
pycheops Cookbook v0.9

Thomas G. Wilson; tgw1@st-andrews.ac.uk

May 2021

Note: For the construction of this cookbook pycheops was successfully installed and run using
Ubuntu 18 and Python 3.6.

Abstract

The purpose of this document is to provide users of CHEOPS data with information on the pycheops
Python module. This cookbook details pycheops dependencies and installation, how to download
CHEOPS data, and several data analysis recipes. Therefore, this document can be used as a walk-
through of obtaining and analysing CHEOPS data, or as a reference guide of pycheops.

Contents

1 Introduction 2

2 pycheops Dependencies 3

3 pycheops Installation 4

4 Accessing CHEOPS Data 4
4.1 Using the DACE Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.1 Viewing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1.2 Visualising the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1.3 Downloading the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Using the DACE Python-Based API . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2.1 Querying the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2.2 Downloading the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Downloadable Data Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.1 Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.3 Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1

mailto:tgw1@st-andrews.ac.uk


5 Useful Recipes 10
5.1 Getting the Data and Plotting the Light Curves . . . . . . . . . . . . . . . . . . . . 11

5.1.1 DACE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 pycheops Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Visualising Subarrays and Imagettes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.1 Subarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 Imagettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Preparing your Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1 Clipping Outliers in the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2 How to Decorrelate your Dataset - Diagnosing the Issue . . . . . . . . . . . . 15
5.3.3 How to Decorrelate your Dataset - Performing the Decorrelation . . . . . . . 17
5.3.4 How to Decorrelate your Dataset - To Decorrelate or not to Decorrelate . . . 20
5.3.5 Flattening or Masking Sections of the Light Curve . . . . . . . . . . . . . . . 21

5.4 Fitting your Data - A Single Visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4.1 Obtaining Stellar Parameters of the Host Star . . . . . . . . . . . . . . . . . 23
5.4.2 Obtaining Available Planetary Parameters of the Target . . . . . . . . . . . . 25
5.4.3 Fitting a Transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.4 Fitting an Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.5 Fitting a Transit and an Eclipse in the same Dataset . . . . . . . . . . . . . . 35
5.4.6 Fitting a Thermal Phase Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.7 Fitting a Transit, Eclipse, and Thermal Phase Curve in the same Dataset . . 41
5.4.8 Saving your Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Fitting your Data - Multiple Visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.1 Loading your Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.2 Fitting Multiple Datasets - Transits or Eclipses . . . . . . . . . . . . . . . . . 44
5.5.3 Plotting and Assessing the Multiple Visit Fits . . . . . . . . . . . . . . . . . . 47

5.6 Further Analysis of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.1 Estimating Light Curve Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.2 Calculating and Plotting the Planet Properties against Internal Structure Models 52
5.6.3 Ploting the Fourier Transform of the Dataset . . . . . . . . . . . . . . . . . . 54

A A Code Compilation for Downloading, Viewing, Decorrelating, and Fitting your
Data 55

B Description of the pycheops Functions in this Cookbook 57

1 Introduction

pycheops is a Python package that contains tools for analysis of light curves taken by the ESA
CHEOPS spacecraft [2] (http://cheops.unibe.ch). This includes downloading, visualising, and decor-
relating CHEOPS data, fitting transits and eclipses of exoplanets, and calculating light curve noise.
This package has been primarily written by Pierre Maxted (p.maxted@keele.ac.uk) and is cur-
rent under development. Therefore, the package is constantly being developed and this docu-
ment will be updated accordingly. Further documentation and the source code can be found here:
https://github.com/pmaxted/pycheops. In this document, the dependencies of pycheops are given
in Section 2 and instructions on how to install pycheops provided in Section 3. Section 4 details how
to retrieve CHEOPS data using DACE with several useful recipes for the analyses of CHEOPS light

2

http://cheops.unibe.ch
mailto:p.maxted@keele.ac.uk
https://github.com/pmaxted/pycheops


curves using pycheops presented in Section 5. Finally, in the Appendices to this document, a holis-
tic walkthrough encapsulating the majority of pycheops functionality detailed in Sections 4 and 5
is given as a ready-to-use example code, with the pycheops functions given in the aforementioned
recipes also described in detail.

2 pycheops Dependencies

There are multiple package dependencies that pycheops requires to run successfully. Several of
these, and the required versions, are checked during installation of pycheops, however for com-
pleteness (and to allow for comparison against), a list of the dependencies is presented. Packages
can be installed using conda install or pip install, with a few examples given below. Anaconda
can be installed following the procedure outlined at https://docs.anaconda.com/anaconda/install/.
Pip is installed as a part of Anaconda, however it can also be installed using sudo apt install

pythonX-pip, where X represents the version of Python used and here is equal to 3.
pycheops has been successfully run using Python 3.6, however it is expected to be stable using

later versions. Therefore, it is recommended that users of pycheops install Python 3.6 or later. It
should be noted that if Python is installed via the typical Anaconda method package dependencies
may be satisfied, as highlighted in the following table.

Package Version Command
Python 3.6.10 conda create --name my env python=3.6

asteval 0.9.13 conda install -c conda-forge asteval

astropy 3.2.2 conda install -c anaconda astropy

astroquery 0.3.10 conda install -c conda-forge astroquery

celerite2 0.0.1 pip install celerite2

corner 2.0.1 conda install -c conda-forge corner

dace1 1.2.0 See Section 4.
ellc2 1.8.5 pip install ellc

emcee 3.0.0 conda install -c conda-forge emcee

lmfit 0.9.14 conda install -c conda-forge lmfit

matplotlib 3.2.2 conda install -c anaconda matplotlib

numba 0.44.1 conda install -c anaconda numba

numpy 1.17.2 conda install -c anaconda numpy

photutils 0.7.1 conda install -c conda-forge photutils

pybind11 2.4.3 conda install -c conda-forge pybind11

requests 2.22.0 conda install -c anaconda requests

scipy 1.4.1 conda install -c anaconda scipy

setuptools 45.2.0 Included in Python installation of conda.
tqdm 4.45.0 conda install -c conda-forge tqdm

uncertainties 3.1.2 conda install -c conda-forge uncertainties

Notes. 1) The dataset module of pycheops requires the DACE package if the user wants to use
the DACE Python API to download datasets rather than using the web interface. As utilising the
DACE database to access CHEOPS data is an important first step in the analysis of CHEOPS data,
the installation and utilisation of the DACE package is the focus of a separate section below (see
Section 4.2).
2) As some of the source code is written in Fortran, a Fortran compiler (such as GFortran) is required
for the installation of ellc.

3

https://docs.anaconda.com/anaconda/install/


3 pycheops Installation

The current version of pycheops can be installed using the command:

pip install pycheops

As mentioned above, during the installation of pycheops the majority of the package dependen-
cies listed above will be checked to determine if they are installed and satisfy any version requirement.
If Pip does not detect a package it will subsequently be downloaded and installed, along with any
further dependencies that package requires. Therefore, it is not necessary to install the dependencies
listed above prior to the installation of pycheops.

An exception is the ellc package that is currently not a strict dependency, and therefore will not be
checked for during pycheops installation, however it may be used in the ld module (for calculation
of limb-darkening coefficients) and thus may need to be installed for users of this module.

