> pdp.ColReorder ({'b': 0, 'c': 3}).apply(df)
b a d c
0O 4 8 7 3

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.RowDrop (conditions, columns=None, reduce_strat=None)
Bases: dalio.pipe.select._ColSelection

A pipeline stage that drop rows by callable conditions.
Parameters

* conditions (I1ist-1ike or dict)- The list of conditions that make a row eligible
to be dropped. Each condition must be a callable that take a cell value and return a bool
value. If a list of callables is given, the conditions are checked for each column value of
each row. If a dict mapping column labels to callables is given, then each condition is only
checked for the column values of the designated column.

e reduce ('any', 'all' or 'xor', default 'any') — Determines how row
conditions are reduced. If set to ‘all’, a row must satisfy all given conditions to be dropped.
If set to ‘any’, rows satisfying at least one of the conditions are dropped. If set to ‘xor’, rows
satisfying exactly one of the conditions will be dropped. Set to ‘any’ by default.

* columns (str or iterable, optional) - The label, or an iterable of labels, of
columns. Optional. If given, input conditions will be applied to the sub-dataframe made up
of these columns to determine which rows to drop.

36 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> df = pd.DataFrame([[1,4],1[4,5]1,I15,1111, [1,2,3], ['a','b"'])

>>> pdp.RowDrop ([lambda x: x < 2]).apply(df)
a b

2 4 5

3 5 11

>>> pdp.RowDrop ({'a': lambda x: x =
a

1 1 4

3 5 11

4}) .apply (df)

transform (data, **kwargs)
Apply a transformation to data returned from source.

This is where the bulk of funtionality in a Pipe lies. And allows it to be highly customizable. This will
often be the only method needed to be overwriten in subclasses.

Parameters data — data returned by source.

class dalio.pipe.Change (*args, strategy="diff’, columns=None, new_cols=None, drop=True, reinte-

grate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Perform item-by-item change
This has two main forms, percentage change and absolute change (difference).

_strategy
change strategy.

Type str, callable

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.StockReturns (columns=None, new_cols=None, drop=True, reintegrate=False)
Bases: dalio.pipe.col_generation._ColGeneration

Perform percent change and minor aesthetic changes to data

class dalio.pipe.Period (period, *args, agg_func=<function — mean>, columns=None,

new_cols=None, axis=0, drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

Resample input time series data to a different period

Attributes: agg_func (callable): function to aggregate data to one period.

Quandl Input

1.1. User Modules 37

Dal.io, Release 0.0.1

Default set to np.mean.
_period (str): period to resample data to. Can be either daily, monthly, quarterly or yearly.

agg_func: Callable[[Iterable], Any] = None

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.Index (index_at, *args, columns=None, new_cols=None, drop=True, reinte-

grate=False, **kwargs)
Bases: dalio.pipe.col_generation._ColGeneration

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

class dalio.pipe.Bin (bin_map, *args, bin_strat="normal’, columns=None, new_cols=None,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col _generation.Custom

A pipeline stage that adds a binned version of a column or columns.

If drop is set to True the new columns retain the names of the source columns; otherwise, the resulting column
gain the suffix ‘_bin’

bin_map
implicitly projects a left-most bin containing all elements smaller than the left-most end point and a right-
most bin containing all elements larger that the right-most end point. For example, the list [0, 5, 8] is
interpreted as the bins (-c0, 0), [0-5), [5-8) and [8, o).

Type array-like

bin_strat
binning strategy to use. “normal” uses the default binning strategy per a list of value separations or number
of bins. “quantile” uses a list of quantiles or a preset quantile range (4 for quartiles and 10 for deciles).

Type str, default “normal”

38 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> df = pd.DataFrame ([[-3],[4],[5], (911, [1,2,3, 41, ['speed'])

>>> pdp.Bin({'speed': [5]}, drop=False) .apply (df)
speed speed_bin

1 -3 <5

2 4 <5

3 5 5

4 9 5

>>> pdp.Bin({'speed': [0,5,8]}, drop=False) .apply (df)
speed speed_bin

1 -3 <0

2 4 0-5

3 5 5-8

4 9 8

class dalio.pipe.MapColVals (value_map, *args, columns=None, new_cols=None, drop=True,

reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that reintegrates the values of a column by a map.

value_map
A dictionary mapping existing values to new ones. Values not in the dictionary as keys will be converted
to NaN. If a function is given, it is applied element-wise to given columns. If a Series is given, values are
mapped by its index to its values.

Type dict, function or pandas.Series

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1], [3]1, [2]], ['UK', 'USSR', 'US'], ['Medal'l])
>>> value_map = {1l: 'Gold', 2: 'Silver', 3: 'Bronze'}
>>> pdp.MapColVals ('Medal', value_map) .apply (df)
Medal
UK Gold
USSR Bronze
uUs Silver

class dalio.pipe.CustomByCols (func, *args, strategy='apply', columns=None, new_cols=None,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage applying a function to individual columns iteratively.

func
The function to be applied to each element of the given columns.

Type function

strategy
Application strategy. Different from Custom class’ strategy parameter (which here is kept at “apply”) as
this will now be done on a series (each column). Extra care should be taken to ensure resulting column
lengths match.

Type str

1.1. User Modules 39

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp; import math;
>>> data = [[3.2, "acd"]l, [7.2, "alk"]l, [12.1, "alk"]]

>>> df pd.DataFrame (data, [1,2,3], ["ph","1lbl"])

>>> round_ph = pdp.ApplyByCols ("ph", math.ceil)

>>> round_ph (df)

ph 1bl
1 4 acd
2 8 alk
3 13 alk

class dalio.pipe.Log (*args, columns=None, new_cols=None, non_neg=False, const_shift=None,

drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that log-transforms numeric data.

non_neg
If True, each transformed column is first shifted by smallest negative value it includes (non-negative
columns are thus not shifted).

Type bool, default False

const_shift
If given, each transformed column is first shifted by this constant. If non_neg is True then that transforma-
tion is applied first, and only then is the column shifted by this constant.

Type int, optional

Example

>>> import pandas as pd; import pdpipe as pdp;
>>> data = [[3.2, "acd"], [7.2, "alk"], [12.1, "alk"]]
>>> df = pd.DataFrame (data, [1,2,3], ["ph","1bl"])
>>> log_stage = pdp.Log("ph", drop=True)
>>> log_stage (df)
ph 1bl
1 1.163151 acd
2 1.974081 alk
3 2.493205 alk

class dalio.pipe.BoxCox (*args, columns=None, new_cols=None, non_neg="False,

const_shift=None, drop=True, reintegrate=False, **kwargs)
Bases: dalio.pipe.col_generation.Custom

A pipeline stage that applies the BoxCox transformation on data.

const_shift
If given, each transformed column is first shifted by this constant. If non_neg is True then that transforma-
tion is applied first, and only then is the column shifted by this constant.

Type int, optional

class dalio.pipe.StockComps (strategy='sic_code', max_ticks=6)
Bases: dalio.pipe.pipe.Pipe

Get a list of a ticker’s comparable stocks

40 Chapter 1. Quick Links

Dal.io, Release 0.0.1

This can utilize any strategy of getting stock comparative companies and return up to a certain ammount of
comps.

_strategy
comparisson strategy name or function.

Type str, callable

max_ticks
maximum number of tickers to return.

Type int

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

max_ticks: int = None

run (**kwargs)
Gets ticker argument and passes an empty ticker request to transform.

Empty ticker requests are supposed to return all tickers available in a source, so this allows the compariis-
son to be made in all stocks from a certain source.

Raises ValueError —if ticker is more than a single symbol.

transform (data, **kwargs)
Get comps according to the set strategy

class dalio.pipe.CovShrink (frequency=252)
Bases: dalio.pipe.pipe.PipeBuilder

Perform Covariance Shrinkage on data

Builder with a single piece: shirnkage. Shrinkage defines what kind of shrinkage to apply on a resultant covari-
ance matrix. If none is set, covariance will not be shrunk.

frequency
data time period frequency

Type int
build_model (data, **kwargs)
Builds Covariance Srhinkage object and returns selected shrinkage strategy

Returns Function fitted on the data.

check_name (param, name)
Check if name and parameter combination is valid.

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments

1.1. User Modules 41

Dal.io, Release 0.0.1

before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.
* name (str)—name option to be set to the piece.

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

frequency: int = None

transform (data, **kwargs)
Build model using data get results.

Returns A covariance matrix

class dalio.pipe.ExpectedReturns
Bases: dalio.pipe.pipe.PipeBuilder

Get stock’s time series expected returns.
Builder with a single piece: return_model. return_model is what model to get the expected returns from.

build_model (data, **kwargs)
Assemble pieces into a model given some data

The data will opten be optional, but several builder models will require it to be fitted on initialization.
Which further shows why builders are necessary for context-agnostic graphs.

Parameters
* data — data that might be used to build the model.
* xxkwargs — any additional argument used in building

check_name (param, name)
Check if name and parameter combination is valid.

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments
before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.

* name (str)—name option to be set to the piece.

42 Chapter 1. Quick Links

Dal.io, Release 0.0.1

transform (data, **kwargs)
Builds model using data and gets expected returns from it

class dalio.pipe.MakeARCH
Bases: dalio.pipe.pipe.PipeBuilder

Build arch model and make it based on input data.

This class allows for the creation of arch models by configuring three pieces: the mean, volatility and distribu-
tion. These are set after initialization through the _Builder interface.

_piece
see _Builder class.

Type list

assimilate (model)
Assimilate core pieces of an existent ARCH Model.

Assimilation means setting this model’s’ pieces in accordance to an existing model’s pieces. Assimilation
is shallow, so only the main pieces are assimilated, not their parameters.

Parameters model (ARCHMode 1) — Existing ARCH Model.

build_model (data, **kwargs)
Build ARCH Model using data, set pieces and their arguments

Returns A built arch model from the arch package.

transform (data, **kwargs)
Build model with sourced data

class dalio.pipe.ValueAtRisk (quantiles=None)
Bases: dalio.pipe.pipe.Pipe

Get the value at risk for data based on an ARHC Model

This takes in an ARCH Model maker, not data, which might be unintuitive, yet necessary, as this allows users
to modify the ARCH model generating these values separately. A useful strategy that allows for this is using a
pipeline with an arch model as its first input and a ValueAtRisk instance as its second layer. This allows us to
treat the PipeLine as a data input with VaR output and still have control over the ARCH Model pieces (given
you left a local variable for it behind.)

_quantiles
list of quantiles to check the value at risk for.

Type list

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

1.1. User Modules 43

Dal.io, Release 0.0.1

transform (data, **kwargs)
Get values at risk at each quantile and each results maximum exedence from the mean.

The maximum exedence columns tells which quantile the loss is placed on. The word “maximum” might
be misleading as it is compared to the minimum quantile, however, this definition is accurate as the column
essentially answers the question: “what quantile furthest away from the mean does the data exeed?”

Thank you for the creators of the arch package for the beautiful visualizations and ideas!
Raises

¢ ValueError - if ARCH model does not have returns. This is often the case for unfitted
models. Ensure your graph is complete.

* TypeError — if ARCH model has unsuported distribution parameter.

class dalio.pipe.ExpectedShortfall (quantiles=None)
Bases: dalio.pipe.builders.ValueAtRisk

Get expected shortfal for given quantiles
See base class for more in depth explanation.

transform (data, **kwargs)
Get the value at risk given by an arch model and calculate the expected shortfall at given quantiles.

class dalio.pipe.PandasLinearModel
Bases: dalio.pipe.pipe.PipeBuilder

Create a linear model from input pandas dataframe, using its index as the X value.

This builder is made up of a single piece: strategy. This piece sets which linear model should be used to fit the
data.

build_model (data, **kwargs)
Build model by returning the chosen model and initialization parameters

Returns Unfitted linear model

transform (data, **kwargs)
Set up fitting parameters and fit built model.

Returns Fitted linear model

class dalio.pipe.OptimumWeights
Bases: dalio.pipe.pipe.PipeBuilder

Get optimum portfolio weights from an efficient frontier or CLA. This is also a builder with one piece: strategy.
The strategy piece refers to the optimization strategy.

build_model (data, **kwargs)
Assemble pieces into a model given some data

The data will opten be optional, but several builder models will require it to be fitted on initialization.
Which further shows why builders are necessary for context-agnostic graphs.

Parameters
* data — data that might be used to build the model.
* xxkwargs — any additional argument used in building

check_name (param, name)
Check if name and parameter combination is valid.

44 Chapter 1. Quick Links

Dal.io, Release 0.0.1

This will always be called upon setting a new piece to ensure this piece is present dictionary and that the
name is valid. Subclasses will often override this method to implement the name checks in accordance
to their specific name parameter combination options. Notice that checks cannot be done on arguments
before running the _Builder. This also can be called from outside of a _Builder instance to check for the
validity of settings.

Parameters
* piece (str)—name of the key in the piece dictionary.
* name (str)—name option to be set to the piece.

transform (data, **kwargs)
Get efficient frontier, fit it to model and get weights

1.1.4 dalio.model package

Submodules
dalio.model.basic module

Define basic models

class dalio.model.basic.Join (**kwargs)
Bases: dalio.model.model.Model

Join two dataframes on index.
This model has two sources: left and right.

_kwargs
optional keyword arguments for pd.join

Type dict

run (**kwargs)
Get left and right side data and join

dalio.model.financial module

Define comps analysis models

class dalio.model.financial.CompsData
Bases: dalio.model.model.Model

Get a ticker’s comps and their data.

This model has two sources: comps_in and data_in. comps_in gets a ticker’s comparative stocks. data_in
sources ticker data given a “TICKER” keyword argument.

run (**kwargs)
Run model.

This will be the bulk of subclass functionality. It is where all data is sourced and processed.

class dalio.model.financial.CompsFinancials
Bases: dalio.model. financial.CompsData

Subclass to CompsData for getting stock price information

1.1. User Modules 45

Dal.io, Release 0.0.1

class dalio.model.financial.CompsInfo
Bases: dalio.model. financial.CompsData

Subclass to CompsData for getting comps stock information

class dalio.model.financial.MakeCriticalLine (weight_bounds=(-1, 1))
Bases: dalio.model.model.Model

Fit a critical line algorithm This model takes in two sources: sample_covariance and expected_returns. These
are self-explanatory. The model calculates the algorithm for a set of weight bounds. .. attribute:: weight_bounds

lower and upper bound for portfolio weights.
type tuple

run (**kwargs)
Get source data and create critical line algorithm

weight_bounds: Tuple[int] = None

class dalio.model.financial.MakeEfficientFrontier (weight_bounds=(0, 1), gamma=0)
Bases: dalio.model. financial.MakeCriticalLine

Make an efficient frontier algorithm. :param gamma: gamma optimization parameter. :type gamma: int

add_constraint (new_constraint)
Wrapper to PyPortfolioOpt BaseConvexOptimizer function Add a new constraint to the optimisation
problem. This constraint must be linear and must be either an equality or simple inequality. :param
new_constraint: the constraint to be added :type new_constraint: callable

Raises AttributeError — if new objective is not callable.

add_objective (new_objective, *args, **kwargs)
Wrapper to PyPortfolioOpt BaseConvexOptimizer function Add a new term into the objective function.
This term must be convex, and built from cvxpy atomic functions. :param new_objective: the objective to
be added :type new_objective: cp.Expression

Raises
* ValueError - if the new objective is not supported.
e AttributeError —if new objective is not callable.
add_sector_definitions (sector_defs=None, **kwargs)
add_sector_weight_constraint (sector=None, constraint="is', weight=0.5)

add_stock_weight_constraint (ticker=None, comparisson="is', weight=0.5)
Wrapper to add_constraint method. Adds constraing on a named ticker. This is a much more intuitive
interface to add constraints, as these will often be stocks of an unknown order in a dataframe. :param
ticker: stock ticker or location to be constrained. :type ticker: str, int :param comparisson: constraing
comparisson. :type comparisson: str :param weight: weight to constrain. :type weight: float

Raises TypeError —if any of the arguments are of an invalid type

copy ()
Copy superclass, objectives and constraints.

gamma: int = None

run (**kwargs)
Make efficient frontier. Create efficient frontier given a set of weight constraints.

weight_bounds: Tuple[int] = None

46 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.model.financial.OptimumPortfolio
Bases: dalio.model.model.Model

Create optimum portfolio of stocks given dictionary of weights. This model has two sources: weights_in and
data_in. The weights_in source gets optimum weights for a set of tickers. The data_in source gets price data for
these same tickers.

run (**kwargs)
Gets weights and uses them to create portfolio prices if weights were kept constant.

dalio.model.model module

Define Model class

Models are transformers that take in multiple inputs and has a single output. Model instance can be much more flexible
with additional options for differen strategies of data processing and collection.

class dalio.model.model.Model
Bases: dalio.base.transformer. Transformer

Models represent data modification with multiple internal inputs and a single internal output.

