CHAPTER 8
Dimensionality Reduction

With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as he or she writes—so you
can take advantage of these technologies long before the official
release of these titles. The following will be Chapter 8 in the final
release of the book.

Many Machine Learning problems involve thousands or even millions of features for
each training instance. Not only does this make training extremely slow, it can also
make it much harder to find a good solution, as we will see. This problem is often
referred to as the curse of dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number of fea-
tures considerably, turning an intractable problem into a tractable one. For example,
consider the MNIST images (introduced in Chapter 3): the pixels on the image bor-
ders are almost always white, so you could completely drop these pixels from the
training set without losing much information. Figure 7-6 confirms that these pixels
are utterly unimportant for the classification task. Moreover, two neighboring pixels
are often highly correlated: if you merge them into a single pixel (e.g., by taking the
mean of the two pixel intensities), you will not lose much information.

215

Reducing dimensionality does lose some information (just like
compressing an image to JPEG can degrade its quality), so even
.. though it will speed up training, it may also make your system per-
'\ form slightly worse. It also makes your pipelines a bit more com-
plex and thus harder to maintain. So you should first try to train
your system with the original data before considering using dimen-
sionality reduction if training is too slow. In some cases, however,
reducing the dimensionality of the training data may filter out
some noise and unnecessary details and thus result in higher per-
formance (but in general it won't; it will just speed up training).

Apart from speeding up training, dimensionality reduction is also extremely useful
for data visualization (or DataViz). Reducing the number of dimensions down to two
(or three) makes it possible to plot a condensed view of a high-dimensional training
set on a graph and often gain some important insights by visually detecting patterns,
such as clusters. Moreover, DataViz is essential to communicate your conclusions to
people who are not data scientists, in particular decision makers who will use your
results.

In this chapter we will discuss the curse of dimensionality and get a sense of what
goes on in high-dimensional space. Then, we will present the two main approaches to
dimensionality reduction (projection and Manifold Learning), and we will go
through three of the most popular dimensionality reduction techniques: PCA, Kernel
PCA, and LLE.

The Curse of Dimensionality

We are so used to living in three dimensions' that our intuition fails us when we try
to imagine a high-dimensional space. Even a basic 4D hypercube is incredibly hard to
picture in our mind (see Figure 8-1), let alone a 200-dimensional ellipsoid bent in a
1,000-dimensional space.

1 Well, four dimensions if you count time, and a few more if you are a string theorist.

216 | Chapter 8: Dimensionality Reduction

N < X

N |\T\L

) <

0 1 2 3 4 #Dim

Figure 8-1. Point, segment, square, cube, and tesseract (0D to 4D hypercubes)’

It turns out that many things behave very differently in high-dimensional space. For
example, if you pick a random point in a unit square (a 1 x 1 square), it will have only
about a 0.4% chance of being located less than 0.001 from a border (in other words, it
is very unlikely that a random point will be “extreme” along any dimension). But in a
10,000-dimensional unit hypercube (a1 x 1 x --- x 1 cube, with ten thousand 1s), this
probability is greater than 99.999999%. Most points in a high-dimensional hypercube
are very close to the border.?

Here is a more troublesome difference: if you pick two points randomly in a unit
square, the distance between these two points will be, on average, roughly 0.52. If you
pick two random points in a unit 3D cube, the average distance will be roughly 0.66.
But what about two points picked randomly in a 1,000,000-dimensional hypercube?
Well, the average distance, believe it or not, will be about 408.25 (roughly
/1,000,000/6)! This is quite counterintuitive: how can two points be so far apart
when they both lie within the same unit hypercube? This fact implies that high-
dimensional datasets are at risk of being very sparse: most training instances are
likely to be far away from each other. Of course, this also means that a new instance
will likely be far away from any training instance, making predictions much less relia-
ble than in lower dimensions, since they will be based on much larger extrapolations.
In short, the more dimensions the training set has, the greater the risk of overfitting
it.

In theory, one solution to the curse of dimensionality could be to increase the size of
the training set to reach a sufficient density of training instances. Unfortunately, in
practice, the number of training instances required to reach a given density grows
exponentially with the number of dimensions. With just 100 features (much less than

2 Watch a rotating tesseract projected into 3D space at https://homl.info/30. Image by Wikipedia user Nerd-
Boy1392 (Creative Commons BY-SA 3.0). Reproduced from https://en.wikipedia.org/wiki/Tesseract.