Following installation the setup script must be run. This is done by running the following
commands in a Python session:

from pycheops.core import setup config

setup config()

You will then be prompted to enter a data cache directory. This is the directory that pycheops will
search for CHEOPS data when a module has a data input, for example, when creating a Dataset
object. If the users press return to accept the default directory, it is set to the home directory. The
directory is stored as the variable data cache path in the pycheops configuration file (pycheops.cfg)
that can be found in the home directory. Note: it is important that the data cache directory is set
to a valid value otherwise errors will arise when trying to important data.

pycheops is now ready to use! For subsequent versions pycheops can be updated with:

pip install pycheops --upgrade

For some updates, new features might be added that require the configuration file to be updated.
If that is the case, users should run the setup config code again.

4 Accessing CHEOPS Data

With pycheops installed it is possible to utilise its modules to analyse CHEOPS data. There are
two methods you can use to access CHEOPS data; firstly, via the Université de Genève Data &
Analysis Center for Exoplanets (DACE) website, and second, via the Python-based DACE API.
For a quick inspection of the data, and use of existing visualisation tools, the web interface should
suffice for most users. However, for bulk data access and more detailed analyses it is recommended
that users utilise the Python API. This can either be done in pycheops or separately, as will be
outlined below.

First time users of DACE must go to the website and request an account. This can be done
by going to https://dace.unige.ch/dashboard/ and clicking on “Sign in/Create Account” in the top
right of the page, and then “Request an account here” that will take you to an account sign up page.
Following confirmation, users will be able to log in and start querying the data.

4

https://dace.unige.ch/dashboard/


4.1 Using the DACE Web Interface

On the DACE homepage the “Cheops” hexagon should now be visible in the top left and users can
go to the CHEOPS database by clicking on it. If it is not visible users may need to request access
by clicking on their username in the top right of the page and selecting “Requests”. The current
instrument, program, and mission accesses are shown on the left with it possible to request access
on the right of the page. If the “Cheops” hexagon is still not visible after gaining access, users may
wish to submit a bug report by clicking on their username in the top right of the top and selecting
“Bug report”.

4.1.1 Viewing the Data

The main DACE CHEOPS page (https://dace.unige.ch/cheops/) provides access to both the ob-
servations database and a selection of analysis tools (such as the DACE radial velocity and transit
photometry modules, and a specialised CHEOPS light curve analysis tool). By selecting the database
a table showing all targets observed by CHEOPS and various properties about the object and the
observations will be displayed.

In this view there are several options available to the user to customise the table. For example,
the table can be sorted in an ascending or descending manner by selecting the double headed arrow
alongside the name of the desired column. Furthermore, it is possible to filter the table based on
criteria defined for one or more columns. These can be set either as a range of values for a specific
parameter or as a string of characters that the parameter must or must not contain. Filters can
be set by selecting the magnifying glass in the desired column. It should be noted that in several
columns the units of the column can be changed by either clicking the units under the name of the
column or in the menu that appears after clicking the magnifying glass.

Finally, it is possible to increase the maximum number of rows viewed by selecting the gear icon
in the first column of the table (next to the number of rows). Moreover, new columns can be added
to the table by selecting the gear icon in the last column, on the far right of the table.

This is especially important for users who wish to use the Dataset module of pycheops as it
requires the file key of the observations in order to download the data from DACE and create a
pycheops Dataset object. These can be viewed by clicking on this gear icon and selecting “File
Key” under “Other variables” in the drop down menu.

4.1.2 Visualising the Data

There are a couple of visualisation tools currently available in DACE. By selecting the “Plot” tab at
the top left of the CHEOPS database webpage, a range of stellar and observation parameters for the
objects listed in the table. Note that, as the plotting tool displays the objects in the table, specific
objects (or series of objects) can be plotted by filtering the table as detailed above. In the plotting
tool the parameters to be plotted on the x- and y-axes can be set, with the option of setting colour
and dot radius axes. Produced plots can be customised and downloaded using the right most black
and white icon above the plot.

Individual light curves can be visualised by clicking the “Photometry” or “CHEOPS” icons at
the end of the desired row. This loads the DACE photometry tool that shows the normalised light
curve with it possible to view a section of the light curve by clicking and dragging over the desired
section. By mousing over the data it is possible to see the time, flux, and flux error of individual
data points. Using this tool it is possible to determine the period of the light curve using the Box
Least Squares (BLS) method with the option to phase fold the data on this period. Finally, it is
possible to compute a light curve model and then fit it to the data via two methods (Nelder-Mead

5

https://dace.unige.ch/cheops/


and BFGS) with statistics about the fit provided to the left of the plot. Produced plots can be
customised and downloaded using the right most black and white icon above the plot.

4.1.3 Downloading the Data

In order to download data from the DACE website users can select a row in the table, that turns
the background colour of the row light green, and click one of the black and white icons in the top
right of the webpage named: “Light curves”, “Images”, “Logs”, and “All data products”. Files for
multiple objects can be download concurrently by selecting multiple rows. By choosing “All data
products”, all light curve, image, and log files outlined below will be downloaded along with several
of the raw and calibrated files used and generated during the data reduction process (DRP). Should
a download request fail, users should fill out a bug report.

4.2 Using the DACE Python-Based API

The DACE Python-based API can be used to query the database and to download data from the
archive. This is done by using the DACE Python package that can be installed using:

pip install --extra-index-url https://dace.unige.ch/api python-dace-client

and can be updated by adding --upgrade to the command:

pip install --extra-index-url https://dace.unige.ch/api python-dace-client

--upgrade

However, before utilising the package an authentication key must be generated in order to access
the CHEOPS data on DACE. Users can generate a new key by going to their DACE profile page at
https://dace.unige.ch/user/?tab=profile and clicking on the black and white “Generate a new API
key” icon in the DACE API section in the centre of the page.

Users should then create a .dacerc file in their home directory with the following lines:

[user]

key = apiKey:*Your API key here*

with the newly generated key following the colon in the second line. Following these steps users
will be able to query and download from DACE. It should be noted that as the Dataset module of
pycheops uses the DACE package to download CHEOPS data, if users wish to use this functionality
of pycheops then they should also generate an API key and create a .dacerc file.

4.2.1 Querying the Database

Prior to downloading CHEOPS data using DACE users may which to query the database. This can
be useful not only for finding datasets, but also for obtaining the file key of a dataset which is needed
for downloading data from DACE using the Python API. Users can query the entire database with:

from dace.cheops import Cheops

data = Cheops.query database()

6

https://dace.unige.ch/user/?tab=profile


This will return a dictionary with keys and values for each light curve in the database. Users can
see the dictionary keys using:

data.keys()

These keys can therefore be used to return the values the users desire. For example, the file key of
the first object in the query can be found by:

data["file key"][0]

This is especially important to note for users who wish to download data from DACE using the
pycheops Dataset module as is outlined below.