_source
dictionary of input data definitions

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Run model.

This will be the bulk of subclass functionality. It is where all data is sourced and processed.

set_input (source_name, new_input)
Set a new connection to a data definition in dictionary entry matching the key name.

Parameters
e source_name (str) - initialized item in sources dict.

* new_input — new source connection.
Raise: KeyError: if input name is not present in sources dict.

with_input (source_name, new_input)
Return a copy of this model with the specified data definition connection changed
Parameters

* source_name (str) — initialized item in sources dict.

1.1. User Modules 47

Dal.io, Release 0.0.1

* new_input — new source connection.

dalio.model.statistical module

Define statistical models

class dalio.model.statistical.XYLinearModel
Bases: dalio.model.model.Model,dalio.base.builder._Builder

Generalized Linear model for arrays from two sources.
This Model has two sources, x and y.
This Builder has one piece. the linear model strategy.

build_model (data, **kwargs)
Build model by returning the chosen model and initialization parameters

Returns Unfitted linear model

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Get data from both sources, transform them into np.arrays and fit the built model

Module contents

class dalio.model.Join (**kwargs)
Bases: dalio.model.model.Model
Join two dataframes on index.
This model has two sources: left and right.

_kwargs
optional keyword arguments for pd.join

Type dict

run (**kwargs)
Get left and right side data and join

class dalio.model.CompsData
Bases: dalio.model.model.Model

Get a ticker’s comps and their data.

This model has two sources: comps_in and data_in. comps_in gets a ticker’s comparative stocks. data_in
sources ticker data given a “TICKER” keyword argument.

48 Chapter 1. Quick Links

Dal.io, Release 0.0.1

run (**kwargs)
Run model.

This will be the bulk of subclass functionality. It is where all data is sourced and processed.

class dalio.model.CompsFinancials
Bases: dalio.model. financial.CompsData

Subclass to CompsData for getting stock price information

class dalio.model.CompsInfo
Bases: dalio.model. financial.CompsData

Subclass to CompsData for getting comps stock information

class dalio.model .MakeCriticalLine (weight_bounds=(-1, 1))
Bases: dalio.model.model.Model

Fit a critical line algorithm This model takes in two sources: sample_covariance and expected_returns. These
are self-explanatory. The model calculates the algorithm for a set of weight bounds. .. attribute:: weight_bounds

lower and upper bound for portfolio weights.
type tuple

run (**kwargs)
Get source data and create critical line algorithm

weight_bounds: Tuple[int] = None

class dalio.model.MakeEfficientFrontier (weight_bounds=(0, 1), gamma=0)
Bases: dalio.model.financial.MakeCriticalLine

Make an efficient frontier algorithm. :param gamma: gamma optimization parameter. :type gamma: int

add_constraint (new_constraint)
Wrapper to PyPortfolioOpt BaseConvexOptimizer function Add a new constraint to the optimisation
problem. This constraint must be linear and must be either an equality or simple inequality. :param
new_constraint: the constraint to be added :type new_constraint: callable

Raises AttributeError — if new objective is not callable.

add_objective (new_objective, *args, **kwargs)
Wrapper to PyPortfolioOpt BaseConvexOptimizer function Add a new term into the objective function.
This term must be convex, and built from cvxpy atomic functions. :param new_objective: the objective to
be added :type new_objective: cp.Expression

Raises
* ValueError - if the new objective is not supported.
e AttributeError — if new objective is not callable.
add_sector_definitions (sector_defs=None, **kwargs)
add_sector_weight_constraint (sector=None, constraint='is', weight=0.5)

add_stock_weight_constraint (ticker=None, comparisson="is', weight=0.5)
Wrapper to add_constraint method. Adds constraing on a named ticker. This is a much more intuitive
interface to add constraints, as these will often be stocks of an unknown order in a dataframe. :param
ticker: stock ticker or location to be constrained. :type ticker: str, int :param comparisson: constraing
comparisson. :type comparisson: str :param weight: weight to constrain. :type weight: float

Raises TypeError — if any of the arguments are of an invalid type

1.1. User Modules 49

Dal.io, Release 0.0.1

copy ()
Copy superclass, objectives and constraints.

gamma: int = None

run (**kwargs)
Make efficient frontier. Create efficient frontier given a set of weight constraints.

weight_bounds: Tuple[int] = None

class dalio.model.OptimumPortfolio

Bases: dalio.model.model.Model

Create optimum portfolio of stocks given dictionary of weights. This model has two sources: weights_in and
data_in. The weights_in source gets optimum weights for a set of tickers. The data_in source gets price data for
these same tickers.

run (**kwargs)
Gets weights and uses them to create portfolio prices if weights were kept constant.

class dalio.model.XYLinearModel

Bases: dalio.model.model.Model,dalio.base.builder._Builder
Generalized Linear model for arrays from two sources.

This Model has two sources, x and y.

This Builder has one piece. the linear model strategy.

build_model (data, **kwargs)
Build model by returning the chosen model and initialization parameters

Returns Unfitted linear model

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Get data from both sources, transform them into np.arrays and fit the built model

50

Chapter 1. Quick Links

Dal.io, Release 0.0.1

1.1.5 dalio.application package

Submodules

dalio.application.application module

Define the Application class

While Models are normally the last stage of the processing chain, it still has a single output, which might have limited
value in itself. Applications are tools used for the interpretation of some input and outisde outputs. These can have
a broad range of uses, from graphing to real-time trading. The main functionality is in the .run() method, which gets
input data and interprets it as needed.

class dalio.application.application.Application

Bases: dalio.model.model.Model
Represent final representation of graph data through external entities.
Applications are transformations with one or more internal inputs and one or more external outputs.

_out
dictionary of outisde output connections

Type dict

copy (*args, **kwargs)
Makes a copy of transformer, copying its attributes to a new instance.

This copy should essentially create a new transformation node, not an entire new graph, so the _source
attribute of the returned instance should be assigned without being copied. This is also made to be built
upon by subclasses, such that only new attributes need to be added to a class’ copy method.

Parameters
* xargs — Positional arguments to be passed to initialize copy
* xxkwargs — Keyword arguments to be passed to initialize copy

Returns A copy of this _Transformer instance with copies of necessary attributes and empty
input.

run (**kwargs)
Run application.

This will be the bulk of subclass functionality. It is where all data is sourced, processed and output.

set_output (output_name, new_output)
Set a new output to data definition in dictionary entry matching the name

Parameters
* output_name (str)—the name of the output from the output dict.
* new_output — new External source to be set as the output.
Raises
* KeyError — if name is not in the output dict.
* ValueError - if the new output is not an instance of External.

with_output (output_name, new_output)
Return a copy of this model with the specified data definition output changed

Parameters

1.1.

User Modules 51

Dal.io, Release 0.0.1

* output_name (str)—the name of the output from the output dict.

* new_output — new External source to be set as the output.

dalio.application.graphers module

Applications based on graphing input data

class dalio.application.graphers.ForecastGrapher

Bases: dalio.application.graphers.Grapher
Application to graph data and a forecast horizon

This Application has two sources data_in and forecast_in. The data-in source is explained in Grapher. The
forecast_in source gets a forecast data to be graphed.

run (**kwargs)
Get data, its forecast and plot both

class dalio.application.graphers.Grapher

Bases: dalio.application.application.Application
Base grapher class.

Does basic graphing, assuming data does not require any processing before being passed onto an external gra-
pher.

This Application has one source: data_in. The data_in source gets internal data to be graphed.
This Application has one output: data_out. The data_out output represents an external graph.

reset_out ()
Reset the output graph. Figure instances should implement the .reset() method.

run (**kwargs)
Gets data input and plots it

class dalio.application.graphers.LMGrapher (x=None, y=None, legend=None)

Bases: dalio.application.graphers.PandasXYGrapher
Application to graph data and a linear model fitted to it.

This Application has two sources data_in and linear_model. The data-in source is explained in Grapher. The
linear_model source is a fitted linear model with intercept and coefficient data.

_legend
legend position on graph.

Type str, None

run (**kwargs)
Get data, its fitted coefficients and intercepts and graph them.

class dalio.application.graphers.MultiGrapher (rows, cols)

Bases: dalio.application.application.Application,dalio.base.builder._Builder
Grapher for multiple inputs taking in the same keyword arguments.

This is useful to greate subplots of the same data processed in different ways. Sources are the data inputs and
pieces are their kinds, args and kwargs.

This applicaiton can N sources and pieces, where N is the total number of graphs.

build_model (data, **kwargs)
Return data unprocessed

52

Chapter 1. Quick Links

Dal.io, Release 0.0.1

run (**kwargs)
Gets data input from each source and plots it using the set information in each piece

class dalio.application.graphers.PandasMultiGrapher (rows, cols)
Bases: dalio.application.graphers.MultiGrapher

Multigrapher with column selection mechanisms

In this MultiGrapher, you can select any x, y and z columns as piece kwargs and they will be interpreted during
the run. Keep in mind that this allows for any combination of these layered one on top of each other regardless

[]

of name. If you specify an “x” and a “z”, the “z” column will be treated like a “y” column.
There are also no interpretations of what is to be graphed, and thus all wanted columns should be specified.
There is one case for indexes, where the x_index, y_index or z_index keyword arguments can be set to True.

build_model (data, **kwargs)
Process data columns

class dalio.application.graphers.PandasTSGrapher (y=None, legend=None)
Bases: dalio.application.graphers.PandasXYGrapher

Graphs a pandas time series
Same functionality as parent class with stricter inputs.

class dalio.application.graphers.PandasXYGrapher (x=None, y=None, legend=None)
Bases: dalio.application.graphers.Grapher

Graph data from a pandas dataframe with option of selecting columns used as axis

x
- name of column to be used for x-axis.
Type str
-y
name of column to be used for y-axis.
Type str
_legend

legend position. None by default
Type str, None

run (**kwargs)
Get data, separate columns and feed it to data output graph

class dalio.application.graphers.VaRGrapher
Bases: dalio.application.graphers.Grapher

Application to visualize Value at Risk

run (**kwargs)
Get value at risk data, plot returns, value at risk lines and exceptions at their maximum exedence.

Thank you for the creators of the arch package for the amazing visulaization idea!

1.1. User Modules 53

Dal.io, Release 0.0.1

dalio.application.printers module

Print data onto an external output

class dalio.application.printers.FilePrinter

Bases: dalio.application.application.Application

Application to print data onto a file

This application has one source: data_in. The data_in source is the data to be printed.

This application has one output: data_out. The data_out output is the external output to print the data to.

run (**kwargs)
Gets data and prints it

Module contents

class dalio.application.FilePrinter

Bases: dalio.application.application.Application

Application to print data onto a file

This application has one source: data_in. The data_in source is the data to be printed.

This application has one output: data_out. The data_out output is the external output to print the data to.

run (**kwargs)
Gets data and prints it

class dalio.application.Grapher

Bases: dalio.application.application.Application
Base grapher class.

Does basic graphing, assuming data does not require any processing before being passed onto an external gra-
pher.

This Application has one source: data_in. The data_in source gets internal data to be graphed.
This Application has one output: data_out. The data_out output represents an external graph.

reset_out ()
Reset the output graph. Figure instances should implement the .reset() method.

run (**kwargs)
Gets data input and plots it

class dalio.application.MultiGrapher (rows, cols)

Bases: dalio.application.application.Application,dalio.base.builder._Builder
Grapher for multiple inputs taking in the same keyword arguments.

This is useful to greate subplots of the same data processed in different ways. Sources are the data inputs and
pieces are their kinds, args and kwargs.

This applicaiton can N sources and pieces, where N is the total number of graphs.

build_model (data, **kwargs)
Return data unprocessed

run (**kwargs)
Gets data input from each source and plots it using the set information in each piece

54

Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.application.PandasXYGrapher (x=None, y=None, legend=None)
Bases: dalio.application.graphers.Grapher

Graph data from a pandas dataframe with option of selecting columns used as axis

x
"~ name of column to be used for x-axis.
Type str
-y
name of column to be used for y-axis.
Type str
_legend

legend position. None by default
Type str, None

run (**kwargs)
Get data, separate columns and feed it to data output graph

class dalio.application.PandasTSGrapher (y=None, legend=None)
Bases: dalio.application.graphers.PandasXYGrapher

Graphs a pandas time series
Same functionality as parent class with stricter inputs.

class dalio.application.PandasMultiGrapher (rows, cols)
Bases: dalio.application.graphers.MultiGrapher

Multigrapher with column selection mechanisms

In this MultiGrapher, you can select any X, y and z columns as piece kwargs and they will be interpreted during
the run. Keep in mind that this allows for any combination of these layered one on top of each other regardless

69 [T

of name. If you specify an “x” and a “z”, the “z” column will be treated like a “y” column.
There are also no interpretations of what is to be graphed, and thus all wanted columns should be specified.
There is one case for indexes, where the x_index, y_index or z_index keyword arguments can be set to True.

build_model (data, **kwargs)
Process data columns

class dalio.application.VaRGrapher
Bases: dalio.application.graphers.Grapher

Application to visualize Value at Risk

run (**kwargs)
Get value at risk data, plot returns, value at risk lines and exceptions at their maximum exedence.

Thank you for the creators of the arch package for the amazing visulaization idea!

class dalio.application.LMGrapher (x=None, y=None, legend=None)
Bases: dalio.application.graphers.PandasXYGrapher

Application to graph data and a linear model fitted to it.

This Application has two sources data_in and linear_model. The data-in source is explained in Grapher. The
linear_model source is a fitted linear model with intercept and coefficient data.

_legend
legend position on graph.

1.1. User Modules 55

Dal.io, Release 0.0.1

Type str, None

run (**kwargs)
Get data, its fitted coefficients and intercepts and graph them.

1.2 Developer Modules

1.2.1 dalio.ops module

Define various operations

dalio.ops.get_comps_by_ sic (data, ticker, max_ticks=None)
Get an equity’s comps based on market cap and sic code similarity

This has the major flaw of getting too many comps for common industries.
Parameters
* data (pd.DataFrame) — data containing all possible comparisson candidates.
e ticker (str) - ticker of main stock.
* max_ticks (int)- maximum number of tickers to return.
Raises KeyError — if stock is not present in data.

dalio.ops.index_cols (df,i=100)
Index columns at some value

dalio.ops.risk_metrics (data, lam, ignore_first=True)
Apply the basic RiskMetrics (EWMA) continuous volatility measure to a a dataframe

Parameters
* lam (float) - lambda parameter

* ignore_first (bool) — whether to ignore the first row. This is often the case after a
change pipe.

Returns A copy of data with the continuous volatility of each value

1.2.2 dalio.base package

Submodules
dalio.base.builder module

Define extra utility classes used throughout the package

These classes implement certain interfaces used in specific cases and are not constrained an object’s parent class.