3 Fun fact: anyone you know is probably an extremist in at least one dimension (e.g., how much sugar they put
in their coffee), if you consider enough dimensions.

The Curse of Dimensionality | 217

in the MNIST problem), you would need more training instances than atoms in the
observable universe in order for training instances to be within 0.1 of each other on
average, assuming they were spread out uniformly across all dimensions.

Main Approaches for Dimensionality Reduction

Before we dive into specific dimensionality reduction algorithms, lets take a look at
the two main approaches to reducing dimensionality: projection and Manifold
Learning.

Projection

In most real-world problems, training instances are not spread out uniformly across
all dimensions. Many features are almost constant, while others are highly correlated
(as discussed earlier for MNIST). As a result, all training instances actually lie within
(or close to) a much lower-dimensional subspace of the high-dimensional space. This
sounds very abstract, so let’s look at an example. In Figure 8-2 you can see a 3D data-
set represented by the circles.

Y-

Figure 8-2. A 3D dataset lying close to a 2D subspace

Notice that all training instances lie close to a plane: this is a lower-dimensional (2D)
subspace of the high-dimensional (3D) space. Now if we project every training
instance perpendicularly onto this subspace (as represented by the short lines con-
necting the instances to the plane), we get the new 2D dataset shown in Figure 8-3.
Ta-da! We have just reduced the dataset’s dimensionality from 3D to 2D. Note that
the axes correspond to new features z, and z, (the coordinates of the projections on
the plane).

218 | Chapter 8: Dimensionality Reduction

3
- [
0.5 1 I+ },
KL el
Z> | ’t 7 *H
00 + 't’
“0 o -, + +
<3 " + %
-0.51 N e p
-1.01
-15 -10 -05 0.0 05 1.0
74|

Figure 8-3. The new 2D dataset after projection

However, projection is not always the best approach to dimensionality reduction. In
many cases the subspace may twist and turn, such as in the famous Swiss roll toy data-

set represented in Figure 8-4.

T 15
- 10
5
n.g m
'; ® ka o - 0 X
TR :‘“
8 -4 -
Poal>
Qvoﬁ foo - —5
"~10
L
-10 5 5 10 N
X1

Figure 8-4. Swiss roll dataset

Main Approaches for Dimensionality Reduction | 219

Simply projecting onto a plane (e.g., by dropping x;) would squash different layers of
the Swiss roll together, as shown on the left of Figure 8-5. However, what you really
want is to unroll the Swiss roll to obtain the 2D dataset on the right of Figure 8-5.

201 Tty oL VGBS0 | 20 Ay
. o. ™ 3‘.. A o ...',a
sl e 3%2 O B SER is o
R T - s
X2 00 00 ~»e % 4 ’v“i C
0{ W.72p #pkien 10 * 80 o W
3%, S o 0o o o
fA " A LAY t » I L
5 e % 3% Dbt > Ay s
28 ot -
0 o0 n_¢ .‘.0 0 e o
-0 s 0 5 10 a 6 8 10 12 14
X1 21

Figure 8-5. Squashing by projecting onto a plane (left) versus unrolling the Swiss roll
(right)

Manifold Learning

The Swiss roll is an example of a 2D manifold. Put simply, a 2D manifold is a 2D
shape that can be bent and twisted in a higher-dimensional space. More generally, a
d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally
resembles a d-dimensional hyperplane. In the case of the Swiss roll, d =2 and n = 3: it
locally resembles a 2D plane, but it is rolled in the third dimension.

Many dimensionality reduction algorithms work by modeling the manifold on which
the training instances lie; this is called Manifold Learning. It relies on the manifold
assumption, also called the manifold hypothesis, which holds that most real-world
high-dimensional datasets lie close to a much lower-dimensional manifold. This
assumption is very often empirically observed.

Once again, think about the MNIST dataset: all handwritten digit images have some
similarities. They are made of connected lines, the borders are white, they are more
or less centered, and so on. If you randomly generated images, only a ridiculously
tiny fraction of them would look like handwritten digits. In other words, the degrees
of freedom available to you if you try to create a digit image are dramatically lower
than the degrees of freedom you would have if you were allowed to generate any
image you wanted. These constraints tend to squeeze the dataset into a lower-
dimensional manifold.