It is possible to sort the output of the query in an ascending (asc) or descending (desc) manner
for the specified keyword. For example, to sort by the object ID in the catalogue:

data = Cheops.query database(sort={"obj id catname":"asc"})

In addition to a simple query returning the entire catalogue, using the aforementioned keys users can
create filters that are given as arguments to the query database function. These filters are based
on the data types of the values. For keys with int and double type values, users can set minimum
and maximum bounds:

myfilter = {"obj mag cheops":{"min":6.0, "max":14.0}}

For keys with string type values, users can filter based on if the value contains or does not contain
a specific string, or if the value is an empty string or not:

myfilter = {"obj id catname":{"contains":"WASP", "notContains":"TYC",

"empty":False}}

Finally, for keys with a Boolean type value, users can choose to only return values that are True or
are False:

myfilter = {"status published":{"is":true}}

Of course these filters can be combined and then used in the query database function:

myfilter = {"obj mag cheops":{"min":6.0, "max":14.0},
"obj id catname":{"contains":"WASP",
"notContains":"TYC", "empty":False},
"status published":{"is":true}}

data = Cheops.query database(filters=myfilter)

A more detailed description for this function can be seen by running:

help(Cheops.query database)

7



4.2.2 Downloading the Data

It is also possible to download CHEOPS data using the DACE Python API. Users should define the
data file type (“all”, “lightcurves”, “images”, or “logs”; see below for a description of the different
file types), the directory and file name where the data will be downloaded to, and any filters the
user wants to use (as per the examples given above). The following will download all images that
meet the conditions of the previously defined filter into “/home/user/cheops-data.tgz”:

from dace.cheops import Cheops

Cheops.download(file type="images", filters=myfilter,

output full file path="/home/user/cheops-data.tgz")

If the Cheops.download command results in a HTTP error then your account access needs to be
updated and verified. Users should submit a bug report on the DACE website stating that this has
occurred. Furthermore, the DACE package includes the functionality to download the light curve
of a target in the form of a Python dictionary using the get lightcurve function:

target lightcurve = Cheops.get lightcurve(target=target, aperture=aperture)

Where the aperture argument can be set to “default”, “optimal”, “rinf”, or “rsup”. These corre-
spond to different aperture radii used during the photometry conducted to produce the light curve,
as detailed below. The returned dictionary contains the bjd date, flux, flux error, and x and y
centroids of the observations. Note, that this is different to downloading the light curves using the
download function above, as that method returns light curves in fits file tables.

A more detailed description for both these functions can be seen by running:

help(Cheops.download)

and

help(Cheops.get lightcurve)

Users can also utilise the Dataset module of pycheops to download data from DACE using the
following:

from pycheops import Dataset

D = Dataset(file key)

Where the “file key” for a given light curve can be found either by viewing the data on the DACE
web interface or by querying the database using the Python API as has been detailed above. This
method will download all data types for the given file key, by default, into the directory provided
as the data cache path when pycheops was installed. Note that this directory can be changed in
the pycheops.cfg file usually found in the user’s home directory. If the data have previously been
download the above command will use the local files, instead of re-downloading them. Furthermore,
as this method take a specific file key as an input only one set of observations are downloaded at a
time and therefore, multiple Dataset objects need to be created if the user wants to download and
use multiple sets of observations.

8



The main benefit of using pycheops and the example above to download data from DACE is
that the data is returned a Dataset object that can then be manipulated using other pycheops
functions, such as those in the “Useful Recipes” section below.

Additionally, if users download CHEOPS data using the pycheops dataset object then a PDF
of the DRP report, described below, is automatically shown. It is strongly advised that users read
this document in order to assess the quality of their data and check for potential issues that need to
be accounted for during decorrelation. If users are updating their version of pycheops they might
have to run the setup config code again in order to specific which PDF viewer program they want
to use:

from pycheops.core import setup config

setup config()

For example, when prompted, Ubuntu users may wish to input: evince {} &, where the {} is a
placeholder for file names to be used by the PyCheops Dataset object. The beginning of a DRP
report is shown for identification:

Figure 1: The top of the front page of an example DRP report.

4.3 Downloadable Data Products

Here the main data products users can download using the processes outlined above are discussed.
As mentioned previously, by downloading all files for a target, raw and calibrated files used and
generated during the DRP will also be downloaded in addition to the files outline below. For a
detailed overview of all files, users should consult the CHEOPS Observers Manual [5], that can be
found at: https://www.cosmos.esa.int/web/cheops-guest-observers-programme/ao-1.

9

https://www.cosmos.esa.int/web/cheops-guest-observers-programme/ao-1


4.3.1 Light Curves

By selecting to download the CHEOPS light curves DACE provides the users with four fits files
for each series of observations selected (i.e. each row in the table). These light curve fits files are
the products of the DRP, as reported in the corresponding log, with each file the result of aperture
photometry conducted on the calibrated science images using different aperture radii. The DRP and
aperture radii are detailed and reported in Hoyer et al. 2019 [6]. These radii are default (’DEFAULT’,
rap = 25 pixels = 25 arcsec), inferior (’RINF’, rap = 22.5 pixels = 22.5 arcsec), superior (’RSUP’, rap

= 30 pixels = 30 arcsec), and optimal (’OPTIMAL’, determined during each visit taking into account
factors such as target brightness and nearby sources).

4.3.2 Images

If users want to download the observations of a target in order to check potential problems with the
data or to conduct their own photometry they should select this option (or “All data products”). A
data cube of all calibrated and corrected subarray frames (a section of the full frame array centred
on the target with size 200×200 pixels) will be downloaded as a fits file. Additionally, an imagette (a
50×50 pixel region of the full frame array centred on the target) data cube of the raw observations
is also downloaded. A representative frame of the observations in the raw, calibrated, and corrected
states, along with light curves for the raw, calibrated, and corrected data, can be found in Section 2
(“Summary of the processing stages”) in the corresponding observing and data reduction log.

4.3.3 Logs

Downloading the observing and data reduction log provides the user with PDF of the Data Reduction
Report for that light curve observation. This report gives a summary of the observations conducted
by CHEOPS and details the processes undertaken during the DRP, such as bias, dark, and flat field
correction, bad pixel and background correction, and aperture optimisation and photometry. As the
reports provide detailed information on the DRP users should consult them.

5 Useful Recipes

As described above, pycheops can be used to download CHEOPS data from DACE. Moreover,
pycheops also has significant functionality for the analysis of CHEOPS light curves. Below several
basic analysis recipes are given that users may find useful. It should be noted that there are
currently multiple example Jupyter notebooks covering much of the functionality of pycheops in
the examples/Notebooks/ folder of your pycheops installation directory.

Prior to discussing the functionality of pycheops it is worth highlighting that the inline docu-
mentation of all functions can be viewed, for example for the Dataset class, by:

help(pycheops.Dataset)

To help guide users of this document, the recipes below will use the CHEOPS visit of KELT-11 b
as an example. This dataset can be downloaded using:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

10



D = Dataset(file key)

5.1 Getting the Data and Plotting the Light Curves

There are two main methods users can utilise to plot their data; using the get lightcurve function
in the DACE package and using the Dataset class in pycheops. Provided here are code snippets
that produce the light curve plot presented below for KELT-11 b using the OPTIMAL aperture. It
should be noted that in the following examples Cheops.get lightcurve and D.get lightcurve are
different methods and users should be careful to use the desired function. The former comes from
the DACE package, whereas the later comes from pycheops.

5.1.1 DACE Method

from dace.cheops import Cheops

target = "KELT11"

aperture = "OPTIMAL"

target lightcurve = Cheops.get lightcurve(target=target, aperture=aperture)

time = np.array(target lightcurve["obj date bjd vect"])

flux = np.array(target lightcurve["photom flux vect"])

flux err = np.array(target lightcurve["photom flux vect err"])

plt.plot(time, flux, "k.")

plt.title(target + " - aperture = " + aperture)

plt.xlabel("BJD Date (d)")

plt.ylabel("Flux")

5.1.2 pycheops Method

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

plt.plot(time, flux, "k.")

plt.title(D.target + " - aperture = " + aperture)

plt.xlabel("BJD Date (d)")

plt.ylabel("Normalised Flux")

11



Figure 2: Plot of the light curve of KELT 11-b produced using the “OPTIMAL” aperture generated using
both DACE and pycheops code snippets above.