56 Chapter 1. Quick Links

Dal.io, Release 0.0.1

dalio.base.constants module

Define constant terms

In order to maintain name integrity throughout graphs, constants are used instead of any string name for variables that
were created or will be usued in any _Transformer instance before or after the current one. These are often column
names for pandas DataFrames, though can be anything that is or will be used to identify data throughout the graph.

dalio.base.datadef module

Defines DataDef base class

DataDef instances describe data inputs throughout the graph and ensure the integrity of data continuously. These are
composed of various validators that serve both to describe approved data and check for whether data passes a test.

dalio.base.memory module

Defines memory transformers

class dalio.base.memory.LazyRunner (mem_type, args=None, kwargs=None, buff=I1, up-

date=False)
Bases: dalio.base.transformer._Transformer

Memory manager created to set memory input of an object after executing a transformer with given kwargs.

This is useful when you want to store data sourced from a transformer but doesn’t know which kwarg requests
will be used. This object waits for a run request to source data from a transformer and set the source of one or
more memory objects (in order) when data does arrive, and reutilize it if data is requested with the same kwargs.

For every new and valid evaluation, a new Memory instance is created and saved as a value in the _memory
dictionary. Failed memory storage will result in no new Memory instance being created. This is done instead
of simply setting inputs to Memory instances created upon initialization in order to reduce the memory usage of
LazyRunner instances.

KEEP IN MIND that this does not check if the actual input is the same to relay the data, only the kwargs (for
speed’s sake). This creates the risk that inputs or transformer attributes are changed (keeping kwarg requests the
same) and the old data is retrieved. Use the pop() or clear() methods to solve this.

KEEP IN MIND there is a risk of having very different inputs being retrieved (from different external sources
or date filters, for example) only based on kwarg requests. This is only relevant if _buff > 1.

_source
transformer to source data from. No data definitions are used as this should be performed by the memory
type uppon setting an input.

Type _Transformer

_mem_type
type object for generating new memory instances.

Type type

_args
tuple of arguments for new _mem_type instance initialization

Type tuple

_kwargs
dict of keyword arguments for new _mem_type instance initialization

Type dict

1.2. Developer Modules 57

Dal.io, Release 0.0.1

_memory
deque containing one Memory instance for every unique kwargs ran with a (kwarg, Memory) tuple struc-
ture.

Type deque

_buff
Maximum number of Memory instances to be stored at any point. Positive numbers will be this limit, -1
represent no buffer limits. This option should be used with caution, as it can be highly memory-inneficient.
Subclasses can create new methods of managing this limit.

Type int, -1 or >0

_update
Whether _memory dict should be updated if a new set of kwargs is ran after reaching maximum capacity
(as defined by the _buff attribute). If set to True, the last element of the _memory dict will be substituted.

Type bool

clear ()
Clear memory

copy (*args, **kwargs)
Return a copy of this instance with a shallow memory dict copy

run (**kwargs)
Compare kwargs with existing keys, update or set _memory in accordance to _update and _buff attributes.

Raises BufferError — if new kwargs, buffer is full and update set to False

set_buff (buff)
Set the _buff attribute

set_input (new_input)
Set the input data source.

Parameters new_input (_Transformer) — new transformer to be set as input.
Raises TypeError —if new_input is not an instance of _Transformer.

set_update (update)
Set the _update attribute

with_input (new_input)
Return copy of this transformer with the new input connection.

Returns Copy of self with new input.

class dalio.base.memory.LocalMemory
Bases: dalio.base.memory.Memory

Stores memory in the local session

clear ()
Clear memory

run (**kwargs)
Return data stored in source variable

If data can be coppied, it will. This might not be memory efficient, but it makes behaviour from the
Memory._source attribute more consistent with external memory sources.

set_input (new_input)
Store input data into source variable

58 Chapter 1. Quick Links

Dal.io, Release 0.0.1

class dalio.base.memory.Memory
Bases: dalio.base.transformer._Transformer

Implement mechanics to store and retrieve input data.

This is a pseudo-transformer, as it is supposed to behave like on on the surface (implementing all needed meth-
ods) but not actually performing any actual transformation.

This is used in pipes that heavily reutilize the same external data source using the same kwarg requests. Im-
plementations store and retrieive data through different methods and locations, and might implement certain
requirements that must be met by input data in order for it to be stored.

_def
Connection-less data definition that checks for required characteristics of of input data.

Type _DataDef

_source
Memory source. Implementations will often have additional attributes to manage this source.

Type any

clear ()
Clear memory

copy (*args, **kwargs)
Create new instance and memory source

run (**kwargs)
Check if location is set and return stored data accordingly

set_input (new_input)
Store input data

with_input (new_input)
Return copy of this transformer with the new input connection.

Returns Copy of self with new input.

dalio.base.node module

Defines Node abstract class

Nodes are the key building blocks of your model as they represent any data that passes thorugh it. These are usued in
subsequent classes to describe and manage data.

dalio.base.transformer module

Define Transformer class

Transformers are a base class that represents any kind of data modification. These interact with DataOrigin instances
as they are key to their input and output integrity. A set_source() method sets the source of the input, the .run() method
cannot be executed if the input”s source is not set.

1.2. Developer Modules 59

Dal.io, Release 0.0.1

Module contents

import classes

1.2.3 dalio.validator package

Submodules
dalio.validator.array_val module

Definte validators applied to array-like inputs

class dalio.validator.array_val.HAS_DIMS (dims, comparisson="'==")
Bases: dalio.validator.validator.Validator

Check if an array has a number of dimensions

_dims
number of dimensions

Type int

_comparisson
which comparisson to perform

Type str

validate (data)
Validate data

Check if data fits a certain description.

Returns A description of any errors in the data according to this specific validation condition,
and None if data is valid.

dalio.validator.base val module

Define Validators used for general python objects

class dalio.validator.base_val.ELEMS_TYPE ()
Bases: dalio.validator.base val.HAS ATTR

Checks if all elements of an iterator is of a certain type.

t

type to check iterator’s elements for
Type type, tuple

validate (data)
Validates data if it is an iterable with all elements of type self._t

class dalio.validator.base_val.HAS_ATTR (aftr)
Bases: dalio.validator.validator.Validator

Checks if data has an attribute

_attr
attribute to check for

Type str

60 Chapter 1. Quick Links

Dal.io, Release 0.0.1

validate (data)
Validates data if it contains attribute self._attr

class dalio.validator.base_val.IS_TYPE (f)
Bases: dalio.validator.validator.Validator

Checks if data is of a certain type
Attribute: t (type): type of data to check for

validate (data)
Validates data if it is of type self._t

dalio.validator.pandas_val module

class dalio.validator.pandas_val.HAS_COLS (cols, level=None)
Bases: dalio.validator.pandas_val.IS_PD DF
Checks if data has certain column names

_cols
list of column names to check

validate (data)
Validates data if all the columns in self._cols is present in the dataframe

class dalio.validator.pandas_val.HAS_INDEX_NAMES (names, axis=0)
Bases: dalio.validator.pandas_val.IS_PD DF

Checks if an axis has specified names

_names
names to check for

_axis
axis to check for names

validate (data)
Validates data if specified axis has the specified names

class dalio.validator.pandas_val.HAS_IN_COLS (items, cols=None)
Bases: dalio.validator.pandas_val.HAS COLS

Check if certain items are present in certain columns

_cols
See base class

_items
items that must be present in each of the specified columns

validate (data)
Validates data if items in self._items are not present in specified columns. Specified columns are all
columns if self._cols is None.

class dalio.validator.pandas_val.HAS_LEVELS (levels, axis=0, comparisson="'<=")
Bases: dalio.validator.pandas_val.IS _PD DF

validate (data)
Validates data if it is of type self._t

1.2. Developer Modules 61

Dal.io, Release 0.0.1

class dalio.validator.pandas_val.IS_PD_DF
Bases: dalio.validator.base val.IS TYPE

Checks if data is a pandas dataframe
See base class

class dalio.validator.pandas_val.IS_PD_TS
Bases: dalio.validator.base _val.IS TYPE

Checks if data is a pandas time series

validate (data)
Validates data if it’s index is of type pandas.DateTimelndex

dalio.validator.presets module

Define Validator collection presets

These are useful to describe very specific data characteristics commonly used in some analysis.

dalio.validator.validator module

Define Validator class

Validators are the building blocks of data integrity in the graph. As modularity is key, validators ensure that the data
that enters a node is what it is mean to be or that errors are targeted to make debugging easier.

class dalio.validator.validator.Validator (fatal=True)
Bases: object

Check for some characteristic of a piece of data

Validators can have any attribute needed, but functionality is stored in u the .validate function, which returns
any errors in the data.

fatal
Whether if invalid data is fatal. Decides whether invalid data can still be passed on (with a warning) or if
it is grounds to stop the execution of the graph. False by default.

Type bool

test_desc
Description of tests performed on data

Type str
fatal: bool = None

fatal_ off ()
Turn fatal off and return self

fatal on()
Turn fatal on and return self

is_on: bool = None
test_desc: str = None

validate (data)
Validate data

Check if data fits a certain description.

62 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Returns A description of any errors in the data according to this specific validation condition,
and None if data is valid.

Module contents
1.2.4 dalio.util package

Submodules
dalio.util.level_utils module

Utilities for dealing with DataFrame index or column levels

dalio.util.level_utils.add _suffix (all_cols, cols, suffix)
Add suffix to appropriate level in a given column index.

Parameters

* all_cols (pd. Index, pd.MultiIndex)- all columns from an index. This is only
relevent when the columns at hand are a multindex, as each tuple element will contain
elements from all levels (not only the selected ones)

e cols(str, list, dict)- selected columns
e suffix (str) - the suffix to add to the selected columns.

dalio.util.level_utils.drop_cols (df, cols)
Drop selected columns from levels

Parameters
* df (pd.DataFrame) — dataframe to have columns dropped.
e cols (hashable, iterable, dict)— column selection

dalio.util.level_utils.extract_cols (df, cols)
Extract columns from a dataframe

Parameters
* df (pd.DataFrame) — dataframe containing the columns

* cols (hashable, iterable, dict) — single column, list of columnst or dict with
the level as keys and column(s) as values.

Raises KeyError — if columns are not in dataframe

dalio.util.level_ utils.extract_level_names_dict (df)
Extract all column names in a dataframe as (level: names_ dicitonar7

Parameters df (pd.DataFrame) — dataframe whose columns will be extracted

dalio.util.level_ utils.filter_ levels (levels, filters)
Filter columns in levels to either be equal to specified columns or a filtering function

Parameters
¢ levels (dict) — all column names in a (level: names) dict

e filters (str, list, callable, dict) - either columns to place on a specified
level or filter functions to select columns there.

1.2. Developer Modules

63

Dal.io, Release 0.0.1

dalio.util.level_utils.get_slice_from_dict (df, cols)
Get a tuple of slices that locate the specified (Ievel: column) combination.

Parameters
e df (pd.DataFrame) — dataframe with multiindex
* cols (dict) - (level: column) dictionary
Raises
* ValueError - if any of the level keys are not integers
* KeyError — if any level key is out of bounds or if columns are not in the dataframe

dalio.util.level_utils.insert_cols (df, new_data, cols)
Insert new data into specified existing columns

Parameters

e df (pd.DataFrame) — dataframe to insert data into.

* new_data (any) — new data to be inserted

* cols (hashable, iterable, dict)- existing columns in data.
Raises

* KeyError —if columns are not in dataframe

* Exception —if new data doesn’t fit cols dimensions

dalio.util.level_utils.mi_join (dfl, df2, *args, **kwargs)
Join two dataframes and sort their columns

Parameters
* df2 (df1,) - dataframes to join
* xxkwargs (*args,)— arguments for join function (called from df1)

Raises ValueError if number of levels don't match -

dalio.util.plotting_utils module

Plotting utilities
Thank you for the creators of pypfopt for the wonderful code!

dalio.util.plotting_utils.plot_covariance (cov_matrix, plot_correlation=False,

))) show_tickers=True, ax=None)
Generate a basic plot of the covariance (or correlation) matrix, given a covariance matrix.

Parameters
* cov_matrix (pd.DataFrame, np.ndarray)— covariance matrix

* plot_correlation (bool)— whether to plot the correlation matrix instead, defaults to
False. Optional.

* show_tickers (bool) — whether to use tickers as labels (not recommended for large
portfolios). Optional. Defaults to True.

* ax (matplolib.axis, None)- Axis to plot on. Optional. New axis will be created if
none is specified.

Returns matplotlib axis

64 Chapter 1. Quick Links

Dal.io, Release 0.0.1

dalio.util.plotting_utils.plot_dendrogram (hrp, show_tickers=True, ax=None, **kwargs)
Plot the clusters in the form of a dendrogram.

Parameters
* hrp — HRPpt object that has already been optimized.

* show_tickers (bool) — whether to use tickers as labels (not recommended for large
portfolios). Optional. Defaults to True.

* ax (matplolib.axis, None)— Axis to plot on. Optional. New axis will be created if
none is specified.

* xxkwargs — optional parameters for main graph.
Returns matplotlib axis

dalio.util.plotting_ utils.plot_efficient_frontier (cla, points=100, visible=25,
show_assets=True, ax=None,
*rkwargs)
Plot the efficient frontier based on a CLA object
Parameters
* points (int)— number of points to plot. Optional. Defaults to 100

* show_assets (bool) — whether we should plot the asset risks/returns also. Optional.
Defaults to True.

* ax (matplolib.axis, None)- Axis to plot on. Optional. New axis will be created if
none is specified.

* xxkwargs — optional parameters for main graph.
Returns matplotlib axis

dalio.util.plotting_utils.plot_weights (weights, ax=None, **kwargs)
Plot the portfolio weights as a horizontal bar chart

Parameters
* weights (dict) — the weights outputted by any PyPortfolioOpt optimiser.

* ax (matplolib.axis, None)— Axis to plot on. Optional. New axis will be created if
none is specified.

* xxkwargs — optional parameters for main graph.

Returns matplotlib axis

dalio.util.processing_utils module

Data processing utilities
dalio.util.processing_utils.list_str (listi)

dalio.util.processing_utils.process_cols (cols)
Standardize input columns

dalio.util.processing_utils.process_date (date)
Standardize input date

Raises TypeError - if the type of the date parameter cannot be converted to a pandas timestamp

1.2. Developer Modules 65

Dal.io, Release 0.0.1

dalio.util.processing_utils.process_new_colnames (cols, new_cols)
Get new column names based on the column parameter

dalio.util.processing_utils.process_new_df (df], df2, cols, new_cols)
Process new dataframe given columns and new column names

Parameters
* df1 (pd.DataFrame) — first dataframe.
* df2 (pd.DataFrame) — dataframe to join or get columns from
* cols (iterable) - iterable of columns being targetted.

* new_cols (iterable) - iterable of new column names.

dalio.util.transformation_utils module

dalio.util.transformation_utils.out_of_place_col_insert (df, series, loc, col-

))))] umn_name=None)
Returns a new dataframe with given column inserted at given location.

Parameters
e df (pandas.DataFrame) — The dataframe into which to insert the column.
* series (pandas.Series)— The pandas series to be inserted.
* loc (int) - The location into which to insert the new column.

* column_name (str, default None)-The name to assign the new column. If None,
the given series name attribute is attempted; if the given series is missing the name attribute
a ValueError exception will be raised.

Returns The resulting dataframe.

Return type pandas.DataFrame

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1l, 'a'l, [4, 'b'l], columns=['a', 'g'l)
>>> ser = pd.Series([7, 51])
>>> out_of_place_col_insert (df, ser, 1, 'n'")
a n g
0 1 7 a
1 4 5 b

dalio.util.translation_utils module

Translation utilities

dalio.util.translation_utils.get_numeric_column_names (df)
Return the names of all columns of numeric type.

Parameters df (pandas.DataFrame)— The dataframe to get numeric column names for.
Returns The names of all columns of numeric type.