The manifold assumption is often accompanied by another implicit assumption: that
the task at hand (e.g., classification or regression) will be simpler if expressed in the
lower-dimensional space of the manifold. For example, in the top row of Figure 8-6
the Swiss roll is split into two classes: in the 3D space (on the left), the decision

220 | Chapter 8: Dimensionality Reduction

boundary would be fairly complex, but in the 2D unrolled manifold space (on the
right), the decision boundary is a simple straight line.

However, this assumption does not always hold. For example, in the bottom row of
Figure 8-6, the decision boundary is located at x, = 5. This decision boundary looks
very simple in the original 3D space (a vertical plane), but it looks more complex in
the unrolled manifold (a collection of four independent line segments).

In short, if you reduce the dimensionality of your training set before training a
model, it will usually speed up training, but it may not always lead to a better or sim-
pler solution; it all depends on the dataset.

Hopefully you now have a good sense of what the curse of dimensionality is and how
dimensionality reduction algorithms can fight it, especially when the manifold
assumption holds. The rest of this chapter will go through some of the most popular
algorithms.

1520

10
.

B 6 8 Zy 10 12 14

0
X1 5 10

Figure 8-6. The decision boundary may not always be simpler with lower dimensions

Main Approaches for Dimensionality Reduction | 221

PCA

Principal Component Analysis (PCA) is by far the most popular dimensionality reduc-
tion algorithm. First it identifies the hyperplane that lies closest to the data, and then
it projects the data onto it, just like in Figure 8-2.

Preserving the Variance

Before you can project the training set onto a lower-dimensional hyperplane, you
tirst need to choose the right hyperplane. For example, a simple 2D dataset is repre-
sented on the left of Figure 8-7, along with three different axes (i.e., one-dimensional
hyperplanes). On the right is the result of the projection of the dataset onto each of
these axes. As you can see, the projection onto the solid line preserves the maximum
variance, while the projection onto the dotted line preserves very little variance, and
the projection onto the dashed line preserves an intermediate amount of variance.

1.0 -05 00 05 1.0 35 4 0 1 2
X1 Z1

Figure 8-7. Selecting the subspace onto which to project

It seems reasonable to select the axis that preserves the maximum amount of var-
iance, as it will most likely lose less information than the other projections. Another
way to justify this choice is that it is the axis that minimizes the mean squared dis-
tance between the original dataset and its projection onto that axis. This is the rather
simple idea behind PCA.*

4 “On Lines and Planes of Closest Fit to Systems of Points in Space;” K. Pearson (1901).

222 | Chapter8: Dimensionality Reduction

Principal Components

PCA identifies the axis that accounts for the largest amount of variance in the train-
ing set. In Figure 8-7, it is the solid line. It also finds a second axis, orthogonal to the
first one, that accounts for the largest amount of remaining variance. In this 2D
example there is no choice: it is the dotted line. If it were a higher-dimensional data-
set, PCA would also find a third axis, orthogonal to both previous axes, and a fourth,
a fifth, and so on—as many axes as the number of dimensions in the dataset.

The unit vector that defines the i axis is called the i principal component (PC). In
Figure 8-7, the 1* PC is ¢, and the 2™ PC is c,. In Figure 8-2 the first two PCs are
represented by the orthogonal arrows in the plane, and the third PC would be
orthogonal to the plane (pointing up or down).

The direction of the principal components is not stable: if you per-
turb the training set slightly and run PCA again, some of the new
PCs may point in the opposite direction of the original PCs. How-
ever, they will generally still lie on the same axes. In some cases, a
pair of PCs may even rotate or swap, but the plane they define will
generally remain the same.

So how can you find the principal components of a training set? Luckily, there is a
standard matrix factorization technique called Singular Value Decomposition (SVD)
that can decompose the training set matrix X into the matrix multiplication of three
matrices U £ V7, where V contains all the principal components that we are looking
for, as shown in Equation 8-1.