The DACE get lightcurve function provides a straightforward method to download and plot the
bjd date, flux, flux error, and x and y centroids, and can be useful as a quick look. However, using
the pycheops Dataset class may be useful for a more detailed analysis as it includes methods that
include a basic sigma clipping of the light curve (using the reject highpoints argument) and the
removal of potentially inaccurate data flagged during the DRP (for example, observations taken
when CHEOPS passes through the South Atlantic Anomaly). The pycheops get lightcurve

function can also perform a subtraction of the contamination from nearby sources that might have
affected the photometry of the target star via the decontaminate argument, which needs to be set
as either True or False by the user upon importing data. This decision is left to the user as for some
datasets removing the contamination may degrade the light curve quality, and therefore, users are
advised to assess their data both with decontaminate set equal to True and False. The pycheops
get lightcurve function also prints information about the retrieved dataset such as visit duration
and efficiency, and contamination, smearing, and ramp estimates. Furthermore, the Dataset class
downloads all data for a given visit by default and subsequently builds a dictionary from the headers
of the FITS files. This provides the user with more information on the observations, such as roll
angle, x and y centroid offsets, and background and contamination values, that might be useful in
further analysis. In the above example these arrays can be returned by running D.lc["roll angle"]

after the D.get lightcurve() command, for example. Moreover, the metadata of the observations
are stored as an astropy table within the Dataset object and can be viewed with D.metadata.

5.2 Visualising Subarrays and Imagettes

In addition to plotting light curves, users may wish to visualise the subarrays or imagettes of the
observations, especially in cases when the light curve may be contaminated by a nearby source. The
subarrays and imagettes are 200×200 and 50×50 pixel cutouts of the full frame array centred on the

12



target, as described above in Section 4.3. Animations of both sets of images can be produced and
displayed using the animate frames pycheops function as shown below. By default every tenth
frame is displayed, however users can set how often images are included in the animation with the
nframes argument. One benefit of this function is that the produced animations are also saved in
the current working directory.

5.2.1 Subarrays

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

Nth frame = 10

Min value scaling factor = 1.0

Max value scaling factor = 1.0

frames = D.animate frames(nframes = Nth frame,

vmin = Min value scaling factor,

vmax = Max value scaling factor,

subarray = True, grid = True)

Figure 3: A frame of the animation of subarrays taken during observations of KELT 11-b produced using
the code snippet above.

13



5.2.2 Imagettes

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

Nth frame = 10

Min value scaling factor = 1.0

Max value scaling factor = 1.0

frames = D.animate frames(nframes = Nth frame,

vmin = Min value scaling factor,

vmax = Max value scaling factor,

imagette = True, grid = True)

Figure 4: A frame of the animation of imagettes taken during observations of KELT 11-b produced using
the code snippet above.

It is worth noting that in both of the above example only every 10th frame is included in the
animated data cube in order to avoid memory issues.

14



5.3 Preparing your Data

After visualising your data users may want to prepare the dataset for fitting using various methods
such as clipping outliers, decorrelating and detrending the light curve, or flattening sections of the
dataset. This can be done by utilising some of the functionality of pycheops outlined below. In
addition to viewing the DRP report when the data are downloaded it is also possible to show the
report using a stand-alone function:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

D.view report(pdf cmd = "evince {} &")

Where the pdf cmd argument specifies the PDF viewer to use, for the example above the Evince
program is used. It is recommended that users consult the DRP report before proceeding to decorrelate
and fit their data as there might be issues identified in the report that could assist in data analysis.

5.3.1 Clipping Outliers in the Dataset

Should users notice outliers in the dataset that they want to remove the stand alone outlier clipping
routine in pycheops can be utilised. The clip outliers function removes outliers from a dataset
by calculating the mean absolute deviation (MAD) from the light curve following median smoothing,
and rejects data greater than the smoothed dataset plus the MAD multiplied by a clipping factor,
by default equal to five.

The smoothing of the light curve is done in sections with the window width set to be smaller
enough (11 data points by default) that this clipping should be able to remove outliers in transit or
eclipses. The clip outliers function returns the clipped time, flux, and flux error arrays with an
example shown below:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

clipping factor value = 5

time, flux, flux err = D.clip outliers(clip = clipping factor value)

5.3.2 How to Decorrelate your Dataset - Diagnosing the Issue

For decorrelating a dataset, a useful first step is to run the diagnostic plot function that produces
a series of ten plots, such as flux versus time, flux versus CHEOPS roll angle, flux versus x and y
centroids, flux versus background, flux versus contamination, and flux versus smear, that may be
useful in determining the cause of the unwanted trend. It should be noted that this function can be
run before or after decorrelation, therefore allowing users to view the effects of the decorrelation on
their data. The following plot can be produced using:

15



from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

D.diagnostic plot()

Figure 5: A diagnostic plot of the CHEOPS observations of KELT-11. A description of these subplots is
given in the text.

The example series of plots shown above is typical of a light curve containing a transit, as can be
seen in the first row, left plot. The flux versus roll angle, and flux versus x and y centroids plots

16



in the first and fourth rows show two bands of fluxes from the out of- and in-transit data, as does
the flux versus contamination estimate plot in the left plot of the third row. The background flux
plots in the second row are also somewhat typical with the peaks in background flux indicative of
the target passing close to the limb of the Earth.

In general, users should look at the first and fourth rows of the plots in order to assess if and
how the flux is changing against roll angle or x and y centroids. However, the background flux plots
in the second row, and the flux versus contamination estimate and the flux versus smear estimate
in the last row may also be useful to check to evaluate if there are any irregularities caused by, for
example, contamination from a nearby source. These can be decorrelated against using the keywords
presented below.

If instead, the flux versus roll angle, and flux versus x and y centroids plots have a sinusoidal or
linear trend, as can be seen in the example plots, then decorrelation is needed.

Another good check to perform if users notice any periodic flux trend in the light curve is a
calculation of the separation between the target and various Solar System bodies to assess if stray
light from these objects could affect the observations. This can be done in pycheops using the
planet check function that prints out the coordinates and separation to the Moon, Mars, Jupiter,
Saturn, Uranus, and Neptune:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

D.planet check()

Figure 6: Example output of the planet check function showing the BJD of the observations, and the
coordinates of various Solar System bodies, and the separation between the target and them.

5.3.3 How to Decorrelate your Dataset - Performing the Decorrelation

The main pycheops decorrelation method is the decorr function in the Dataset module that fit
trend models to the CHEOPS light curve using routines in the lmfit package. Using this function
it is possible to model first, second or third order trends in the flux over time, x or y centroid, roll
angle, background, contamination, or smear by setting various keyword arguments to True. Below
is a list of the trend to be decorrelated and the corresponding keyword arguments:

• flux versus time - dfdt, d2fdt2

• flux versus x centroid - dfdx, d2fdx2

• flux versus y centroid - dfdy, d2fdy2

17



• flux versus roll angle - dfdsinphi, dfdcosphi, dfdsin2phi, dfdcos2phi, dfdsin3phi, dfdcos3phi

• flux versus background - dfdbg

• flux versus contamination - dfdcontam

• flux versus smear - dfdsmear

Therefore, it is possible to do a linear decorrelation of a first order trend in the flux against roll
angle using:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

time, flux, flux err = D.decorr(dfdsinphi = True, dfdcosphi = True)

D.diagnostic plot()

By running the diagnostic plot function after the decorrelation, the decorrelated flux should be
plotted allowing users to determine if further decorrelation is needed. It should be noted that as
sinphi and cosphi are simply the sine and cosine of the roll angle, if users wish to decorrelate
against the roll angle then both the sinphi and cosphi keyword arguments should be set to True.