Return type list of str

66 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> data = [[2, 3.2, "acd"], [1, 7.2, "alk"], [8, 12.1, "alk"]]
>>> df = pd.DataFrame (data, [1,2,3], ["rank", "ph","lbl"])

>>> sorted(get_numeric_column_names (df))

['ph', 'rank']

dalio.util.translation_utils.translate_df (translator, df, inplace=False)
Translate dataframe column and index names in accordance to translator dictionary.

Parameters
* translator (dict) — dictionary of {original: translated} key value pairs.
* df (pd.DataFrame) — dataframe to have rows and columns translated.

* inplace (bool) — whether to perform operation inplace or return a translated copy. Op-
tional. Defaults to False.

Module contents
dalio.util.extract_level_ names_dict (df)
Extract all column names in a dataframe as (level: names_ dicitonar7
Parameters df (pd.DataFrame) — dataframe whose columns will be extracted

dalio.util.filter_levels (levels, filters)
Filter columns in levels to either be equal to specified columns or a filtering function

Parameters
¢ levels (dict) — all column names in a (level: names) dict

e filters (str, list, callable, dict) - either columns to place on a specified
level or filter functions to select columns there.

dalio.util.extract_cols (df, cols)
Extract columns from a dataframe

Parameters
* df (pd.DataFrame) — dataframe containing the columns

* cols (hashable, iterable, dict) — single column, list of columnst or dict with
the level as keys and column(s) as values.

Raises KeyError — if columns are not in dataframe

dalio.util.insert_cols (df, new_data, cols)
Insert new data into specified existing columns

Parameters

* df (pd.DataFrame) — dataframe to insert data into.

* new_data (any) — new data to be inserted

* cols (hashable, iterable, dict)- existingcolumns in data.
Raises

* KeyError — if columns are not in dataframe

1.2. Developer Modules 67

Dal.io, Release 0.0.1

* Exception — if new data doesn’t fit cols dimensions

dalio.util.drop_cols (df, cols)
Drop selected columns from levels

Parameters
* df (pd.DataFrame) — dataframe to have columns dropped.
e cols (hashable, iterable, dict)- column selection

dalio.util.get_slice_from dict (df, cols)
Get a tuple of slices that locate the specified (level: column) combination.

Parameters
e df (pd.DataFrame) — dataframe with multiindex
* cols (dict) — (level: column) dictionary
Raises
* ValueError — if any of the level keys are not integers
* KeyError —if any level key is out of bounds or if columns are not in the dataframe

dalio.util.mi_join (dfl, df2, *args, **kwargs)
Join two dataframes and sort their columns

Parameters

* df2 (df1,) - dataframes to join

* xxkwargs (*args,) — arguments for join function (called from df1)
Raises ValueError if number of levels don't match-

dalio.util.add_suffix (all_cols, cols, suffix)
Add suffix to appropriate level in a given column index.

Parameters

* all_cols (pd. Index, pd.MultiIndex)- all columns from an index. This is only
relevent when the columns at hand are a multindex, as each tuple element will contain
elements from all levels (not only the selected ones)

* cols(str, list, dict)- selected columns
e suffix (str) - the suffix to add to the selected columns.

dalio.util.out_of_place_col_insert (df, series, loc, column_name=None)
Returns a new dataframe with given column inserted at given location.

Parameters
e df (pandas.DataFrame)— The dataframe into which to insert the column.
* series (pandas. Series)— The pandas series to be inserted.
* loc (int) - The location into which to insert the new column.

* column_name (str, default None)-The name to assign the new column. If None,
the given series name attribute is attempted; if the given series is missing the name attribute
a ValueError exception will be raised.

Returns The resulting dataframe.

Return type pandas.DataFrame

68 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Example
>>> import pandas as pd; import pdpipe as pdp;
>>> df = pd.DataFrame([[1l, 'a'l, [4, 'b']l]l, columns=['a', 'g'])
>>> ser = pd.Series([7, 51])
>>> out_of_place_col_insert (df, ser, 1, 'n')
a n g
0 1 7 a
1 4 5 b

dalio.util.translate_df (translator, df, inplace=False)
Translate dataframe column and index names in accordance to translator dictionary.

Parameters
* translator (dict) - dictionary of {original: translated} key value pairs.
* df (pd.DataFrame) — dataframe to have rows and columns translated.

* inplace (bool) — whether to perform operation inplace or return a translated copy. Op-
tional. Defaults to False.

dalio.util.get_numeric_column_names (df)
Return the names of all columns of numeric type.

Parameters df (pandas.DataFrame)— The dataframe to get numeric column names for.
Returns The names of all columns of numeric type.

Return type list of str

Example

>>> import pandas as pd; import pdpipe as pdp;

>>> data = [[2, 3.2, "acd"]l, [1, 7.2, "alk"], [8, 12.1, "alk"]]
>>> df = pd.DataFrame (data, [1,2,3], ["rank", "ph","1lbl"])

>>> sorted(get_numeric_column_names (df))

['ph', 'rank']

dalio.util.process_cols (cols)
Standardize input columns

dalio.util.process_new_colnames (cols, new_cols)
Get new column names based on the column parameter

dalio.util.process_date (date)
Standardize input date

Raises TypeError — if the type of the date parameter cannot be converted to a pandas timestamp

dalio.util.process_new_df (dfl, df2, cols, new_cols)
Process new dataframe given columns and new column names

Parameters
* df1 (pd.DataFrame) — first dataframe.
* df2 (pd.DataFrame) — dataframe to join or get columns from
* cols (iterable) —iterable of columns being targetted.

* new_cols (iterable) — iterable of new column names.

1.2. Developer Modules 69

Dal.io, Release 0.0.1

dalio.util.translate_df (translator, df, inplace=False)
Translate dataframe column and index names in accordance to translator dictionary.

Parameters
* translator (dict) - dictionary of {original: translated} key value pairs.
e df (pd.DataFrame) — dataframe to have rows and columns translated.

* inplace (bool) — whether to perform operation inplace or return a translated copy. Op-
tional. Defaults to False.

dalio.util.plot_efficient_frontier (cla, points=100, visible=25, show_assets=True, ax=None,

*rkwargs)
Plot the efficient frontier based on a CLA object

Parameters
* points (int)— number of points to plot. Optional. Defaults to 100

* show_assets (bool) — whether we should plot the asset risks/returns also. Optional.
Defaults to True.

* ax (matplolib.axis, None)— Axis to plot on. Optional. New axis will be created if
none is specified.

* xxkwargs — optional parameters for main graph.
Returns matplotlib axis

dalio.util.plot_covariance (cov_matrix, plot_correlation=False, show_tickers=True, ax=None)
Generate a basic plot of the covariance (or correlation) matrix, given a covariance matrix.

Parameters
* cov_matrix (pd.DataFrame, np.ndarray)— covariance matrix

* plot_correlation (bool)— whether to plot the correlation matrix instead, defaults to
False. Optional.

* show_tickers (bool) — whether to use tickers as labels (not recommended for large
portfolios). Optional. Defaults to True.

* ax (matplolib.axis, None)— Axis to plot on. Optional. New axis will be created if
none is specified.

Returns matplotlib axis

dalio.util.plot_weights (weights, ax=None, **kwargs)
Plot the portfolio weights as a horizontal bar chart

Parameters
* weights (dict) —the weights outputted by any PyPortfolioOpt optimiser.

* ax (matplolib.axis, None)-— Axis to plot on. Optional. New axis will be created if
none is specified.

* xxkwargs — optional parameters for main graph.

Returns matplotlib axis

70 Chapter 1. Quick Links

Dal.io, Release 0.0.1

1.3 Understanding Graphs

1.3.1 What do | mean by “graphical structure”?

In a graphical structures data is represented as nodes and operations as edges. Think of it as a way to represent many
inter-connected transformations and their input and output data.

1.3.2 Progressive Disclosure of Complexity

The main philosophy behind the graphical structure of Dal-io come from the Deep Learning library Keras. In their
documentation, they state that “A core principle of Keras is progressive disclosure of complexity. You should always
be able to get into lower-level workflows in a gradual way. You shouldn’t fall off a cliff if the high-level functionality
doesn’t exactly match your use case. You should be able to gain more control over the small details while retaining a
commensurate amount of high-level convenience.”

So you are familiar with Keras, you will understand that they provide users with a plethora of pre-implemented classes
(layers and models) that fit into each other, though the user is also free to create subclasses of their own that can be
integrated into the Deep Neural Network and interact with it as just another layer.

Likewise, all of the classes described below where made with the objective of being easily customized by more
experienced users. After all, the great majority of objects you will be using where implemented like that! Once you
feel like you got a hang of Dal-io and want to build your own pieces, check out the source code or the Core Classes
and Concepts.

1.3.3 Why is a graphical structure optimal for financial modeling?

Modern automated financial models retrieve data, clean and dirty, from various sources and through cleaning
and integration are able to join them, further process this product and finally derive insights. The problem is
that as these models utilize more and more data from various sources, created models tend to become confusing
for both technical and non technical people. Also, as there is no unified workflow to deal with these, created
models tend to become highly inflexible and lacking portability (onto other models or projects.) A graphical
architecture offers an intuitive workflow for working with data, where inputs can have a unified translation, data
can be constantly checked for validity and outputs can be used in flexible ways as parts of a bigger system or
drive actions.

Utilizing large amounts of data can also end up being highly memory-inefficient when data sources are varied
and outputs are as simple as a buy/sell command. As in the TensorFlow graphical architecture, using these
constructs allow for automatic parallelization of models to better use modern hardware. Applications can also
be built to fit multiple models, and updated independently from the rest of the system.

Graphs are easy to interpret visually, which is useful for understanding the flow of data and interpreting output or
bugs. They are also highly flexible, allowing users to modify pieces or generate new connections while keeping
an enforceable system of data integrity.

Perhaps most importantly, these graphs are extremely lightweight and portable, which is key for widespread
distribution and access. While every piece can be accessed and tested on-the-go for better ease of development,
they are ultimately just pieces of a bigger structure, where data flows continuously and leftover data is discarded
automatically, keeping the memory and processing burden at a minimum when dealing with massive datasets.

1.3. Understanding Graphs 71

https://github.com/renatomatz/Dal-io

Dal.io, Release 0.0.1

1.4 Base Classes

These are the classes you will use throughout an analysis, or rather a class that implements their functionality. Getting
to know them is important as it makes it easier to identify one when you see one and make it easier to search for one
when you don’t really remember where to find it.

1.4.1 External <_Node>

Manage connections between your environment and an external source.

Every model requires an origin to the data it uses, and often wants to send this data out again once it’s processed.
Subclasses of External will implement systems to manage the input and output of data to and from an external
sources. An external source is any data or application located outside of your python environment. Two common
examples are files and graphs. While these can be manipulated from the python environemt, the actual data is stored
outside.

External class instances will often be redundant with existing connection handlers, but at least subclasses will
allow for more integrated connection handling and collection, so that you can have a single supplicant object for each
external connection.

As a child class of _Node,:code:External implements the . request (x*kwargs) method, which takes in requests
and executed valid ones on their external connections.

While this method is responsible for the main requests to and from the data, subclasses will often have other methods to
perform more specific actions on it. Additionally, the = xkwargs parameter will rarely be the same as the one relayed
through the _Transformer.run () as Translator and Application instances will often curate these to be
more generalizable to multiple External implementations.

What to Look For:
¢ What the external source is.

* Is it reliant on configuration? If so, what configuration parameters are required/considered?

1.4.2 _Transformer

Represent data transformations.

_Transformer instances are defined by their inputs and outputs. IO can be limited to one or more sources and the
source can be either internal or external (as defined in External <_Node>).

All _Transformer instances implement the . run (x+kwargs) method to:
1. Request source data from a _Node instance.
2. Apply specific transformations to the sourced data.
3. Return the transformed data.

This process will vary depending on the subclass, though the one thing to keep in mind is that the output of this method
is what will be fed onto the next node on the graph, so it’s a powerful tool for debugging.

_Transformer instances also define each input in their initialization by using Validator instances. You can find
more about these in the developers-guide section on the Validator but for now, you can use the _Transformer.
describe () method to get an idea of what kind of inputs this piece requires or prefers.

You won’t be using these directly in your analyses, but will definitely use one of its subclasses.

What to Look For:

72 Chapter 1. Quick Links

Dal.io, Release 0.0.1

* Number of input and outputs.
* Sources/destinations of inputs and outputs.

* Input descriptions.

1.4.3 Translator <_Transformer>

Request and standardize external data.
One external input, one internal output

While External instances are the origin of all data, Translator instances are the root of all clean and stan-
dardized data. Objects of this class have External instances as their source and are tasked with creating requests
understandable by that instance and standardize the response data into an acceptable format.

For more information on the Dal-io formatting standards, check out formatting.
All Translator instances implement the . run (x+kwargs) method to:
1. Source data from an External instance.
2. Translate the data into a format as specified by the formatting guide.
3. Return the translated data.
These also tend to be the PipeLine stages where kwargs source from.
What to Look For:
e Compatible External instances.
* What translation format is being used and how will the output contain.

¢ What are the keyword arguments it can interpret.

1.4.4 Pipe <_Transformer>

Transform a single input into a single output.
One internal input, one internal output

Pipes will compose the majority of data wranging and processing in your graphs, and are designed to be easily extend-
able by users.

All pipes must implement the . transform(data, =x+kwargs) method, which takes in the output from sourced
data and returns it transformed. This has three main purposes.

1. Subclasses can more objectively focus on transforming and outputting the dat a parameter instead of having to
deal with sourcing it.

2. It makes it possible to use P ipe instances to transform data outside of the Dal-io library directly, which is useful
for applications outside of the library’s scope or for testing the transformation.

3. More efficient compatibility with PipeLine <Pipe> objects.
All Pipe instances implement the . run (x*kwargs) method to:
1. Define input requirements.
2. Source data from another _Transformer instance, applying integrity checks.
3. Pass it as the data parameter to the . transform () method.

4. Return the transformed data.

1.4. Base Classes 73

Dal.io, Release 0.0.1

While the default implementation of the . run () method simply sources data and passes into .transform, it is
often changed to modify keyword arguments passed onto the source node and the .transform() call.

What to Look For:
¢ What are the input requirements.
* What the . t ransform method does.

* What are changeable attributes that affect the data processing.

1.4.5 Model <_Transformer>

Utilize multiple input sources to get one output.
Multiple internal inputs, one internal output

Model instances are a lot like Pipe instances as their main task it to transform inputs to get an output. Though taking
in multiple inputs might not seem like enough to warrant a whole different class, the key differences come from all the
extra considerations needed when creating a Model instance.

There are two main uses for Mode 1 instances:
1. Getting multiple inputs and joining them to form a single output.
2. Using the output of one of the inputs to format a request to another input.

These objectives thus require a lot more flexibility when it comes to sourcing the inputs, which is why, unlike Pipe
instances, Mode 1 instances do not have a .transform () method, and instead rely solely on their run () method
to:

1. Source data from inputs.
2. Process and transform data.
3. (Possibly) source more data given the above transformations.
4. (Possibly) join all sourced data.
5. Return the final product.
What to Look For:
1. All the input names and what they represent.
2. The requirements for each input.
3. How the . run () method deals with each input piece.

4. What changeable attributes affect the data processing.

1.4.6 Application <Model>

Act on external sources Multiple internal inputs, zero or more external or internal outputs

While you might be using Dal-io mostly for processing data for further use in your python session, Application
instances offer methods of using this processed data to interact with external sources. These will be managed by
External instances which are called by the application with data it sources from its inputs. These interactions
can take a broad range of forms, from simple printing to the console to graphing, executing trade orders or actively
requesting more data from the inputs. Ultimately, Application instances offer the greatest set of possibilities for
users wanting to implement their own, as it is not bound by the scope of what the library can do.

All Application instances implement the . run (xxkwargs) method to:

74 Chapter 1. Quick Links

Dal.io, Release 0.0.1

1. Source, validate, process and/or combine data from different inputs.
2. Use processed input data to send a request to an external source.
3. Get responses from external sources and further interactions.
What to Look For:
1. All the input names and what they represent.
2. The requirements for each input.
3. All the output names and what they represent.