Equation 8-1. Principal components matrix

V=|¢ ¢ ¢

The following Python code uses NumPy’s svd() function to obtain all the principal
components of the training set, then extracts the first two PCs:

X_centered = X - X.mean(axis=0)

U, s, Vt = np.linalg.svd(X_centered)
cl = Vt.T[:, 0]

c2 = Vt.T[:, 1]

PCA | 223

PCA assumes that the dataset is centered around the origin. As we
will see, Scikit-Learn’s PCA classes take care of centering the data
for you. However, if you implement PCA yourself (as in the pre-
'\ ceding example), or if you use other libraries, don’t forget to center
the data first.

Projecting Down to d Dimensions

Once you have identified all the principal components, you can reduce the dimen-
sionality of the dataset down to d dimensions by projecting it onto the hyperplane
defined by the first d principal components. Selecting this hyperplane ensures that the
projection will preserve as much variance as possible. For example, in Figure 8-2 the
3D dataset is projected down to the 2D plane defined by the first two principal com-
ponents, preserving a large part of the dataset’s variance. As a result, the 2D projec-
tion looks very much like the original 3D dataset.

To project the training set onto the hyperplane, you can simply compute the matrix
multiplication of the training set matrix X by the matrix W, defined as the matrix
containing the first d principal components (i.e., the matrix composed of the first d
columns of V), as shown in Equation 8-2.

Equation 8-2. Projecting the training set down to d dimensions

Xd—proj = de

The following Python code projects the training set onto the plane defined by the first
two principal components:

W2 = Vt.T[:, :2]
X2D = X_centered.dot(W2)

There you have it! You now know how to reduce the dimensionality of any dataset
down to any number of dimensions, while preserving as much variance as possible.

Using Scikit-Learn

Scikit-Learns PCA class implements PCA using SVD decomposition just like we did
before. The following code applies PCA to reduce the dimensionality of the dataset
down to two dimensions (note that it automatically takes care of centering the data):

from import PCA

pca
X2D

PCA(n_components = 2)
pca.fit_transform(X)

After fitting the PCA transformer to the dataset, you can access the principal compo-
nents using the components_ variable (note that it contains the PCs as horizontal vec-

224 | Chapter 8: Dimensionality Reduction

tors, so, for example, the first principal component is equal to pca.components_.T[:,

0]).

Explained Variance Ratio

Another very useful piece of information is the explained variance ratio of each prin-
cipal component, available via the explained_variance_ratio_ variable. It indicates
the proportion of the dataset’s variance that lies along the axis of each principal com-
ponent. For example, let’s look at the explained variance ratios of the first two compo-
nents of the 3D dataset represented in Figure 8-2:

>>> pca.explained_variance_ratio_
array([0.84248607, 0.14631839])

This tells you that 84.2% of the dataset’s variance lies along the first axis, and 14.6%
lies along the second axis. This leaves less than 1.2% for the third axis, so it is reason-
able to assume that it probably carries little information.

Choosing the Right Number of Dimensions

Instead of arbitrarily choosing the number of dimensions to reduce down to, it is
generally preferable to choose the number of dimensions that add up to a sufficiently
large portion of the variance (e.g., 95%). Unless, of course, you are reducing dimen-
sionality for data visualization—in that case you will generally want to reduce the
dimensionality down to 2 or 3.

The following code computes PCA without reducing dimensionality, then computes
the minimum number of dimensions required to preserve 95% of the training set’s
variance:

pca = PCA()

pca.fit(X_train)

cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1

You could then set n_components=d and run PCA again. However, there is a much
better option: instead of specifying the number of principal components you want to
preserve, you can set n_components to be a float between 0.0 and 1.0, indicating the
ratio of variance you wish to preserve:

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)
Yet another option is to plot the explained variance as a function of the number of
dimensions (simply plot cumsum; see Figure 8-8). There will usually be an elbow in the

curve, where the explained variance stops growing fast. You can think of this as the
intrinsic dimensionality of the dataset. In this case, you can see that reducing the

PCA | 225

dimensionality down to about 100 dimensions wouldn’t lose too much explained var-
iance.

Explained Variance

0 50 100 150 200 250 300 350 400
Dimensions

Figure 8-8. Explained variance as a function of the number of dimensions

PCA for Compression

Obviously after dimensionality reduction, the training set takes up much less space.
For example, try applying PCA to the MNIST dataset while preserving 95% of its var-
iance. You should find that each instance will have just over 150 features, instead of
the original 784 features. So while most of the variance is preserved, the dataset is
now less than 20% of its original size! This is a reasonable compression ratio, and you
can see how this can speed up a classification algorithm (such as an SVM classifier)
tremendously.