5.3.3.1 Removing Glint

As mentioned previously it has been found that periodic flux trends have been observed that corre-
spond to ranges of CHEOPS roll angles specific to that observation. An origin of these flux trends
could be stray light or “glint” from nearby source such as the Moon or a bright neighbour. If such
a trend is found using the rollangle plot function or if the separation to a Solar System object is
relatively small as seen via the planet check function then users can attempt to model this artefact
using the add glint function.

This method creates a spline function, with the number of splines used to be input by the user, to
be used to fit flux artefacts as a function of roll angle. By default, this is done by fitting the residuals
of an eclipse or transit fit with the spline model in order to not remove the eclipse or transit. To
do this the lmfit eclipse or lmfit transit functions should be run first, as is seen in the code
snippet below. However, if a user parses an array to the mask argument, for example covering an
eclipse or transit, then add glint can be used to model the unmasked out of eclipse/transit fluxes
instead of the fit residuals. Both approaches seem to perform equally well in removing glints. Lastly,
if it was found that the target to Moon separation is small it could be useful to model the fluxes
or residuals as a function of roll angle relative to the Moon. This can be done by setting the moon

argument equal to True.
After the glint model as been built using add glint it can be used during an eclipse or transit

fit to model and remove the flux artefact, as can be seen below, with glint scale used as a scaling
factor to fit the artefact:

18



from pycheops import Dataset, StarProperties

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

Period value = 4.736529

Period error = 0.000068

host star properties = StarProperties(D.target)

Log stellar density = host star properties.logrho

result = D.lmfit transit(P = ufloat(Period value, Period error),

logrhoprior = Log stellar density)

N spline = 30

glint = D.add glint(nspline = N spline, moon = True)

result = D.lmfit transit(P = ufloat(Period value, Period error),

logrhoprior = Log stellar density,

glint scale = (0.,2))

Figure 7: Example roll angle plot produced by the add glint function showing the spline model fit (brown
solid line) to the glint flux artefact seen in the data (blue).

5.3.3.2 Removing Ramp

In multiple datasets observed to date, a ramp at beginning of the visits has been seen that has a
characteristic increase or decrease in fluxes with a decay timescale of several CHEOPS orbits. It
has been found that this flux variation is due to PSF shape changes on the order of subpixels, that
is caused by changes in the telescope focus because of a shift in the telescope tube temperature
due to a change in the thermal load on CHEOPS. Thus, this flux ramp can be corrected using
the temperature metadata. pycheops users can utilise the correct ramp function to correct the
measured fluxes based on the aperture radius used and the temperature via:

19



from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

time, flux, flux err = D.correct ramp(plot = True)

Figure 8: Plot showing the measured fluxes (light blue) and corrected data (dark blue) against the telescope
temperature at time of observation for the KELT-11 dataset.

It should be noted that both the returned fluxes and the values stored within the Dataset object
are corrected.

5.3.4 How to Decorrelate your Dataset - To Decorrelate or not to Decorrelate

It might not always be intuitive to determine if the decorrelation of a light curve is necessary. If
this is the case, then users may wish to use the should I decorr method. This function runs the
decorr function for all basis vectors listed above and calculates the Bayesian Information Criteria
(BIC) of each decorrelation combination. This can be run using:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

mask centre value = 0.5

mask width value = 0.2

D.should I decorr(mask centre value, mask width value)

20



The function will report whether or not decorrelation of the light curve is necessary and what
trend or trends should be decorrelated. This is done under the assumption that the combination
of decorrelation basis vectors that produces the lowest BIC value describes the modelling of any
observed trends the best and therefore should be decorrelated against to remove these trends. Users
should then use the decorr function or the decorrelation functionality of the lmfit eclipse or
lmfit transit functions if fitting of an observed feature is desired.

In an identical manner to the flatten function described below, it is also possible to mask
sections of the light curve that should not be included in the decorrelation combination tests. As
seen in the code snippet above, this is done by providing a mask centre time and width with all data
inside this window excluded. This feature is potentially useful if there are eclipses or transits in the
dataset that might affect trend fitting done, for example by resulting in an apparent large trend in
flux against time.

5.3.5 Flattening or Masking Sections of the Light Curve

If, upon inspection of the diagnostic plot, users notice that sections of the light curve need to be
re-normalised the flatten function can be utilised. This routine fits the dataset with a polynomial
which is then used in the normalisation. Importantly, it is possible to mask specified regions of the
light curve from re-normalisation, for example an eclipse or transit, by providing mask centre and
width values as shown below:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

mask centre value = 0.5

mask width value = 0.2

time, flux, flux err = D.flatten(mask centre value, mask width value)

However, if is it found that sections of the light curve contain noisy data that either cannot be
corrected for via decorrelation or should not be flatten for fitting, then it is possible to mask these
data out in order to avoid fitting it using the functions below. This can be done in pycheops using
the mask data function by parsing an input Boolean array of True or False values indicating which
data should be masked. In the example, data with time < 0.3 are masked out.

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

mask Boolean array = time < 0.3

time, flux, flux err = D.mask data(mask Boolean array)

21



5.4 Fitting your Data - A Single Visit

Once CHEOPS data has been downloaded, visualised, and detrended (if needed) pycheops can be
utilised to fit transits or eclipses of observed exoplanets in order to determine physical and orbital
parameters of these objects. In addition to a model used to detrend light curves, the Models module
of pycheops also includes transit and eclipse models that can be fit to the data using the lmfit or
emcee packages, as will be detailed below.

In addition to deriving the values of physical and orbital parameters via transit or eclipse fitting,
it is possible to set priors when building the model to be fit. Parameters initial values can be input
as a simple Python float or a ufloat float with an uncertainty, a tuple that includes upper and lower
bounds to a range of values, or a lmfit Parameter object. If a tuple is parsed and a third, mid
point is provided this is taken as the initial value in the fit. Examples of each of these input types
are shown below in the lmfit examples. Finally, as well as conducting decorrelation of a light curve
separately, as outlined above in Section 5.3, it is also possible to perform the decorrelation method
using the same keyword arguments listed above prior to fitting the transit by setting a range of values
to search for trends over in lmfit transit and the detrend keyword equal to True in plot lmfit,
as seen below.

It has been seen that, due to the nature of the orbit of CHEOPS, it is possible that periodic flux
artefacts may be apparent in the data corresponding to values or ranges of CHEOPS roll angles.
To assist in identification of these periodic trends pycheops has functionality to plot the roll angle
against flux residuals from a prior fit, for example using the lmfit transit function outlined below,
using the rollangle plot function. If any decorrelation against roll angle using the glint module
has been done, the fit of this model to the data will also be shown. By setting the binwidth

argument the dataset can be binned in widths with units of degrees. It should be noted that the
rollangle plot function detects the gaps in the light curve and shifts the data, such that the data
appears as a continuous plot, as can be seen below:

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

bin width value = 15.0

D.rollangle plot(binwidth = bin width value)

22



Figure 9: Example of a roll angle plot showing the roll angle against trend (top), moon angle against glint
(middle), and roll angle against the residuals of a transit fit (bottom). The light blue data points are the
complete dataset with the dark blue points showing the data binned every 15 degrees.

Importantly, the rollangle plot function currently only works after one of the fitting routines,
such as lmfit transit or lmfit eclipse, has been run as this function plots the residuals to the
fit against the roll angle.