4. How the . run () method deals with each input piece and how will it be transmitted to the output.

1.5 Extra Classes and Concepts

Now that we’ve seen what will make your models work, lets jump into what will make your models work incredibly.

1.5.1 PipeLine <Pipe>

As Pipe instances implement a normally small operation and have only one input and one output, you are able to
join them together, through the __add__ () internal method (which overrides the + operator) to create a sequence of
transformations linked one after the other. These simply pass the output of one Pipe instance’s .transform() method as
the input to another, which can be a significant speed boost, though you should be careful with data integrity here.

KEEP IN MIND that good alternatives to these is just linking Pipe instances together in order to validate the data
at every stage of the pipeline. This will have the same output as a PipeLine, but compromise on speed and possibly
aesthetics.

1.5.2 Memory <_Transformer>

When using APISs to fetch online data, there is often a delay that ranges from a few to a few dozen seconds. This might
be completely fine if data will only pass through your model once to feed an application, for example, but will become
a problem if you are also performing analyses on several pieces of the model or have several Model instances in your
graph (which call on an input once for every source). The solution to this lies in Memory instances that temporarily
save model inputs to some location and retrieves it when ran.

Notice that Memory inherits from a _Transformer, which makes it compatible as input to any piece of your graph and
behaves like any other input (most closely resembling a Pipe.)

Subclasses will implement different storage strategies for different locations. These will have their own data require-
ments and storage and retrieval logic - imagine the different in data structure, storage and retrieval required for storing
data on a database vs on the local python session.

One thing to keep in mind is that these only store one piece of memory, so if you, for example, want to vary your
.run() kwargs, this might not be the best option beyond building and debugging your model. If you still want the speed
advantages of Memory while allowing for more runtime argument flexibility, check out the LazyRunner class below.

1.5. Extra Classes and Concepts 75

Dal.io, Release 0.0.1

1.5.3 LazyRunner <_Transformer>

These objects are the solution to storing multiple Memory instances for different runtime kwargs that pass through the
instance. These do not store the data itself, but rather the memory instances that do. This allows for more flexibility,
as any single Memory subclass can be used to store the data. These are created when a new keyword argument is
seen, and it does so by getting the data from a _Transformer input and setting its result as the source of a new Memory
instance. The Memory type and initialization arguments are all specified in the LazyRunner initialization.

KEEP IN MIND that these could mean a significant memory burden, if you are widely saving data from different
inputs with several kwargs combinations passed on to them.

The solution to the memory problem comes in the buffer= initialization argument of the LazyRunner. These will limit
the number of Memory instances that are saved at any point. This also comes with the update= initialization argument
for whether or not stored Memory instances should be updated in FIFO order once the buffer is full or whether an
error should be thrown.

KEEP IN MIND that this will not notice if its source data input has any sort of input changes itself (this could be a
change in date range, for example or data source.) This will become a problem as changes will not be relayed if the
runtime kwargs are the same as before a change. This happens as the LazyRunner will assume that nothing changed,
see the kwarg and return the (old) saved version of the response. This can be solved by calling the .clear() method to
reset the memory dictionary.

1.5.4 Keyword Arguments

Just like data propagates forward in the network through nodes and transformers, requests propagate backwards
through . run () and request () keyword arguments. Though often you won’t need them (and much less often
need to implement a new one), keyword arguments (aka kwargs) are a way on which a front piece of your graph can
communicate with pieces before them at runtime. In essence, kwargs are passed from run to request over and over
until they reach a node that can use them. These nodes can use these kwargs in different ways.They can:

 Use them to filter sourced data.
» Use them to create another request, based on previously-unknown information.

Though they might seem like an amazing way of making your graph act more like a function, adding new kwarg re-
quirements should be done very rarely and done with full knowledge of what are the taken kwarg names, as conflicting
names will certainly cause several unforeseen bugs.

1.6 Tips and Tricks

1.6.1 Importing

As any other python (or any other programming language) workflow, we start with imports. Dal-io will often require
several pieces to be used in a workflow, each of which is located within a submodule named after the base classes
we have seen above. This means that importing the whole dalio package and instantiating piece by piece will often
create unappealing code, which is why the following techniques are preferred.

Import submodules with an alias:

import dalio.external as de
import dalio.translator as dt
import dalio.pipe as dp
import dalio.model as dm
import dalio.application as da

76 Chapter 1. Quick Links

Dal.io, Release 0.0.1

This technique might not be the most standard or space efficient, but is very useful when you are still testing out
models and architectures. For most worflows where you want to try out new paths and strategies, having these imports
will give you all the core functionality you need while keeping your code clean.

Import specific pieces from each submodule:

from dalio.external import YahooDR, PyPlotGraph
from dalio.translator import YahooStockTranslator

from dalio.pipe import (
Change,
ColSelect,
Custom,
DateSelect,

from dalio.model import (
OptimumWeights,
OptimumPortfolio,

from dalio.application import Grapher

This doing this is more standard to match common workflows like those in keras and sklearn though can easily
grow out of hand ind a Dal-io workflow, especially when trying to experiment with new inputs and pieces.

This is preferred once you have created a graph you are happy with and is ready for use. Importing all pieces explic-
itly not only makes your code more readable, it also makes the used pieces more explicit to the ones reading your
implementation.

A use hybrid approach:

from dalio.external import YahooDR, PyPlotGraph
from dalio.translator import YahooStockTranslator

import dalio.pipe as dp
import dalio.model as dm

from dalio.application import Grapher

This approach is a great way of reconciling both importing workflows, as it keeps the most relevant pieces of the graph
explicit (the original input, the application and the final output) while giving you flexibility of accessing all Pipe and
Model pieces available for testing.

1.6.2 The Basic Workflow
Now that you are familiar with the most common parent classes used in the Dal-io system and ways of importing them,
we can start talking about how a basic workflow with them will tend to look like.
We will separate our basic workflow into the following steps.
1. Set up imports.
2. Set up core data sources.
3. Data wrangling and processing.

4. Application set-up.

1.6. Tips and Tricks 77

Dal.io, Release 0.0.1

Set up imports:

This is the stage where you use set up and configure any External object instances and set them as inputs to a
Translator. This defines the core of the data that will be sent to the rest of your graph, so it is always positive to have
test runs of this raw input.

Set up core data sources:

Now that you have your inputs, perform any sort of transformations which will further standardize it to your specific
needs. These can be selecting specific columns (like only the “close” column if your source gets OCHLV data) or
joining sources.

This is an optional, yet often relevant step, and you should see this as a preparation to the data that will feed every step
following this.

If we were to picture a graph with various nodes and edges which source data from a single node, this step is setting
up a few nodes between the source and the actual first node that other pieces often get data from. In other words, no
other pieces but the ones used in this step will be interacting with the pieces that come before it.

Data wrangling and processing:

This is the most general step and is all about setting up processing pipelines for your data. This might involve
performing transformations, joining sources into models and maybe even setting up different diagnostic applications
midway. Theres no overwhelming structure to these other than setting up the inputs that will feed your last nodes.

Application set-up:

While applications are not a requirement for a graph, they are often the very last nodes in one. Above that,
Application instances often have the largest burden of setup, so deciding all of their pieces and putting together
inputs is a common last step.

Once applications are set up, the following analysis will be for the most part a process of actually using it or optimizing
your results by tweaking some of the steps done previously.

1.6.3 When Reading the Docs

I find it that reading the docs can be a completely different experience depending on the package I am researching.
Whether you want to find out whether a specific process currently exists in the Dal-io library or if you just want
to get more specifications on a single piece you know exists, there are a couple of breadcrumbs left as part of the
documentation structure that where placed to guide you there.

Know how your piece fits:

As you have seen throughout the beginners guide, every Dal-io piece inherits from a base class, which represents a cer-
tain state of data or transformation. Knowing well what you are looking for in terms of these states or transformations
can go a long way on trying to find the submodule to look for the piece.

You can ask questions like:
* Is this a transformation on data or a representation of data?
* How many inputs does this transformation have?
* Are there any external inputs or outputs involved in this specific piece?

Beyond the base class submodules, these are further organized into different script folders to ensure there is further
separation of what the base class implementations do. Definitely see what are the current available submodule “cate-
gories” to further narrow your search. The good thing is that while there are separated into links in the user-modules
page, they are all joined together into the same specific submodule page.

Know how to explore your piece:

78 Chapter 1. Quick Links

Dal.io, Release 0.0.1

Once you have pinpointed your piece, explore its definition or source code to know how to fully utilize it in your spe-
cific case. While one could argue that only by going through the source could one fully understand an implementation’s
full potential, this is often a tedious approach and definitely not beginner-friendly.

If you want to cut to the chase when it comes to knowing a function, look for the things specified under the “What to
look for” sessions on each of the base class descriptions above.

1.6.4 Must-Know Classes
Now that you are fully armed with the knowledge needed to venture into the package, let’s get you introduced to a
couple of pieces the development team (currently composed of one) has used with frequently.

class dalio.pipe.col_generation.Custom (func, *args, columns=None, new_cols=None, strat-
egy="apply', axis=0, drop=True, reintegrate=False,
*rkwargs)
Apply custom function.

strategy
strategy for applying value function. One of [“apply”, “transform”, “agg”, “pipe”]

Type str, default “pipe”

Example

>>> import pandas as pd; from dalio.pipe import Custom;

>>> data = [[3, 2143], [10, 13211, [7, 1255]]
>>> df = pd.DataFrame (data, [1,2,3], ['years', 'avg_revenue'])
>>> total_rev = lambda row: row['years'] % row['avg_revenue']

>>> add_total_rev = Custom(total_rev, 'total_ revenue', axis=1)
>>> add_total_rev.transform(df)
years avg_revenue total_revenue

1 3 2143 6429
2 10 1321 13210
3 7 1255 8785
>>> def halfer (row) :
new = {'year/2': row['years']/2,
'rev/2': row['avg_revenue']/2}

.. return pd.Series (new)
>>> half_cols = Custom(halfer, axis=1, drop=False)
>>> half_cols.transform(df)

years avg_revenue rev/2 year/2
1 3 2143 1071.5 1.5
2 10 1321 660.5 5.0
3 7 1255 627.5 3.5
>>> data = [[3, 3], [2, 41, [1, 511
>>> df = pd.DataFrame (data, [1,2,3], ["A","B"])
>>> func = lambda df: df['A'] == df['B']

>>> add_equal = Custom(func, "A==RB", strategy="pipe", drop=False)
>>> add_equal.transform(df)

A B A==B
1 3 3 True
2 2 4 False
3 1 5 False

1.6. Tips and Tricks 79

Dal.io, Release 0.0.1

__init__ (func, *args, columns=None, new_cols=None, strategy='"apply', axis=0, drop=True, reinte-
grate=False, **kwargs)
Initialize instance and set up input DataDef.

In Pipe instance initializations, data definitions are described and attributes are checked.

The Custom pipe does what the name implies: it applies a custom transformation to an input pandas .DataFrame
instance. It inherits most of its functionality from the :code”_ColGeneration abstract class, so reading its description
will help you understand how flexible your transformations can be when it comes to reintegrating it back into the
original dataframe while keeping its column structure intact.

class dalio.pipe.col_generation._ColGeneration (*args, columns=None, new_cols=None,
axis=0, drop=True, reintegrate=False,

**kwargs)
Generate column based on a selection from a dataframe.

These are very useful for simple operations or for testing, as no additional class definitions or understanding of
the documentation is requred. .. attribute:: columns

Column labels in the DataFrame to be mapped.
type single label or list-like

func
The function to be applied to each row of the processed DataFrame.

Type callable

result_columns
If list-like, labels for the new columns resulting from the mapping operation. Must be of the same length
as columns. If str, the suffix mapped columns gain if no new column labels are given. If None, behavior
depends on the replace parameter.

Type str or list-like, default None
axis
axis to apply value funciton to. Irrelevant if strategy = “pipe”.
Type int, default 1

drop
If set to True, source columns are dropped after being mapped.

Type bool, default True

reintegrate
If set to False, modified version is returned without being placed back into original dataframe. If set to
True, an insertion is attemtped; if the transformation changes the data’s shape, a RuntimeError will be
raised.

Type bool, default False

_args
arguments to be passed onto the function at execution time.

_kwargs
keyword arguments to be passed onto the function at execution time.

__init__ (*args, columns=None, new_cols=None, axis=0, drop=True, reintegrate="False, **kwargs)
Initialize instance and set up input DataDef.

In Pipe instance initializations, data definitions are described and attributes are checked.

80 Chapter 1. Quick Links

Dal.io, Release 0.0.1

transform (data, **kwargs)
Apply custom transformation and insert back as specified

This applies the transformation in three main steps: 1. Extract specified columns 2. Apply modification 3.
Insert columns if needed or return modified dataframe

These steps have further details for dealing with levels.

Raises RuntimeError — if transformed data is to be reintegrated but has a different shape
than data being reintegrated on the dataframe.

This class is extremely important as it essentially the user’s first point of entry into creating their custom transforma-
tions. Custom pipes work by applying your specified function to either the dataframe’s rows or columns (specified
through the :code”axis parameter).

The application itself is divided into different pandas strategies (specified through the :code”strategy parameter, set
to \"apply\" by default.) The strategies correspond to pandas .DataFrame methods, really, so if you want to
get to the specifics of its, just read the pandas documentaion for the \"apply\", \"transform\", \"agg\" and
\"pipe\" descriptions. But for most cases, you will be using two strategies.

e \"apply\": here, each row or column is passed onto the custom function as pd. Series instances. This is
the most generic strategy and should used the most often.

* \"pipe\": unlike \"apply\", here the whole dataframe is passed onto your custom function at once, which
can be useful for experimenting with specific functions you might want to implement as a piece later.

class dalio.pipe.select.DateSelect (start=None, end=None)
Select a date range.

This is commonly left as a local variable to control date range being used at a piece of a graph.

_start
start date.

Type pd.Timestamp

_end
end date.

Type pd.Timestamp

set_end (end)
Set the _end attribute

set_start (start)
Set the _start attribute

This piece also has a name as intuitive as what it does. It essentially takes in a time series pandas.DataFrame (one
which has a pandas.DatetimeIndex as its index) and returns a subset of its dates. What makes it so powerful is
its use as a “remote control” for your input time interval.

This effectively gives you an adjustable “filter” that can be adjusted at any point of your analysis to decide what section
of the data to perform it on, which is crucial in various kinds of time series analyses.

For an interesting use case of this, check out the backtesting cookbook!

1.6. Tips and Tricks 81

https://pandas.pydata.org/pandas-docs/stable/reference/index.html

Dal.io, Release 0.0.1

1.7 Core Classes and Concepts

1.7.1 Validator

Validators are the building blocks of data integrity in the graph. As modularity is key, validators ensure that data
sourced from a _DataDef is what it is mean to be or that errors are targeted to make debugging easier. Validators
can have any attribute needed, but functionality is stored in the .validate function, which either passes warning data on
or stops execution with an error. These can and should be reused with multiple _DataDef instances.

1.7.2 _Node

Node instances represent data. They have a connection to some data input, internal or external, and make requests to
this data as well as ensure their integrity. These form the basis for External and _DataDef classes.

1.7.3 _DataDef <Node>

_DataDef instances are sources of data and implement mechanisms to ensure the integrity of that data, as input from
sources is uncertain.

KEEP IN MIND that this is a tool only used by developers while creating new transformations, actual users do not
enter in contact with neither Validator nor _DataDef instances.

Validation: In order to hold descriptions true, the data is validated by a chain of Validator functions before
returning any actual data, in order to ensure that if data is actually returned, it is accurate to its descriptions and won’t
break the subsequent transformation. These are referred to as descriptions inside _DataDef instances and are added
to them upon initialization of a Transformer instance.