It is also possible to decompress the reduced dataset back to 784 dimensions by
applying the inverse transformation of the PCA projection. Of course this won't give
you back the original data, since the projection lost a bit of information (within the
5% variance that was dropped), but it will likely be quite close to the original data.
The mean squared distance between the original data and the reconstructed data
(compressed and then decompressed) is called the reconstruction error. For example,
the following code compresses the MNIST dataset down to 154 dimensions, then uses
the inverse_transform() method to decompress it back to 784 dimensions.
Figure 8-9 shows a few digits from the original training set (on the left), and the cor-
responding digits after compression and decompression. You can see that there is a
slight image quality loss, but the digits are still mostly intact.

pca = PCA(n_components = 154)
X_reduced = pca.fit_transform(X_train)
X_recovered = pca.inverse_transform(X_reduced)

226 | Chapter8: Dimensionality Reduction

Original Compressed

NI — N

Figure 8-9. MNIST compression preserving 95% of the variance

The equation of the inverse transformation is shown in Equation 8-3.

Equation 8-3. PCA inverse transformation, back to the original number of
dimensions

_ T
Xd—projvvd

recovered —

Randomized PCA

If you set the svd_solver hyperparameter to "randomized", Scikit-Learn uses a sto-
chastic algorithm called Randomized PCA that quickly finds an approximation of the
first d principal components. Its computational complexity is O(m x d?) + O(d’),
instead of O(m x n*) + O(n’) for the full SVD approach, so it is dramatically faster
than full SVD when d is much smaller than n:

rnd_pca = PCA(n_components=154, svd_solver="randomized")
X_reduced = rnd_pca.fit_transform(X_train)

By default, svd_solver is actually set to "auto": Scikit-Learn automatically uses the
randomized PCA algorithm if m or n is greater than 500 and d is less than 80% of m
or n, or else it uses the full SVD approach. If you want to force Scikit-Learn to use full
SVD, you can set the svd_solver hyperparameter to "full".

Incremental PCA

One problem with the preceding implementations of PCA is that they require the
whole training set to fit in memory in order for the algorithm to run. Fortunately,
Incremental PCA (IPCA) algorithms have been developed: you can split the training
set into mini-batches and feed an IPCA algorithm one mini-batch at a time. This is

PCA | 227

useful for large training sets, and also to apply PCA online (i.e., on the fly, as new
instances arrive).

The following code splits the MNIST dataset into 100 mini-batches (using NumPy’s
array_split() function) and feeds them to Scikit-Learn’s IncrementalPCA class® to
reduce the dimensionality of the MNIST dataset down to 154 dimensions (just like
before). Note that you must call the partial_fit() method with each mini-batch
rather than the fit() method with the whole training set:

from import IncrementalPCA

n_batches = 100

inc_pca = IncrementalPCA(n_components=154)

for X_batch in np.array_split(X_train, n_batches):
inc_pca.partial_fit(X_batch)

X_reduced = inc_pca.transform(X_train)

Alternatively, you can use NumPy’s memmap class, which allows you to manipulate a
large array stored in a binary file on disk as if it were entirely in memory; the class
loads only the data it needs in memory, when it needs it. Since the IncrementalPCA
class uses only a small part of the array at any given time, the memory usage remains
under control. This makes it possible to call the usual fit() method, as you can see
in the following code:

X_mm = np.memmap(filename, dtype="float32", mode="readonly", shape=(m, n))

batch_size = m // n_batches
inc_pca = IncrementalPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mm)

Kernel PCA

In Chapter 5 we discussed the kernel trick, a mathematical technique that implicitly
maps instances into a very high-dimensional space (called the feature space), enabling
nonlinear classification and regression with Support Vector Machines. Recall that a
linear decision boundary in the high-dimensional feature space corresponds to a
complex nonlinear decision boundary in the original space.