5.4.1 Obtaining Stellar Parameters of the Host Star

Before fitting your data with either a transit, eclipse, or phase curve model it can be useful to obtain
various parameters about the target host star, such as stellar density or limb-darkening coefficients.
Currently, pycheops includes two options that users may want to utilise to acquire such information.

Firstly, if the power-2 limb-darkening coefficients, h 1 and h 2, of a transit are not known prior
to fitting they can be estimated from stellar parameters (Teff , log(g), Fe/H) of the host star and the
Stagger grid [8]. This functionality is included in the pycheops ld module and is shown below:

from pycheops.ld import stagger power2 interpolator

Teff value = 5414

logg value = 3.73

FeH value = 0.25

23



power2 ld coefficients = stagger power2 interpolator()

c, alpha, h 1, h 2 = power2 ld coefficients(Teff value, logg value, FeH value)

However, if the stellar parameters are also not known users can query the SWEET-Cat database
[13] to potentially retrieve them by creating a StarProperties object. Should the target of choice
be in the SWEET-Cat database this functionality is very useful as it returns the stellar parameters
(Teff , log(g), Fe/H), an estimate of the stellar density from log(g) [10], and the power-2 limb-
darkening coefficients, h 1 and h 2, calculated using the Stagger grid interpolation shown above.
For stars with stellar parameters outside of this grid [8], values are interpolated from results of
limb-darkening analyses of ATLAS and PHOENIX models [4]. By inputting the target name, the
properties of the host star can be obtained by:

from pycheops import Dataset, StarProperties

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

host star properties = StarProperties(D.target)

Log stellar density = host star properties.logrho

h 1 value = host star properties.h 1.n

h 2 value = host star properties.h 2.n

Figure 10: Example output of the StarProperties class showing the target name and coordinates, along
with the stellar properties retrieved from SWEET-Cat and the derived stellar density and limb-darkening
coefficients.

In the above example, the value and uncertainty of the logarithm of the stellar density are returned in
the Log stellar density variable, along with the nominal values of the limb-darkening coefficients,
h 1 and h 2, without any previously reported uncertainties. As this function queries both SIMBAD
and SWEET-Cat it is recommended that users check the reported coordinates to make sure that the
properties for the correct target are returned. Furthermore, if the target has high proper motion,
users are advised to increase the match arcsec argument of StarProperties in order to increase
the search radius in SIMBAD and SWEET-Cat, and thus find the target.

In addition, users can also query the stellar parameters table hosted at DACE by setting the
dace keyword of StarProperties equal to True.

If users already know the stellar parameters of their target, but want to use the StarProperties

functionality to determine the stellar density and limb-darkening coefficients they can set the match arcsec

argument equal to None to avoid querying SWEET Cat, and then provide their own values to teff,

24



logg, and metal arguments of StarProperties in the form of a ufloat object or a length=2 tuple
containing the property value and uncertainty. These provided values will over-write any properties
obtained from SWEET-Cat or DACE.

5.4.2 Obtaining Available Planetary Parameters of the Target

In order to aid in eclipse, transit, or phase-curve fitting it can be useful to set informative priors
on various planetary properties. This can be done within pycheops being retrieving known values
and uncertainties for a target from either TEPCat [15] or DACE using the PlanetProperties

functionality in a similar manner as for StarProperties. To obtain the available planet property
values users should provide the PlanetProperites class with a string of the planet identifier, and
if the target is in TEPCat or DACE an object will be returned that includes the known values
and uncertainties the transit centre time (T0), period (P), transit depth (D) and width (W), and
ecosw and esinw, the catalogue source of those values, and the derived eccentricity (ecc), argument
of periastron (omega), and their components (f c and f s). The code snippet below shows how to
query values for the planet KELT-11b from TEPCat and how to set the retrieved values for transit
centre time (T0), period (P), transit depth (D) and width (W) to variables:

from pycheops import PlanetProperties

planet properties = PlanetProperties("KELT-11b", query tepcat = True,

query dace = False)

Transit centre time = planet properties.T0

Period value = planet properties.P.n

Depth value = planet properties.D.n / 1.e6

Width value = planet properties.W.n / Period value

Figure 11: Output of the PlanetProperties class for KELT-11b showing the target name, along with
the planet properties retrieved from TEPCat. For this target no eccentricity and argument of periastron
information is found.

The transit depth and width values and uncertainties reported in PlanetProperties are in parts-
per-million and days, respectively, and so in the code snippet above are converted into units used
by the lmfit eclipse and lmfit transit functions. As with StarProperties, users can provide
their own values to the T0, P, D, W, ecosw, and esinw arguments of PlanetProperties either in
the form of a ufloat object or a length=2 tuple that contains the property value and uncertainty.
These user values will fill in any empty values or over-write any properties obtained from TEPCat
or DACE.

It should be noted that, at the moment, planet properties values can only be obtained from
DACE if users are members of the CHEOPS Science Team. Therefore, for non-member users should
set the query tepcat and query dace arguments to True and False, respectively, as shown in the
code snippet above in order to retrieve planet property information from TEPCat.

25



5.4.3 Fitting a Transit

Prior to outlining the different fitting methods it is worth briefing discussing the transit model used
in pycheops. Transit models are constructed using the limb-darkening described by the power-2
law [8, 9] and the following transit parameters; the orbital period (P), the transit centre time (T 0),
the transit depth (D), the logarithm of the stellar density (logrhoprior), the transit width (W), the
impact parameter (b), a flux scaling factor (c), the limb-darkening coefficients (h 1 and h 2), and the
orbital eccentricity and longitude of periastron components (f c and f s), and allows for the fitting
of high impact parameter, grazing transits.

It should be noted here that the transit width (W) is in units of phase. If the width is not known
from a previous transit it can be calculated using the transit width function that takes R∗/a, k =
Rp/R∗, b, and P as inputs, where R∗ and Rp are the stellar and planet radii, and a is the planetary
orbital semi-major axis:

from pycheops.funcs import transit width

Ra value = 0.203

k value = 0.052

Impact value = 0.36

Period value = 4.736529

Width value = transit width(Ra value, k value, Impact value, Period value)

Where the outputted width is in the same units as the inputted period.

5.4.3.1 Using lmfit

The lmfit package contains useful functionality for the fitting of models to data. This can be done
by constructing a model using input priors (either a set value or a range) and allowing these values
to vary when fitting the model to data via a least-square method. In pycheops this is wrapped
up in the lmfit transit function with a readable output of the parameter values produced by
lmfit report. This is shown in the following example, along with performing a decorrelation in
background, and plotting the fit using plot lmfit. In this example, parameter values are either
defined below or in previous code snippets.

from pycheops import Dataset

from uncertainties import ufloat

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

Centre time value, Centre time error = 0.5, 0.1

Depth value, Depth error = 0.0027, 0.0003

Impact min, Impact max = 0.16, 0.49

f c value, f s value = 0., 0.

dfdbg lower, dfdbg upper = -1., 1.

26



result = D.lmfit transit(P = ufloat(Period value, Period error),

T 0 = ufloat(Centre time value, Centre time error),

D = ufloat(Depth value, Depth error),

logrhoprior = Log stellar density,

W = lmfit.Parameter(value = Width value, vary = True),

b = lmfit.Parameter(value = Impact value,

min = Impact min, max = Impact max,

vary = True),

f c = f c value, f s = f s value,

h 1 = h 1 value, h 2 = h 2 value,

dfdbg = (dfdbg lower, dfdbg upper))

bin width value = 0.01

figure = D.plot lmfit(binwidth = bin width value, detrend = True)

print(D.lmfit report())

Figure 12: The CHEOPS light curve of a transit of KELT-11b. Top. The observed flux in blue with the
lmfit fit produced by the code snippet above in orange against time. Bottom. The residuals of the fit.