Speed Concerns: While it’s understandable that these might pose a significant speed burden to applications, they are
designed to reduce these by as much as possible. Firstly, validations are not dependent on each other and can thus be
parallelized. Also, they can be turned off as needed, though this must be done with caution.

1.7.4 _Builder

Builders are a solution to the problem of standardizing several package workflows into something more consistent to
the inexperienced user.

Take the MakeARCH builder as an example. In the arch package, users have to assemble an ARCH model starting with
an arch.mean model initialized _with_ the data, followed by setting arch.variance and arch.distribution objects, each
with their own respective parameters. Keeping this interface would have been highly inflexible and required the user
to essentially learn how to use the package from scratch. Inheriting from _Builder allowed the MakeARCH pipe to
maintain this flexibility of setting different pieces as well as creating the model’s structure before actually having any
data (which wouldn’t be possible with the original package).

82 Chapter 1. Quick Links

Dal.io, Release 0.0.1

1.8 Development Notes on Base Classes

1.8.1 External <_Node>

Configuration: Sources often require additional ids, secrets or paths in order to access their data. The .config attribute
aims to summarize all key configuration details and data needed to access a resource. Additional functions can be
added as needed to facilitate one-time connection needs.

Factories: Sources, typically web APIs, will give users various functionalities with the same base configurations. The
.make() method can be implemented to return subclasses that inherit parent processing and configuration.

1.8.2 Translator <_Transformer>
1.8.3 Pipe <_Transformer>
1.8.4 Model <_Transformer>

1.8.5 Applications <Model>
1.9 Key Concepts, Differences and Philosophy

1.9.1 running vs requesting

You might have notices that classes that inherit from <Pipe> have .run() methods, classes that inherit from <Node>
have .request() methods, both of which return some form of data. While these two essentially have the same output
functionality, they differ in implementation, where .run() methods get data from a source and modifies is while .re-
quest() methods get data, also from some source, and validates it. Thus, the idea of a _DataDef compared to a Pipe
becomes clearer.

1.9.2 describing vs tagging

The .tags and . desc attributes might seem to be redundant, as both are used to describe some sort of data passing
by them and both can be used to search for nodes in the graph. Firstly, and most importantly, the . desc attribute is
common to all _DataDef instances that inherit from another _DataDef, while the .tag attribute is unique to that
node, unless it is also present on the parent _DataDef or shared with other DataDefs upon instantiation.

They also do defer in “strictness,” as tags will not be checked for truthfulness, while descriptions will be tested on the
data, unless, of course, users turn checking off. Tags are included as a feature to allow more flexible, personalizeable
descriptions that describe groups or structures within the graph rather than a certain functionality.

1.8. Development Notes on Base Classes 83

Dal.io, Release 0.0.1

84

Chapter 1. Quick Links

CHAPTER
TWO

TABLE OF CONTENTS

85

Dal.io, Release 0.0.1

86

Chapter 2. Table of Contents

CHAPTER
THREE

INTRODUCTION

Dal-io is a financial modeling package for python aiming to facilitate the gathering, wrangling and analysis of financial
data. The library uses graphical object structures and progressive display of complexity to make workflows suit
the user’s specific proficiency in python without making efficiency sacrifices.

The core library implements common workflows from well-supported packages and the means to flexibly interlink
them, and aims to continue adding relevant features. However, the user is not constrained by these features, and is
free to extend pieces through inheritance in order to implement extra functionality that can be used with the rest of the
package. See Core Classes and Concepts for more information on extending core features.

87

Dal.io, Release 0.0.1

88

Chapter 3. Introduction

CHAPTER
FOUR

INSTALLATION

You can clone this repository from git using

git clone https://github.com/renatomatz/Dal-io

If you are using Windows, make sure you are in the package folder to use the functionality and that you run the
following command before importing the modules.

import sys
sys.path.append("/path-to-dalio/Dal-io")

For Linux and Mac, you can access the package contents from your python environment anywhere with

export PYTHONPATH=S$PYTHONPATH:"path/to/Dal-io"

89

Dal.io, Release 0.0.1

90

Chapter 4. Installation

CHAPTER
FIVE

A GUIDED EXAMPLE

Let’s go through a quick example of what Dal-io can do. We’ll build a simple portfolio optimization workflow and
test it out with some sample stocks.

This example will be fairly dry, so if you want to jump right into it with some understanding of the Dal-io mechanics,
you can go through the Understanding Graphs first. If you just want to see what the library is capable of, let’s get
right to it.

We’ll start off by importing the Dal-io pieces

import numpy as np

import dalio.external as de
import dalio.translator as dt
import dalio.pipe as dp

import dalio.model as dm
import dalio.application as da

Specific pieces can also be imported individually, though for testing this sub-module import structure is preferred.

Now lets set up our stock data input from Yahoo! Finance.

tickers = ["GOOG", "MSFT", "ATVI", "TTWO", "GM", "FORD", "SPY"]

stocks = dt.YahooStockTranslator ()\
.set_input (de.YahooDR())

Easy right? Notice that the stock input is composed of one external source (in this case de.YahooDR) and one
translator (dt . YahooStockTranslator). This is the case for any input, with one piece getting raw data from
an external source and another one translating it to a format friendly to Dal-io pieces. For more on formatting, go to
formatting.

Notice the . set_input call that took in the YahooDR object. Every all translators, pipes, models and applications
share this method that allows them to plug the output of another object as their own input. This idea of connecting
different objects like nodes in a graph is at the core of the graphical object design.

At this point you can try out running the model with stocks . run (ticker=tickers) which will get the OHLCV
data for the ticker symbols assigned to :code’’tickers, though you can specify any ticker available in Yahoo! Finance.
Notice that the column names where standardized to be all lower-case with underscores (_) instead of spaces. This is
performed as part of the translation step to ensure all imported data can be referenced with common string representa-
tions.

Now lets create a data processing pipeline for our input data.

time_conf = dp.DateSelect ()

(continues on next page)

91

Dal.io, Release 0.0.1

(continued from previous page)

close = dp.Pipeline (
dp.ColSelect (columns="close"),
time_conf

) (stocks)

annual_rets = close + \
dp.Period ("Y", agg_func=lambda x: x[-1]) + \
dp.Change (strategy="pct_change")

cov = dp.Custom(lambda df: df.cov (), strategy="pipe")\
.with_input (annual_rets)

exp_rets = annual_rets + dp.Custom(np.mean)

That was a bit more challenging! Let’s take it step by step.

We started off defining a DateSelect pipe (which we will use later) and passing it into a pipeline with other pipes
to get a company’s annual returns. Pipelines aggregate zero or more Pipe objects and pass in a common input through
all of their transformations. This skips data integrity checking while still allowing users to control pipes inside the
pipeline from the outside (as we will with :code”time_conf)

We then added a custom pipe that applies the np.mean function to the annual returns to get the expected returns for
each stock.

Finally, we did the exact same thing but with a lambda that calls the pd.DataFrame internal method .cov() to get the
dataframe’s covariance. As we will be passing the whole dataframe to the function at once, we set the Custom strategy
to “pipe”.

Notice how we didn’t use . set_input () as we did before, that’s because we utilized alternative ways of establish-
ing this same node-to-node connection.

We can connect nodes with:
1. pl.set_input (p2) setpl’sinput to p2.
2. pl.with_input (p2) create a copy of pl and set its input to p2.
3. pl(p2) same as pl .with_input (p2).
4. pL + p2 set p2 as the last transformation in the PipeLine pL.

Now let’s set up our efficient frontier model, get the optimal weights and finally create our optimal portfolio model.

ef = dm.MakeEfficientFrontier (weight_bounds=(-0.5, 1))\
.set_input ("sample_covariance", cov)\
.set_input ("expected_returns", exp_rets)\

weights = dp.OptimumWeights () (ef)\
.set_piece("strategy", "max_sharpe", risk_free_rate=0.0)

opt_port = dm.OptimumPortfolio()\
.set_input ("weights_in", weights)\
.set_input ("data_in", close)

And those are two examples of Dal-io Models! As you can see, models can have multiple named inputs, which can be
set the same way as you would in a pipe but also having to specify their name. You also saw an example of a Builder,
which has pieces (that can be set with the . set_piece ()) method which allow for more modular flexibility when
deciding characteristics of certain pipes or models.We could go into what each source and pieces represents, but that
can be better done through the documentation.

92 Chapter 5. A Guided Example

Dal.io, Release 0.0.1

Now, as a final step, lets graph the performance of the optimal portfolio.

graph = da.PandasXYGrapher (x=None, y="close", legend="upper_right")\
.set_input ("data_in", dp.Index(100) (opt_port))\
.set_output ("data_out", de.PyPlotGraph(figsize=(12, 8)))

Additionally, you can change the time range of the whole model at any point using the t ime_ conf object we created
all the way in the beginning. Below is an example of setting the dates from 2016 to 2020.

time_conf.set_start ("2016-01-01")
time_conf.set_end ("2019-12-31")

And that’s it!
All that you have to do now is run the model with graph.run (ticker=tickers) to
1. Get stock data from Yahoo! Finance
2. Process data
3. Optimize portfolio weights
4. Get an optimum portfolio
5. Graph optimum portfolio
Which yields this figure:

— |'close’, 'portfolic')

200

180

160

140

120

100

2016.01 201607 201701 2017-07 2018-01 2018.07 201801 2019.07 2020-01

Notice how this . run () call was the same as you did all the way back when you only had your imported data. This
method is also common to all translators, pipes, models and applications, and it gives you the piece’s output.

This means you can get information of any of the stages you created like this, and for any stock that you’d like. For
example, we can run the weight s object we created to get the weights associated with the portfolio we just plotted.

weights.run (ticker=tickers)

{'GOOG': 0.45514,
'MSFT': 0.82602,

(continues on next page)

93

Dal.io, Release 0.0.1

(continued from previous page)

"ATVI': —-0.49995,
"TTWO': 0.29241,
"GM': -0.43788,

'FORD': 0.38413,
'SPY': -0.01986}

Also, every time you run a set of stocks or time intervals, the new run will be automatically layered with the old one
and indexed at 100, which can be great for comparing how multiple portfolios would have fared! To clear this, just
re-define the graph.

Hope this example was enough to show how you can create clean and powerful models using just a few lines of code!

94 Chapter 5. A Guided Example

CHAPTER
SIX

NEXT STEPS

If you read and enjoyed the example above, that’s great! Now comes the part where you get to understand its various
pieces, workflows and internal logic for you to start creating your own models with Dal-io.

A good first step, if you haven’t already is reading the Understanding Graphs.
If you understood these core concepts well and are ready for some more examples, check out the cookbook.

For those who want to adventure into creating your own pieces (and hopefully contributing to the library) can read the
Core Classes and Concepts as well as the formatting.

And as always, you can check the full breakdown of the modules with the ol’ reliable User Modules.

95

Dal.io, Release 0.0.1

96

Chapter 6. Next Steps

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

97

Dal.io, Release 0.0.1

98

Chapter 7. Indices and tables

PYTHON MODULE INDEX

d dalio.validator.base_val, 60
dalio.application, 54 dalio.validator.pandas_val, 6l

dalio.application.application,5l dalio.validator.presets, 62

dalio.application.graphers, 52 dalio.validator.validator, 62
dalio.application.printers, 54
dalio.base, 60
dalio.base.builder, 56
dalio.base.constants, 57
dalio.base.datadef, 57
dalio.base.memory, 57
dalio.base.node, 59
dalio.base.transformer, 59
dalio.external,5
dalio.external.external,l
dalio.external.file,?2
dalio.external.image,3
dalio.external.web, 4
dalio.model, 48
dalio.model.basic,45
dalio.model.financial, 45
dalio.model .model, 47
dalio.model.statistical, 48
dalio.ops, 56

dalio.pipe, 30
dalio.pipe.builders, 12
dalio.pipe.col_generation, 16
dalio.pipe.forecast, 22
dalio.pipe.pipe, 22
dalio.pipe.select, 24
dalio.translator, 10
dalio.translator.file, 8
dalio.translator.pdr,9
dalio.translator.quandl,9
dalio.translator.translator,9
dalio.util, 67
dalio.util.level_utils, 63
dalio.util.plotting_utils, 64
dalio.util.processing_utils, 65
dalio.util.transformation_utils, 66
dalio.util.translation_utils, 66
dalio.validator, 63
dalio.validator.array_val, 60

99

Dal.io, Release 0.0.1

100 Python Module Index

Symbols

_ColGeneration (class in dalio.pipe.col_generation),
80

init ()
method), 79

__init__ () (dalio.pipe.col_generation._ColGeneration
method), 80

_args (dalio.base.memory.LazyRunner attribute), 57

_args (dalio.pipe.col_generation._ColGeneration at-
tribute), 80

_attr (dalio.validator.base_val. HAS_ATTR attribute),
60

_axes (dalio.external. PyPlotGraph attribute), 6

_axes (dalio.external.image.PyPlotGraph attribute), 3

_axis (dalio.validator.pandas_val. HAS_INDEX_NAMES
attribute), 61

_buff (dalio.base.memory.LazyRunner attribute), 58

_cols (dalio.external. PySubplotGraph attribute), 6

_cols (dalio.external.image. PySubplotGraph attribute),

4

(dalio.validator.pandas_val. HAS_COLS

tribute), 61

_cols (dalio.validator.pandas_val. HAS_IN_COLS at-
tribute), 61

_comparisson (dalio.validator.array_val. HAS_DIMS
attribute), 60

_confiqg (dalio.external.external. External attribute), 1

_connection (dalio.external . FileWriter attribute), 5

_connection (dalio.external. PandasInFile attribute),

(dalio.pipe.col_generation.Custom

_cols at-

5

_connection (dalio.external. PyPlotGraph attribute),
6

_connection (dalio.external external. External at-
tribute), 1

_connection (dalio.external file. FileWriter attribute),
2

_connection (dalio.external.file. PandasinFile at-
tribute), 2

_connection (dalio.external.image.PyPlotGraph at-
tribute), 3

_def (dalio.base.memory.Memory attribute), 59
_dims (dalio.validator.array_val. HAS_DIMS attribute),

INDEX

60

_end (dalio.pipe.DateSelect attribute), 32

_end (dalio.pipe.select.DateSelect attribute), 26, 81

_items (dalio.validator.pandas_val. HAS_IN_COLS at-
tribute), 61

_kwargs (dalio.base.memory.LazyRunner attribute), 57

_kwargs (dalio.model.Join attribute), 48

_kwargs (dalio.model.basic.Join attribute), 45

_kwargs (dalio.pipe.col_generation._ColGeneration
attribute), 80

_legend (dalio.application. LMGrapher attribute), 55

_legend (dalio.application.PandasXYGrapher at-
tribute), 55

_legend (dalio.application.graphers.LMGrapher at-
tribute), 52

_legend (dalio.application.graphers.PandasXYGrapher
attribute), 53

_loc (dalio.external. PySubplotGraph attribute), 6

_loc (dalio.external.image.PySubplotGraph attribute),
4

_mem_type (dalio.base.memory.LazyRunner attribute),
57

_memory (dalio.base.memory.LazyRunner attribute), 57

_names (dalio.validator.pandas_val. HAS_INDEX_NAMES

attribute), 61

(dalio.application.application.Application

tribute), 51

_piece (dalio.pipe. MakeARCH attribute), 43

_piece (dalio.pipe.builders.MakeARCH attribute), 13

_quandl_conf (dalio.external.QuandIAPI attribute),
7

_quandl_conf (dalio.external.web.QuandIAPI at-
tribute), 4

_quantiles (dalio.pipe.ValueAtRisk attribute), 43

_quantiles (dalio.pipe.builders.ValueAtRisk
tribute), 15

_rows (dalio.external. PySubplotGraph attribute), 6

_rows (dalio.external.image. PySubplotGraph attribute),
3

_source (dalio.base.memory.LazyRunner attribute), 57

_source (dalio.base.memory.Memory attribute), 59

_source (dalio.model.model.Model attribute), 47

_out at-

at-

101

Dal.io, Release 0.0.1

_source (dalio.pipe.pipe.Pipe attribute), 22

_source (dalio.translator.translator. Translator
tribute), 9

_start (dalio.pipe.DateSelect attribute), 32

_start (dalio.pipe.forecast. GARCHForecast attribute),
22

_start (dalio.pipe.select.DateSelect attribute), 26, 81

_strategy (dalio.pipe.Change attribute), 37

_strategy (dalio.pipe.StockComps attribute), 41

_strategy (dalio.pipe.builders.StockComps attribute),
15

_strategy (dalio.pipe.col_generation.Change
tribute), 17

_t (dalio.validator.base_val. ELEMS_TYPE attribute), 60

_update (dalio.base.memory.LazyRunner attribute), 58

_x (dalio.application. PandasXYGrapher attribute), 55

_x (dalio.application.graphers.PandasXYGrapher
attribute), 53

_vy (dalio.application. PandasXYGrapher attribute), 55

_y (dalio.application.graphers.PandasXYGrapher
attribute), 53

at-

at-

A

Application (class in dalio.application.application),
51

assimilate ()
method), 13

assimilate () (dalio.pipe.MakeARCH method), 43

att_name (dalio.translator.file.StockStreamFileTranslator
attribute), 8

att_name (dalio.translator.StockStreamFileTranslator
attribute), 11

authenticate ()