It turns out that the same trick can be applied to PCA, making it possible to perform
complex nonlinear projections for dimensionality reduction. This is called Kernel

5 Scikit-Learn uses the algorithm described in “Incremental Learning for Robust Visual Tracking,” D. Ross et al.
(2007).

228 | Chapter 8: Dimensionality Reduction

PCA (kPCA).® It is often good at preserving clusters of instances after projection, or
sometimes even unrolling datasets that lie close to a twisted manifold.

For example, the following code uses Scikit-Learn’s KernelPCA class to perform kPCA
with an RBF kernel (see Chapter 5 for more details about the RBF kernel and the
other kernels):

from sklearn.decomposition import KernelPCA

rbf_pca

= KernelPCA(n_components = 2, kernel="rbf", gamma=0.04)
X_reduced =

rbf_pca.fit_transform(X)

Figure 8-10 shows the Swiss roll, reduced to two dimensions using a linear kernel
(equivalent to simply using the PCA class), an RBF kernel, and a sigmoid kernel
(Logistic).

Linear kernel RBF kernel, y=0.04 Sigmoid kernel, y=10"%,r=1
0.4
10 o jﬂi}!d'; 0.2
| oy [. rY
5 o o® 0.1
0.0 .i. Dot tieay
22 °
0 -0.2 : S !:. o{ on
° “
-5 —0.44) ¢ -0.1
0.4 O.'.‘ *
\;‘:\‘
-10 -0.6 ‘*." -0.21
-10 0 10 -0.75 -0.50 -025 0.00 0.25 -0.2 0.0 02
21 e 21

Figure 8-10. Swiss roll reduced to 2D using kPCA with various kernels

Selecting a Kernel and Tuning Hyperparameters

As kPCA is an unsupervised learning algorithm, there is no obvious performance
measure to help you select the best kernel and hyperparameter values. However,
dimensionality reduction is often a preparation step for a supervised learning task
(e.g., classification), so you can simply use grid search to select the kernel and hyper-
parameters that lead to the best performance on that task. For example, the following
code creates a two-step pipeline, first reducing dimensionality to two dimensions
using kPCA, then applying Logistic Regression for classification. Then it uses Grid
SearchCV to find the best kernel and gamma value for kPCA in order to get the best
classification accuracy at the end of the pipeline:

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

6 “Kernel Principal Component Analysis,” B. Schélkopf, A. Smola, K. Miiller (1999).

Kernel PCA | 229

clf = Pipeline([
("kpca", KernelPCA(n_components=2)),
("log_reg", LogisticRegression())

D

param_grid = [{
"kpca__gamma": np.linspace(0.03, 0.05, 10),
"kpca__kernel": ["rbf", "sigmoid"]

3

grid_search = GridSearchCv(clf, param_grid, cv=3)
grid_search.fit(X, y)

The best kernel and hyperparameters are then available through the best_params_
variable:

>>> print(grid_search.best_params_)
{'kpca__gamma': 0.043333333333333335, 'kpca__kernel': 'rbf'}

Another approach, this time entirely unsupervised, is to select the kernel and hyper-
parameters that yield the lowest reconstruction error. However, reconstruction is not
as easy as with linear PCA. Here’s why. Figure 8-11 shows the original Swiss roll 3D
dataset (top left), and the resulting 2D dataset after kPCA is applied using an RBF
kernel (top right). Thanks to the kernel trick, this is mathematically equivalent to
mapping the training set to an infinite-dimensional feature space (bottom right)
using the feature map ¢, then projecting the transformed training set down to 2D
using linear PCA. Notice that if we could invert the linear PCA step for a given
instance in the reduced space, the reconstructed point would lie in feature space, not
in the original space (e.g., like the one represented by an x in the diagram). Since the
feature space is infinite-dimensional, we cannot compute the reconstructed point,
and therefore we cannot compute the true reconstruction error. Fortunately, it is pos-
sible to find a point in the original space that would map close to the reconstructed
point. This is called the reconstruction pre-image. Once you have this pre-image, you
can measure its squared distance to the original instance. You can then select the ker-
nel and hyperparameters that minimize this reconstruction pre-image error.