27



Figure 13: The lmfit report for the transit of KELT-11b showing the fit statistics, the fitted parameter
values and uncertainties, correlations and priors.

A useful feature of the plot lmfit function is the binning of the light curve using the binwidth

argument with the binned data being over-plotted on the full dataset in bins of width provided by
the user in units of hours. Users can find a range of properties of the transit fit in the lmfit report,
such as statistics (RMS, BIC, AIC, etc.), variable values and their uncertainties, any correlations
between the parameters, the provided priors, and software versions used. If users notice that the fit
is particularly bad they can view the starting position of the fit by printing dataset.lmfit. If these
values are substantially erroneous compared to any priors provided to the lmfit transit function
then this may be the cause of the bad fit. Users can also use the Bayes Factors in the lmfit report
for comparison between decorrelation models, as the values reported for each basis vector (i.e. time,
background, glint function, etc.) are the Savage-Dickey Density Ratios [16] of fitting the model with
and without the specific decorrelation basis vector. Thus, if a Bayes Factor larger than 1 is reported,
the corresponding basis vector may not be useful to decorrelate against.

5.4.3.2 Using emcee

The physical and orbital properties of exoplanets can also be derived from transits in CHEOPS light
curves using a Markov chain Monte Carlo (MCMC) methodology. pycheops does this by utilising
the affine invariant sampler Python package emcee to sample the posterior probability distribution
of fitting the constructed transit model to the data. This approach has several benefits when used
in isolation, however a strength of this method is using it in combination with the lmfit fitting

28



detailed above. This is because, if a lmfit least-squares fit is performed on a dataset, the best fit
values from that analysis will be used as priors for the emcee sampler function. Therefore, it is
recommended that users run the previous code snippet before the example below.

For the emcee sampler users can set the number of burn-in and sampling steps, and the number
of walkers in the MCMC. Here the number of walkers defines the number of chains in the MCMC
with the number of sampling steps representing how many steps around the posterior probability
distribution each walker takes. The burn-in refers to the number of steps taken prior to the main
sampling. This is done in an attempt to find the global minimum that is then sampled by the main
MCMC. Therefore, it is recommended to make the burn-in a substantial fraction of the number of
sampling steps.

Additional useful functions are emcee report and plot emcee that produce a readable report
on the determined physical and orbital properties and a plot of the N samples number of fitted
transit models over-plotted on the data in a similar manner to the corresponding lmfit functions.
The produced report is identical in nature to the report generated by the lmfit report function
described above with fit statistics, values, uncertainties, correlations, and priors provided to the user.
The fitted transit plot is binned by giving a bin width value in hours to the plot emcee function as
shown in the code snippet below.

In pycheops, as well as transit or eclipse fitting, the emcee sampler routine has built-in func-
tionality to fit and remove correlated stellar noise using a Gaussian process regression method from
the celerite2 Python package. The regression is done by using a SHOTerm plus JitterTerm kernel
that is constructed using log sigma, log Q, log omega0, and log S0 parameters with bounds on
the values of these parameters to be inputted by the user. This functionality can be included in the
transit fit by setting the add shoterm argument equal to True, as shown in the code snippet below.
This regression constructs a kernel that includes stochastically driven, damped harmonic oscillator
and white noise terms, that has been found to well model stellar granulation [11].

In addition, a corner plot of the results of MCMC can be produced using the corner plot

function, with it possible to plot all fitted parameters by parsing “all” to the function. Users may
also only plot selected parameters by providing an array of parameter names. It should be noted
that plot tick values are not shown by default, but can be viewed by setting show ticklabels equal
to True.

Finally, as shown below, trail plots of “all” or an array of user selected parameters used in the
MCMC can be produced using the trail plot function. These plots show the step number of
the MCMC against the parameter values and can be useful in indicating how well the parameters
converged, with a good convergence reach if the chains show no clear trend.

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

N steps = 256

N walkers = 32

N burn = 128

log sigma lower, log sigma upper = -10.5, -7.5

29



log omega0 lower, log omega0 upper = 3.5, 8.5

log S0 lower, log S0 upper = -30, -20

result = D.emcee sampler(steps = N steps, nwalkers = N walkers,

burn = N burn, add shoterm = True,

log sigma = (log sigma lower, log sigma upper),

log omega0 = (log omega0 lower, log omega0 upper),

log S0 = (log S0 lower, log S0 upper))

print(D.emcee report())

corner figure = D.corner plot(["P", "T 0", "D", "W", "b"],

show ticklabels = True)

trail figure = D.trail plot("all")

bin width value = 0.01

N samples = 32

figure = D.plot emcee(binwidth = bin width value, detrend = True,

nsamples = N samples)

Figure 14: A corner plot of the MCMC fit of the transit of KELT-11b showing the distributions of and
correlations between; the Period (P), the Transit centre time (T 0), the Depth (D), the Width (W), and the
Impact parameter (b).

30



Figure 15: Example plots produced by parsing “all” to the trail plot function that shows the parameters
values against the step number of the MCMC.

31



Figure 16: The CHEOPS light curve of a transit of KELT-11b. Top. The observed flux in blue with the
emcee fit produced by the code snippet above in orange against time. Bottom. The residuals of the fit.

5.4.4 Fitting an Eclipse

pycheops also has specialised functions for fitting the eclipse of an exoplanet by its host star or a
star in a binary. Using the same approach as for the transit fitting, users can build a model and then
determine the following parameters; the orbital period (P), the eclipse depth (L), the transit centre
time (T 0), the transit depth (D), the transit width (W), the light travel time (a c), the impact
parameter (b), a flux scaling factor (c), and the stellar orbit eccentricity and longitude of periastron
components (f c and f s). It should be noted here that the transit width (W) is in units of phase,
and that the transit centre time (T 0) is the time of the mid-point of the transit, and so this is
eclipse centre time minus half of the period.

5.4.4.1 Using lmfit

A least-squares fitting of an eclipse model can be performed using the lmfit package. Similarly
to fitting a transit, the pycheops lmfit eclipse function, that utilising lmfit, can be used to
construct a model, conduct any decorrelation, and fit the model to the data. Users can additionally
run the lmfit report and plot lmfit functions to output a report and plots showing the fit as
detailed in the code snippet below with the produced plot showing an example of eclipse fitting of
WASP-189b taken from [7]:

from pycheops import Dataset

from uncertainties import ufloat

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

D.lmfit eclipse(P = ufloat(Period value, Period error),

32



L = ufloat(Eclipse depth value, Eclipse depth error),

T 0 = ufloat(Centre time value, Centre time error),

D = ufloat(Depth value, Depth error),

W = lmfit.Parameter(value = Width value, vary = True),

a c = lmfit.Parameter(value = Travel time value,

vary = True),

b = lmfit.Parameter(value = Impact value,

min = Impact min, max = Impact max,

vary = True),

c = (c lower, c upper),

f c = f c value, f s = f s value,

dfdcontam = (dfdcontam lower, dfdcontam upper),

dfdbg = (dfdbg lower, dfdbg upper))

print(D.lmfit report())

figure = D.plot lmfit(binwidth = bin width value, detrend=True)

Figure 17: The CHEOPS light curve of an eclipse of WASP-189b. Top. The observed flux in blue with
the lmfit fit in orange against time. Bottom. The residuals of the fit.