(dalio.pipe.builders.MakeARCH

(dalio.external.external External

method), 1

authenticate () (dalio.external. QuandIAPI
method), 7

authenticate () (dalio.external.web.QuandIAPI
method), 4

axis (dalio.pipe.col_generation._ColGeneration at-

tribute), 80

B

Bin (class in dalio.pipe), 38

Bin (class in dalio.pipe.col_generation), 16
bin_map (dalio.pipe.Bin attribute), 38

bin_map (dalio.pipe.col_generation.Bin attribute), 16

add_constraint () (dalio.model. financial. MakeEfficieritHrontgerrat (dalio.pipe.Bin attribute), 38

method), 46

add_constraint () (dalio.model. MakeEfficientFrontier

method), 49

bin_strat (dalio.pipe.col_generation.Bin attribute),
16
BoxCox (class in dalio.pipe), 40

add_objective () (dalio.model.financial. MakeEfficient Broufierx (class in dalio.pipe.col_generation), 17

method), 46

add_objective () (dalio.model MakeEfficientFrontier
method), 49

add_sector_definitions ()
(dalio.model.financial. MakeEfficientFrontier
method), 46

add_sector_definitions ()
(dalio.model MakeEfficientFrontier
49

add_sector_weight_constraint ()
(dalio.model.financial. MakeEfficientFrontier
method), 46

add_sector_weight_constraint ()
(dalio.model. MakeEfficientFrontier
49

add_stock_weight_constraint ()
(dalio.model.financial. MakeEfficientFrontier
method), 46

add_stock_weight_constraint ()
(dalio.model. MakeEfficientFrontier
49

add_suffix () (in module dalio.util), 68

add_suffix () (in module dalio.util.level_utils), 63

agg_func (dalio.pipe.col_generation.Period attribute),
21

agg_func (dalio.pipe.Period attribute), 38

method),

method),

method),

build_model () (dalio.application.graphers.MultiGrapher

method), 52

build_model () (dalio.application.graphers.PandasMultiGrapher
method), 53

build_model () (dalio.application.MultiGrapher
method), 54

build_model () (dalio.application.PandasMultiGrapher
method), 55

build_model () (dalio.model.statistical. XYLinearModel
method), 48

build_model () (dalio.model. XYLinearModel
method), 50

build_model () (dalio.pipe.builders. CovShrink
method), 12

build_model () (dalio.pipe.builders.ExpectedReturns
method), 13

build_model () (dalio.pipe.builders.MakeARCH
method), 14

build_model () (dalio.pipe.builders.OptimumWeights
method), 14

build_model () (dalio.pipe.builders.PandasLinearModel
method), 14

build_model () (dalio.pipe.CovShrink method), 41

build_model () (dalio.pipe.ExpectedReturns
method), 42

build_model () (dalio.pipe. MakeARCH method), 43

102

Index

Dal.io, Release 0.0.1

build_model ()
method), 44

build_model ()
method), 44

(dalio.pipe.OptimumWeights

(dalio.pipe.PandasLinearModel

C

Change (class in dalio.pipe), 37
Change (class in dalio.pipe.col_generation), 17

check () (dalio.external.external. External method), 1

check () (dalio.external.file.FileWriter method), 2

check () (dalio.external.file.PandasInFile method), 2

check () (dalio.external.FileWriter method), 5

check () (dalio.external. PandasInFile method), 5

check () (dalio.external. QuandIAPI method), 7

check () (dalio.external.web.QuandIAPI method), 4

check_name () (dalio.pipe.builders.CovShrink
method), 12

check_name () (dalio.pipe.builders.ExpectedReturns
method), 13

check_name () (dalio.pipe.builders.OptimumWeights
method), 14

check_name () (dalio.pipe.CovShrink method), 41

check_name () (dalio.pipe.ExpectedReturns method),
42

check_name () (dalio.pipe.OptimumWeights method),
44

clear () (dalio.base.memory.LazyRunner method), 58

clear () (dalio.base.memory.LocalMemory method),
58

clear () (dalio.base.memory.Memory method), 59

ColDrop (class in dalio.pipe), 32

ColDrop (class in dalio.pipe.select), 24

ColRename (class in dalio.pipe), 34

ColRename (class in dalio.pipe.select), 24

ColReorder (class in dalio.pipe), 35

ColReorder (class in dalio.pipe.select), 25

ColSelect (class in dalio.pipe), 31

ColSelect (class in dalio.pipe.select), 26

CompsData (class in dalio.model), 48

CompsData (class in dalio.model.financial), 45

CompsFinancials (class in dalio.model), 49

CompsFinancials (class in dalio.model.financial), 45

CompsInfo (class in dalio.model), 49

CompsInfo (class in dalio.model.financial), 45

const_shift (dalio.pipe.BoxCox attribute), 40

const_shift (dalio.pipe.col_generation.BoxCox at-
tribute), 17

const_shift (dalio.pipe.col_generation.Log
tribute), 20

const_shift (dalio.pipe.Log attribute), 40

copy () (dalio.application.application.Application
method), 51

copy () (dalio.base.memory.LazyRunner method), 58

copy () (dalio.base.memory.Memory method), 59

at-

(dalio.model.financial. MakeEfficientFrontier
method), 46
copy () (dalio.model. MakeEfficientFrontier method), 49
copy () (dalio.model.model. Model method), 47
copy () (dalio.model.statistical. XYLinearModel
method), 48

copy ()

copy () (dalio.model. XYLinearModel method), 50

copy () (dalio.pipe.builders.CovShrink method), 12

copy () (dalio.pipe.builders.StockComps method), 15

copy () (dalio.pipe.builders.ValueAtRisk method), 15

copy () (dalio.pipe.Change method), 37

copy () (dalio.pipe.col_generation.Change method), 17

copy () (dalio.pipe.col_generation. Custom method), 18

copy () (dalio.pipe.col_generation.Index method), 19

copy () (dalio.pipe.col_generation.Period method), 21

copy () (dalio.pipe.col_generation.Rolling method), 21

copy () (dalio.pipe.ColRename method), 34

copy () (dalio.pipe.ColReorder method), 36

copy () (dalio.pipe.CovShrink method), 42

copy () (dalio.pipe.Custom method), 31

copy () (dalio.pipe.DateSelect method), 32

copy () (dalio.pipe.Index method), 38

copy () (dalio.pipe.Period method), 38

copy () (dalio.pipe.pipe.Pipe method), 22

copy () (dalio.pipe.pipe.PipeBuilder method), 23

copy () (dalio.pipe.pipe.PipeLine method), 24

copy () (dalio.pipe.PipeLine method), 30

copy () (dalio.pipe.Rolling method), 31

copy () (dalio.pipe.select. ColRename method), 25

copy () (dalio.pipe.select.ColReorder method), 26

copy () (dalio.pipe.select.DateSelect method), 26

copy () (dalio.pipe.StockComps method), 41

copy () (dalio.pipe.ValueAtRisk method), 43

copy () (dalio.translator.file.StockStreamFileTranslator
method), 8

copy () (dalio.translator.StockStreamFileTranslator
method), 11

copy () (dalio.translator.translator. Translator method),
10

CovShrink (class in dalio.pipe), 41

CovShrink (class in dalio.pipe.builders), 12

Custom (class in dalio.pipe), 30

Custom (class in dalio.pipe.col_generation), 17, 79
CustomByCols (class in dalio.pipe), 39
CustomByCols (class in dalio.pipe.col_generation), 19

D

dalio.application (module), 54
dalio.application.application (module), 51
dalio.application.graphers (module), 52
dalio.application.printers (module), 54
dalio.base (module), 60

dalio.base.builder (module), 56
dalio.base.constants (module), 57

Index

103

Dal.io, Release 0.0.1

dalio.
dalio.

base.datadef (module), 57
base.memory (module), 57
dalio.base.node (module), 59
dalio.base.transformer (module), 59
dalio.external (module), 5
dalio.external.external (module), 1
dalio.external.file (module), 2
dalio.external.image (module), 3
dalio.external.web (module), 4
dalio.model (module), 48
dalio.model.basic (module), 45
dalio.model.financial (module), 45
dalio.model .model (module), 47
dalio.model.statistical (module), 48
dalio.ops (module), 56
dalio.pipe (module), 30
dalio.pipe.builders (module), 12
dalio.pipe.col_generation (module), 16
dalio.pipe.forecast (module), 22
dalio.pipe.pipe (module), 22
dalio.pipe.select (module), 24
dalio.translator (module), 10
dalio.translator.file (module), 8
dalio.translator.pdr (module), 9
dalio.translator.quandl (module), 9
dalio.translator.translator (module), 9
dalio.util (module), 67
dalio.util.level_utils (module), 63
dalio.util.plotting_utils (module), 64
dalio.util.processing_utils (module), 65
dalio.util.transformation_utils (module),
66
util.translation_utils (module), 66
validator (module), 63
validator.array_val (module), 60
validator.base_val (module), 60
validator.pandas_val (module), 61
presets (module), 62
validator (module), 62

dalio.
dalio.
dalio.
dalio.
dalio.
dalio.
dalio.

validator.
validator.

date_col (dalio.translator.file.StockStreamFileTranslator

attribute), 8

date_col (dalio.translator.StockStreamFileTranslator
attribute), 11

DateSelect (class in dalio.pipe), 32

DateSelect (class in dalio.pipe.select), 26, 81

drop (dalio.pipe.col_generation._ColGeneration at-
tribute), 80

drop_cols () (in module dalio.util), 68

drop_cols () (in module dalio.util.level_utils), 63

DropNa (class in dalio.pipe), 35

DropNa (class in dalio.pipe.select), 27

E

ELEMS_TYPE (class in dalio.validator.base_val), 60

ExpectedReturns (class in dalio.pipe), 42
ExpectedReturns (class in dalio.pipe.builders), 12
ExpectedShortfall (class in dalio.pipe), 44
ExpectedShortfall (class in dalio.pipe.builders),
13
extend () (dalio.pipe.pipe.PipeLine method), 24
extend () (dalio.pipe.PipeLine method), 30
External (class in dalio.external.external), 1
extract_cols () (in module dalio.util), 67
extract_cols () (in module dalio.util.level_utils), 63

extract_level names_dict () (in module
dalio.util), 67
extract_level_names_dict () (in module

dalio.util.level_utils), 63

F

fatal (dalio.validator.validator.Validator attribute), 62

fatal_off () (dalio.validator.validator. Validator
method), 62

fatal_on()
method), 62

FilePrinter (class in dalio.application), 54

FilePrinter (class in dalio.application.printers), 54

FileWriter (class in dalio.external), 5

FileWriter (class in dalio.external file), 2

filter_levels () (in module dalio.util), 67

filter_levels () (in module dalio.util.level_utils),
63

Forecast (class in dalio.pipe.forecast), 22

ForecastGrapher (class in
dalio.application.graphers), 52

FreqgDrop (class in dalio.pipe), 35

FreqgDrop (class in dalio.pipe.select), 27

frequency (dalio.pipe.builders.CovShrink attribute),
12

frequency (dalio.pipe.CovShrink attribute), 41, 42

(dalio.validator.validator. Validator

func (dalio.pipe.col_generation._ColGeneration at-
tribute), 80
func (dalio.pipe.col_generation.CustomByCols at-

tribute), 19
func (dalio.pipe. CustomByCols attribute), 39

G

gamma (dalio.model.financial. MakeEfficientFrontier at-
tribute), 46

gamma (dalio.model.MakeEfficientFrontier attribute), 50

GARCHForecast (class in dalio.pipe.forecast), 22

get_comps_by_sic () (in module dalio.ops), 56

get_input () (dalio.pipe.pipe.Pipe method), 23

get_loc () (dalio.external.image. PySubplotGraph
method), 4

get_loc () (dalio.external. PySubplotGraph method), 6

get_numeric_column_names () (in module
dalio.util), 69

104

Index

Dal.io, Release 0.0.1

get_numeric_column_names () (in module
dalio.util.translation_utils), 66

get_slice_from_dict () (in module dalio.util), 68

get_slice_from_dict () (in module
dalio.util level_utils), 63

Grapher (class in dalio.application), 54

Grapher (class in dalio.application.graphers), 52

Fi

HAS_ATTR (class in dalio.validator.base_val), 60
HAS_COLS (class in dalio.validator.pandas_val), 61
HAS_DIMS (class in dalio.validator.array_val), 60
HAS_IN_COLS (class in dalio.validator.pandas_val), 61
HAS_INDEX_NAMES (class in
dalio.validator.pandas_val), 61
HAS_LEVELS (class in dalio.validator.pandas_val), 61
horizon (dalio.pipe.forecast.Forecast attribute), 22

Index (class in dalio.pipe), 38

Index (class in dalio.pipe.col_generation), 19
index_cols () (in module dalio.ops), 56
insert_cols () (in module dalio.util), 67
insert_cols () (in module dalio.util.level_utils), 64
is_on (dalio.validator.validator.Validator attribute), 62
IS_PD_DF (class in dalio.validator.pandas_val), 61
IS_PD_TS (class in dalio.validator.pandas_val), 62
IS_TYPE (class in dalio.validator.base_val), 61

J

Join (class in dalio.model), 48
Join (class in dalio.model.basic), 45

L

LazyRunner (class in dalio.base.memory), 57
list_str () (in module dalio.util.processing_utils), 65
LMGrapher (class in dalio.application), 55
LMGrapher (class in dalio.application.graphers), 52
LocalMemory (class in dalio.base.memory), 58

Log (class in dalio.pipe), 40

Log (class in dalio.pipe.col_generation), 19

M

make_manager () (dalio.external. image.PySubplotGraphP

method), 4
make_manager ()
method), 6
MakeARCH (class in dalio.pipe), 43
MakeARCH (class in dalio.pipe.builders), 13
MakeCriticalLine (class in dalio.model), 49
MakeCriticalLine (class in dalio.model.financial),
46
MakeEfficientFrontier (class in dalio.model), 49

(dalio.external. PySubplotGraph

MakeEfficientFrontier (class in
dalio.model.financial), 46

MapColVals (class in dalio.pipe), 39

MapColVals (class in dalio.pipe.col_generation), 20

max_ticks (dalio.pipe.builders.StockComps attribute),
15

max_ticks (dalio.pipe.StockComps attribute), 41

Memory (class in dalio.base.memory), 58

mi_Jjoin () (in module dalio.util), 68

mi_join () (in module dalio.util.level_utils), 64

Model (class in dalio.model.model), 47

MultiGrapher (class in dalio.application), 54

MultiGrapher (class in dalio.application.graphers),
52

N

non_neq (dalio.pipe.col_generation.Log attribute), 19
non_neq (dalio.pipe.Log attribute), 40