230 | Chapter 8: Dimensionality Reduction

Original space Reduced space

AR
wx % X ﬁ(

. |
o) Xl X X
x . X X

~

Wi x

o K
x x-ﬁ& ’;“
% ul‘x,gh«;-‘x%
’;?fxg;’?
‘ M 2D
N . T '
Pre-image error N Jimplicit) A
D +pca :Reconstruction
* \\ 7 ..
Y ‘ '
7/
x [A

X X ¥ qessessannnne?® A

))‘; xx;& ;:.:

i}d 3D ‘4 oD
Reconstruction pre-image Feature spa@

Figure 8-11. Kernel PCA and the reconstruction pre-image error

You may be wondering how to perform this reconstruction. One solution is to train a
supervised regression model, with the projected instances as the training set and the
original instances as the targets. Scikit-Learn will do this automatically if you set
fit_inverse_transform=True, as shown in the following code:’

rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.0433,
fit_inverse_transform=True)

X_reduced = rbf_pca.fit_transform(X)

X_preimage = rbf_pca.inverse_transform(X_reduced)

By default, fit_inverse_transform=False and KernelPCA has no
inverse_transform() method. This method only gets created
when you set fit_inverse_transform=True.

7 Scikit-Learn uses the algorithm based on Kernel Ridge Regression described in Gokhan H. Bakir, Jason
Weston, and Bernhard Scholkopf, “Learning to Find Pre-images” (Tubingen, Germany: Max Planck Institute
for Biological Cybernetics, 2004).

Kernel PCA | 231

You can then compute the reconstruction pre-image error:

>>> from import mean_squared_error

>>> mean_squared_error(X, X_preimage)

32.786308795766132
Now you can use grid search with cross-validation to find the kernel and hyperpara-
meters that minimize this pre-image reconstruction error.

LLE

Locally Linear Embedding (LLE)® is another very powerful nonlinear dimensionality
reduction (NLDR) technique. It is a Manifold Learning technique that does not rely
on projections like the previous algorithms. In a nutshell, LLE works by first measur-
ing how each training instance linearly relates to its closest neighbors (c.n.), and then
looking for a low-dimensional representation of the training set where these local
relationships are best preserved (more details shortly). This makes it particularly
good at unrolling twisted manifolds, especially when there is not too much noise.

For example, the following code uses Scikit-Learn’s LocallyLinearEmbedding class to
unroll the Swiss roll. The resulting 2D dataset is shown in Figure 8-12. As you can
see, the Swiss roll is completely unrolled and the distances between instances are
locally well preserved. However, distances are not preserved on a larger scale: the left
part of the unrolled Swiss roll is stretched, while the right part is squeezed. Neverthe-
less, LLE did a pretty good job at modeling the manifold.

from import LocallylLinearEmbedding

1le = LocallyLinearEmbedding(n_components=2, n_neighbors=10)
X_reduced = 1lle.fit_transform(X)

8 “Nonlinear Dimensionality Reduction by Locally Linear Embedding,” S. Roweis, L. Saul (2000).

232 | Chapter 8: Dimensionality Reduction

Unrolled swiss roll using LLE
0.10 -
0.05 A1
™N
N 0.00
—0.05 -
_0.10 T T T T T T
-0.06 -0.04 -0.02 0.00 0.02 0.04
4|

Figure 8-12. Unrolled Swiss roll using LLE

Here’s how LLE works: first, for each training instance x, the algorithm identifies its
k closest neighbors (in the preceding code k = 10), then tries to reconstruct x” as a
linear function of these neighbors. More specifically, it finds the weights w;,; such that
the squared distance between x? and 2?1: W jx(j) is as small as possible, assuming w;;
= 0 if x is not one of the k closest neighbors of x”. Thus the first step of LLE is the
constrained optimization problem described in Equation 8-4, where W is the weight
matrix containing all the weights w,;. The second constraint simply normalizes the
weights for each training instance x?.

LLE | 233

Equation 8-4. LLE step 1: linearly modeling local relationships

. m - 2
- ¥ W, jX(J))

m
W = argmin),
W i=1

i=1

w; ;= 0 if x is not one of the k c.n. of x

subject to { m

Z Wij=1 fori=1,2,---,m
j=1 7

After this step, the weight matrix w (containing the weights w; j) encodes the local
linear relationships between the training instances. Now the second step is to map the
training instances into a d-dimensional space (where d < n) while preserving these
local relationships as much as possible. If z is the image of x? in this d-dimensional
space, then we want the squared distance between z? and 2?1: W jz(j) to be as small

as possible. This idea leads to the unconstrained optimization problem described in
Equation 8-5. It looks very similar to the first step, but instead of keeping the instan-
ces fixed and finding the optimal weights, we are doing the reverse: keeping the
weights fixed and finding the optimal position of the instances’ images in the low-
dimensional space. Note that Z is the matrix containing all z.