O

OptimumPortfolio (class in dalio.model), 50

OptimumPortfolio (class in dalio.model financial),
46

OptimumWeights (class in dalio.pipe), 44

OptimumWeights (class in dalio.pipe.builders), 14

out_of_place_col_insert () (in module
dalio.util), 68
out_of_place_col_insert () (in module

dalio.util.transformation_utils), 66

P

PandasInFile (class in dalio.external), 5
PandasInFile (class in dalio.external.file), 2
PandasLinearModel (class in dalio.pipe), 44
PandasLinearModel (class in dalio.pipe.builders),

14

PandasMultiGrapher (class in dalio.application),
55

PandasMultiGrapher (class in

dalio.application.graphers), 53
PandasTSGrapher (class in dalio.application), 55
PandasTSGrapher (class in

dalio.application.graphers), 53
andasXYGrapher (class in dalio.application), 54
PandasXYGrapher (class in

dalio.application.graphers), 53
Period (class in dalio.pipe), 37
Period (class in dalio.pipe.col_generation), 20
Pipe (class in dalio.pipe.pipe), 22
PipeBuilder (class in dalio.pipe.pipe), 23
PipeLine (class in dalio.pipe), 30
PipeLine (class in dalio.pipe.pipe), 24
pipeline (dalio.pipe.pipe.PipeLine attribute), 24
pipeline (dalio.pipe.PipeLine attribute), 30

Index

105

Dal.io, Release 0.0.1

pipeline () (dalio.pipe.pipe.Pipe method), 23

plot () (dalio.external.image.PyPfOptGraph method),
3

plot () (dalio.external.image.PyPlotGraph method), 3

plot () (dalio.external.image. PySubplotGraph
method), 4

plot () (dalio.external. PyPfOptGraph method), 7

plot () (dalio.external. PyPlotGraph method), 6

plot () (dalio.external. PySubplotGraph method), 6

plot_covariance () (in module dalio.util), 70

plot_covariance () (in module
dalio.util.plotting_utils), 64
plot_dendrogram() (in module
dalio.util.plotting_utils), 64
plot_efficient_frontier () (in module
dalio.util), 70
plot_efficient_frontier () (in module

dalio.util.plotting_utils), 65
plot_weights () (in module dalio.util), 70
plot_weights () (in module dalio.util.plotting_utils),
65
positions (dalio.pipe.ColReorder attribute), 35
positions (dalio.pipe.select.ColReorder attribute), 25
process_cols () (in module dalio.util), 69

process_cols () (in module
dalio.util.processing_utils), 65

process_date () (in module dalio.util), 69

process_date () (in module

dalio.util.processing_utils), 65
process_new_colnames () (in module dalio.util),
69
process_new_colnames () (in
dalio.util.processing_utils), 65
process_new_df () (in module dalio.util), 69
process_new_df () (in module
dalio.util.processing_utils), 66
PyPfOptGraph (class in dalio.external), 7
PyPfOptGraph (class in dalio.external.image), 3
PyPlotGraph (class in dalio.external), 6
PyPlotGraph (class in dalio.external.image), 3
PySubplotGraph (class in dalio.external), 6
PySubplotGraph (class in dalio.external.image), 3

Q

QuandlAPTI (class in dalio.external), 7

QuandlAPT (class in dalio.external.web), 4

QuandlSharadarSFlTranslator
dalio.translator), 10

module

(class in

QuandlSharadarSFlTranslator (class in
dalio.translator.quandl), 9

QuandlTickerInfoTranslator (class in
dalio.translator), 10

QuandlTickerInfoTranslator (class in

dalio.translator.quandl), 9

R

reintegrate (dalio.pipe.col_generation._ColGeneration
attribute), 80
rename_map (dalio.pipe.ColRename attribute), 34
rename_map (dalio.pipe.select.ColRename attribute),
25
request () (dalio.external.external. External method),
1
request
request

) (dalio.external file. FileWriter method), 2
) (dalio.external.file.PandasInFile method), 2
request () (dalio.external FileWriter method), 5
request () (dalio.external.image.PyPlotGraph
method), 3
request () (dalio.external. PandasInFile method), 5
request () (dalio.external. PyPlotGraph method), 6
request () (dalio.external. QuandIAPI method), 7
request () (dalio.external. web.QuandIAPI method), 4
)
)

(
(
(
(

request () (dalio.external.web.YahooDR method), 5

request () (dalio.external. YahooDR method), 7

reset () (dalio.external.image.PyPlotGraph method), 3

reset () (dalio.external.image. PySubplotGraph

method), 4

(dalio.external.image.SubplotManager

method), 4

reset () (dalio.external. PyPlotGraph method), 6

reset () (dalio.external. PySubplotGraph method), 7

reset_out () (dalio.application.Grapher method), 54

reset_out () (dalio.application.graphers.Grapher
method), 52

result_columns (dalio.pipe.col_generation._ColGeneration
attribute), 80

risk_metrics () (in module dalio.ops), 56

Rolling (class in dalio.pipe), 31

Rolling (class in dalio.pipe.col_generation), 21

rolling_window (dalio.pipe.col_generation.Rolling
attribute), 21

rolling_window (dalio.pipe.Rolling attribute), 31

RowDrop (class in dalio.pipe), 36

RowDrop (class in dalio.pipe.select), 28

run () (dalio.application.application.Application
method), 51

run () (dalio.application.FilePrinter method), 54

run () (dalio.application.Grapher method), 54

run () (dalio.application.graphers.ForecastGrapher
method), 52

run () (dalio.application.graphers.Grapher method), 52

reset ()

run () (dalio.application.graphers.LMGrapher
method), 52

run () (dalio.application.graphers.MultiGrapher
method), 53

run () (dalio.application.graphers.PandasXYGrapher
method), 53

run () (dalio.application.graphers.VaRGrapher
method), 53

106

Index

Dal.io, Release 0.0.1

run () (dalio.application.LMGrapher method), 56
run () (dalio.application.MultiGrapher method), 54

run () (dalio.application.PandasXYGrapher method),
55

run () (dalio.application.printers.FilePrinter method),
54

run () (dalio.application.VaRGrapher method), 55

run () (dalio.base.memory.LazyRunner method), 58

run () (dalio.base.memory.LocalMemory method), 58

run () (dalio.base.memory.Memory method), 59

run () (dalio.model.basic.Join method), 45

run () (dalio.model. CompsData method), 48

run () (dalio.model.financial. CompsData method), 45

run () (dalio.model.financial. MakeCriticalLine
method), 46

run () (dalio.model.financial. MakeEfficientFrontier
method), 46

run () (dalio.model.financial. OptimumPortfolio
method), 47

run () (dalio.model.Join method), 48

run () (dalio.model. MakeCriticalLine method), 49

run () (dalio.model. MakeEfficientFrontier method), 50

run () (dalio.model.model. Model method), 47

run () (dalio.model.OptimumPortfolio method), 50

run () (dalio.model.statistical. XYLinearModel method),
48

run () (dalio.model XYLinearModel method), 50

run () (dalio.pipe.builders.StockComps method), 15

run () (dalio.pipe.pipe.Pipe method), 23

run () (dalio.pipe.StockComps method), 41

run () (dalio.translatorfile.StockStreamFileTranslator
method), 8

run () (dalio.translator.pdr. YahooStockTranslator
method), 9

set_end () (dalio.pipe.DateSelect method), 32
set_end () (dalio.pipe.select.DateSelect method), 27,
81

set_input ()
method), 58

set_input ()
method), 58

set_input () (dalio.base.memory.Memory method),
59

set_input () (dalio.model.model.Model method), 47

set_input () (dalio.pipe.pipe.Pipe method), 23

set_input () (dalio.translator.translator. Translator
method), 10

(dalio.base.memory.LazyRunner

(dalio.base.memory.LocalMemory

set_output () (dalio.application.application.Application

method), 51
set_start () (dalio.pipe.DateSelect method), 32
set_start () (dalio.pipe.select.DateSelect method),
27, 81
set_update ()
method), 58
StockComps (class in dalio.pipe), 40
StockComps (class in dalio.pipe.builders), 14
StockReturns (class in dalio.pipe), 37
StockReturns (class in dalio.pipe.col_generation), 21

(dalio.base.memory.LazyRunner

StockStreamFileTranslator (class in
dalio.translator), 11
StockStreamFileTranslator (class in

dalio.translatorfile), 8

strategy (dalio.pipe.col_generation.Custom
tribute), 18, 79

strategy (dalio.pipe.col_generation.CustomByCols
attribute), 19

strategy (dalio.pipe.Custom attribute), 30

strategqgy (dalio.pipe.CustomByCols attribute), 39

at-

run () (dalio.translator.quandl. QuandlSharadarSF [Transl@obplotManager (class in dalio.external.image), 4

method), 9

run () (dalio.tmnslator.quandl.QuanleickerInfonnslato;r

method), 9
(dalio.translator.QuandISharadarSF 1 Translator
method), 10
(dalio.translator. QuandlTickerInfoTranslator
method), 10
(dalio.translator.StockStreamFileTranslator
method), 11
run () (dalio.translator.YahooStockTranslator method),
11

run ()
run ()

run ()

S

set_buff () (dalio.base.memory.LazyRunner method),

58

set_connection () (dalio.external file. FileWriter
method), 2

set_connection () (dalio.external FileWriter
method), 5

test_desc (dalio.validator.validator.Validator at-
tribute), 62

transform () (dalio.pipe.builders. CovShrink method),

12

transform () (dalio.pipe.builders. ExpectedReturns
method), 13

transform() (dalio.pipe.builders.ExpectedShortfall
method), 13

transform() (dalio.pipe.builders.MakeARCH
method), 14

transform() (dalio.pipe.builders.OptimumWeights
method), 14

transform () (dalio.pipe.builders.PandasLinearModel
method), 14

transform() (dalio.pipe.builders.StockComps
method), 15

Index

107

Dal.io, Release 0.0.1

transform() (dalio.pipe.builders. ValueAtRisk

method), 16

transform () (dalio.pipe.col_generation._ColGenerationc ranslations (dalio.translator.quandl. QuandISharadarSF 1 Translator

method), 80
transform() (dalio.pipe.ColDrop method), 33

transform() (dalio.pipe.ColRename method), 34

transform() (dalio.pipe.ColReorder method), 36

transform () (dalio.pipe.ColSelect method), 32

transform() (dalio.pipe.CovShrink method), 42

transform () (dalio.pipe.DateSelect method), 32

transform() (dalio.pipe.DropNa method), 35

transform() (dalio.pipe.ExpectedReturns method),
42

transform() (dalio.pipe.ExpectedShortfall method),
44

transform() (dalio.pipe.forecast.Forecast method),
22

transform() (dalio.pipe.forecast. GARCHForecast
method), 22

transform () (dalio.pipe.FreqDrop method), 35
transform () (dalio.pipe.MakeARCH method), 43

transform() (dalio.pipe.OptimumWeights method),
45

transform() (dalio.pipe.PandasLinearModel
method), 44

transform() (dalio.pipe.pipe.Pipe method), 23

transform() (dalio.pipe.pipe.PipeLine method), 24

transform() (dalio.pipe.PipeLine method), 30

transform() (dalio.pipe.RowDrop method), 37

transform () (dalio.pipe.select.ColDrop method), 24

transform () (dalio.pipe.select. ColRename method),
25

transform() (dalio.pipe.select.ColReorder method),
26

transform () (dalio.pipe.select.ColSelect method), 26

transform() (dalio.pipe.select.DateSelect method),

27
transform() (dalio.pipe.select.DropNa method), 277
transform() (dalio.pipe.select.FreqDrop method), 28
transform () (dalio.pipe.select. RowDrop method), 28
transform () (dalio.pipe.select.ValDrop method), 29
transform () (dalio.pipe.select.ValKeep method), 29
transform () (dalio.pipe.StockComps method), 41
transform() (dalio.pipe.ValDrop method), 33
transform() (dalio.pipe.ValKeep method), 34

(

transform () (dalio.pipe.ValueAtRisk method), 43

translate_df () (in module dalio.util), 69

translate df () (in
dalio.util.translation_utils), 67

module

translations (dalio.translator.pdr. YahooStockTranslator

attribute), 9

attribute), 9

translations (dalio.translator.quandl.QuandlTickerInfoTranslator

attribute), 9

translations (dalio.translator. QuandlSharadarSF I Translator

attribute), 10

translations (dalio.translator. QuandlTickerInfoTranslator

attribute), 10

translations (dalio.translator.StockStreamFileTranslator

attribute), 11

translations (dalio.translator.translator.Translator
attribute), 9, 10

translations (dalio.translator. YahooStockTranslator
attribute), 11

Translator (class in dalio.translator.translator), 9

U

update_config ()
method), 1

update_translations ()
(dalio.translator.translator. Translator method),
10

(dalio.external.external External

Vv

ValDrop (class in dalio.pipe), 33

ValDrop (class in dalio.pipe.select), 28

validate () (dalio.validator.array_val. HAS_DIMS
method), 60

validate () (dalio.validator.base_val. ELEMS_TYPE
method), 60

validate () (dalio.validator.base_val. HAS_ATTR
method), 60

validate ()
method), 61

validate () (dalio.validatorpandas_val. HAS_COLS
method), 61

validate () (dalio.validator.pandas_val. HAS_IN_COLS
method), 61

(dalio.validator.base_val.IS_TYPE

validate () (dalio.validator.pandas_val. HAS_INDEX_NAMES

method), 61
validate () (dalio.validatorpandas_val. HAS_LEVELS
method), 61
validate () (dalio.validator.pandas_val IS_PD_TS
method), 62
validate ()
method), 62
Validator (class in dalio.validator.validator), 62

(dalio.validator.validator. Validator

translate_item() (dalio.translator.translatorTranslatgi 1 keep (class in dalio.pipe), 33

method), 10

ValKeep (class in dalio.pipe.select), 29

translations (dalio.translatorfile. StockStreamFileTran.{/gme_map (dalio.pipe.col_generation.MapColVals at-

attribute), 8

tribute), 20
value_map (dalio.pipe.MapColVals attribute), 39

108

Index

Dal.io, Release 0.0.1

ValueAtRisk (class in dalio.pipe), 43
ValueAtRisk (class in dalio.pipe.builders), 15
VaRGrapher (class in dalio.application), 55
VaRGrapher (class in dalio.application.graphers), 53

W

weight_bounds (dalio.model.financial. MakeCriticalLine
attribute), 46

weight_bounds (dalio.model.financial. MakeEfficientFrontier
attribute), 46

weight_bounds (dalio.model MakeCriticalLine at-
tribute), 49

weight_bounds (dalio.model.MakeEfficientFrontier
attribute), 50

with_input () (dalio.base.memory.LazyRunner
method), 58

with_input () (dalio.base.memory.Memory method),
59

with_input () (dalio.model. model. Model method), 47
with_input () (dalio.pipe.pipe.Pipe method), 23

with_input () (dalio.translator.translator.Translator
method), 10

with_output () (dalio.application.application.Application
method), 51

with_piece () (dalio.pipe.pipe.PipeBuilder method),
23

X

XYLinearModel (class in dalio.model), 50
XYLinearModel (class in dalio.model.statistical), 48

Y

YahooDR (class in dalio.external), 7

YahooDR (class in dalio.external. web), 5

YahooStockTranslator (class in dalio.translator),
10

YahooStockTranslator (class in
dalio.translator.pdr), 9

Index

109

	Quick Links
	User Modules
	Developer Modules
	Understanding Graphs
	Base Classes
	Extra Classes and Concepts
	Tips and Tricks
	Core Classes and Concepts
	Development Notes on Base Classes
	Key Concepts, Differences and Philosophy

	Table of Contents
	Introduction
	Installation
	A Guided Example
	Next Steps
	Indices and tables
	Python Module Index
	Index