Equation 8-5. LLE step 2: reducing dimensionality while preserving relationships
2

m m
Z = argmin Y, (z(i) - X w jz(j))
Z i=1 ji=1 *
Scikit-Learn’s LLE implementation has the following computational complexity:
O(m log(m)n log(k)) for finding the k nearest neighbors, O(mnk?) for optimizing the
weights, and O(dm?) for constructing the low-dimensional representations. Unfortu-

nately, the m?* in the last term makes this algorithm scale poorly to very large datasets.

Other Dimensionality Reduction Techniques

There are many other dimensionality reduction techniques, several of which are
available in Scikit-Learn. Here are some of the most popular:

o Multidimensional Scaling (MDS) reduces dimensionality while trying to preserve
the distances between the instances (see Figure 8-13).

234 | Chapter 8: Dimensionality Reduction

o Isomap creates a graph by connecting each instance to its nearest neighbors, then
reduces dimensionality while trying to preserve the geodesic distances® between
the instances.

o t-Distributed Stochastic Neighbor Embedding (t-SNE) reduces dimensionality
while trying to keep similar instances close and dissimilar instances apart. It is
mostly used for visualization, in particular to visualize clusters of instances in
high-dimensional space (e.g., to visualize the MNIST images in 2D).

o Linear Discriminant Analysis (LDA) is actually a classification algorithm, but dur-
ing training it learns the most discriminative axes between the classes, and these
axes can then be used to define a hyperplane onto which to project the data. The
benefit is that the projection will keep classes as far apart as possible, so LDA is a
good technique to reduce dimensionality before running another classification
algorithm such as an SVM classifier.

Isomap t-SNE

_ - . ?
=151 -15 1

-10 0 10 -25 0 25 50 -40 =20 0 20
21 21 Z21

Figure 8-13. Reducing the Swiss roll to 2D using various techniques

Exercises

1. What are the main motivations for reducing a dataset’s dimensionality? What are
the main drawbacks?

2. What is the curse of dimensionality?

3. Once a dataset’s dimensionality has been reduced, is it possible to reverse the
operation? If so, how? If not, why?

4. Can PCA be used to reduce the dimensionality of a highly nonlinear dataset?

5. Suppose you perform PCA on a 1,000-dimensional dataset, setting the explained
variance ratio to 95%. How many dimensions will the resulting dataset have?

9 The geodesic distance between two nodes in a graph is the number of nodes on the shortest path between
these nodes.

Exercises | 235

10.

In what cases would you use vanilla PCA, Incremental PCA, Randomized PCA,
or Kernel PCA?

How can you evaluate the performance of a dimensionality reduction algorithm
on your dataset?

Does it make any sense to chain two different dimensionality reduction algo-
rithms?

Load the MNIST dataset (introduced in Chapter 3) and split it into a training set
and a test set (take the first 60,000 instances for training, and the remaining
10,000 for testing). Train a Random Forest classifier on the dataset and time how
long it takes, then evaluate the resulting model on the test set. Next, use PCA to
reduce the dataset’s dimensionality, with an explained variance ratio of 95%.
Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster? Next evaluate the classifier on the test set: how
does it compare to the previous classifier?

Use t-SNE to reduce the MNIST dataset down to two dimensions and plot the
result using Matplotlib. You can use a scatterplot using 10 different colors to rep-
resent each image’s target class. Alternatively, you can write colored digits at the
location of each instance, or even plot scaled-down versions of the digit images
themselves (if you plot all digits, the visualization will be too cluttered, so you
should either draw a random sample or plot an instance only if no other instance
has already been plotted at a close distance). You should get a nice visualization
with well-separated clusters of digits. Try using other dimensionality reduction
algorithms such as PCA, LLE, or MDS and compare the resulting visualizations.

Solutions to these exercises are available in 2?2.

236

| Chapter 8: Dimensionality Reduction