The lmfit report produced by the code snippet above will be almost identical to the report
from the transiting fitting of KELT-11b in Section 5.4.3.

5.4.4.2 Using emcee

The pycheops MCMC functions built from the emcee package described above in Section 5.4.3.2
for fitting transits can also be used to fit eclipses. The sole difference being the allowed strings for
the array given to the corner plot and trail plot functions. As recommended above, if users

33



wish to use the values of the parameters derived using the lmfit functions as priors for the MCMC,
then the previous lmfit code snippet should be run before the following example:

from pycheops import Dataset

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture=aperture,

decontaminate=True)

N steps = 256

N walkers = 32

N burn = 128

log sigma lower, log sigma upper = -10.5, -9.5

log omega0 lower, log omega0 upper = 3.5, 8.5

log S0 lower, log S0 upper = -30, -20

result = D.emcee sampler(steps = N steps, nwalkers = N walkers,

burn = N burn, add shoterm = True,

log sigma = (log sigma lower, log sigma upper),

log omega0 = (log omega0 lower, log omega0 upper),

log S0 = (log S0 lower, log S0 upper))

print(D.emcee report())

corner figure = D.corner plot(["P", "L", "T 0", "D", "W"],

show ticklabels = True)

trail figure = D.trail plot("all")

bin width value = 0.01

N samples = 32

figure = D.plot emcee(binwidth = bin width value, detrend = True,

nsamples = N samples)

34



Figure 18: The CHEOPS light curve of an eclipse of WASP-189b. Top. The observed flux in blue with
the emcee fit in orange against time. Bottom. The residuals of the fit.

The corner plot and trail plot functions will produce similar plots as to those seen for KELT-
11b in Section 5.4.3.

5.4.5 Fitting a Transit and an Eclipse in the same Dataset

Whilst there are specific functions built into pycheops to do transit and eclipse fitting separately,
it is also possible to construct a transit and eclipse combined model to fit datasets that contain both
observed features. As shown above there are multiple physical and orbital parameters in common
when building a transit and an eclipse model. Therefore, if both features are observed in a light
curve users may wish to fit them simultaneously as this may lead to a better fit.

After obtaining the times and fluxes of a light curve, either using the get lightcurve function
or by other means, users must build a combined transit and eclipse model using TransitModel()

and EclipseModel() objects. Note that if the FactorModel() object is also included, as it is in
the example below, users can also detrend the light curve following the examples above. Following
the creation of a Model, the parameter object of that model can be created using make params(),
and populated with the values and uncertainties (represented by the lower and upper bounds) for
various physical and orbital parameters using the add() function. It should be noted that for the
transit fitting parameters to be linked to the eclipse fitting parameters where possible, additional
parameters must be added to the model. In the following example this is done using a for loop and
the add function, and by giving the transit parameters the prefix “T ”. This is in effect the same
as using the EBLMModel() model in pycheops that can be used to model the transits and eclipses
of eclipsing binaries with a low-mass companion. Therefore, in the following code snippet, when
building the model the TransitModel(prefix = "T ") * EclipseModel() code could simply be
replaced by EBLMModel().

Using the lmfit package, the Model can fitted to the light curve using the Levenberg-Marquardt
least squares method by setting up a chi-squared minimise function that uses the eval function to
compare the observed flux with the model. The model flux can be returned using eval, and the
residuals of the fit can be obtained using the residual function on the fit result. Finally, a readable
report of the fit and determined physical and orbital parameters can be viewed with fit report.
The following is a code example of the fitting process described in the preceding paragraphs along
with the code to plot these graphs.

35



Figure 19: A lmfit fit of the transit and eclipse of an eclipsing binary system generated using the code
snippet above. Top left. The transit/primary eclipse of the system with the flux in blue and the fitted model
in red, against time. Top right. The fit of the secondary eclipse in red to the flux in blue, against time.
Bottom. The residuals of the transit fit (left) and the eclipse fit (right).

Similarly to the previous examples it is possible to use the emcee Python package to fit both
the transit and eclipse observed in a light curve simultaneously using a MCMC method. How-
ever, this requires the building of log-posterior and likelihood functions prior to running the emcee

EnsembleSampler sampler and any plotting tools like the corner function in the corner package. It
is recommended that users either utilise the lmfit fitting of both detailed above, or fit the transits
and eclipse separately using either lmfit or emcee method.

from pycheops import Dataset

from pycheops.models import TransitModel, FactorModel, EclipseModel

import astropy.units as u

from lmfit import minimize

import numpy as np

from uncertainties import UFloat

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

def chisq prior(pars, *args):

r = (flux - model.eval(pars, t = time))/flux err

for p in pars:

u = pars[p].user data

if isinstance(u, UFloat):

r = np.append(r, (u.n - pars[p].value)/u.s)

return r

Model = FactorModel() * TransitModel(prefix = "T ") * EclipseModel()

pars = Model.make params()

pars.add("P", value = Period value, min = Period lower, max = Period upper)

pars.add("T 0", value = Centre time value, min = Centre time lower,

max = Centre time upper)

pars.add("D", value = Depth value, min = Depth lower, max = Depth upper)

pars.add("logrhoprior", value = Density value, min = Density lower,

max = Density upper)

pars.add("W", value = Width value, min = Width lower, max = Width upper)

pars.add("b", value = Impact value, min = Impact lower, max = Impact upper)

pars.add("f c", value = f c value, min = f c lower, max = f c upper)

pars.add("f s", value = f s value, min = f s lower, max = f s upper)

pars.add("T h 1", value = h 1 value, vary=True)

pars.add("T h 2", value = h 2 value, vary=True)

pars.add("L", value = Eclipse depth value, min = Eclipse depth lower,

max = Eclipse depth upper)

36



pars.add("a c", value = Travel time value, min = Travel time lower,

max = Travel time upper)

for parameters in ["P", "T 0", "D", "W", "b", "f c", "f s", "c"]:

pars.add("T ".format(parameters), expr = parameters)

result = minimize( chisq prior, pars, nan policy = ’propagate’,

args = (model, time, flux, flux err))

flux model = Model.eval(result.params, t = time)

residuals = result.residual

N plots = 2

figure, ax = subplots(ncols = N plots, nrows = N plots)

for i in range(N plots):

ax[0][i].scatter(time, flux)

ax[0][i].plot(time, flux model, "r")

for j in range(N plots):

ax[1][j].scatter(time, residuals)

ax[1][j].set xlabel("BJD")

for k in range(N plots):

ax[k][0].set xlim(Centre time value - 2 * Period value * Width value,

Centre time value + 2 * Period value * Width value)

for l in range(N plots):

ax[l][1].set xlim(Centre time value + Period value * (Eclipse phase value

- 2 * Eclipse width value),

Centre time value + Period value * (Eclipse phase value

+ 2 * Eclipse width value))

ax[0][0].set ylabel("Flux")

ax[1][0].set ylabel("Residuals")

print(result.fit report())

37



Figure 20: The lmfit report of the transit and eclipse fitting produced by the code snippet above, showing
the fit statistics, determined parameter values and uncertainties, and parameter correlations.

38



5.4.6 Fitting a Thermal Phase Curve

Aside from fitting eclipses and transits, it is also possible to fit thermal phase curves of a tidally
locked planet with pycheops. This is done by creating a ThermalPhaseModel() object and adding
model parameters to it by first building a parameters object using make params() and populating it
using the add function. There are five parameters that can be used to construct the thermal phase
curve model; the period (P), the transit centre time (T 0), and three properties of the curve: the
coefficients of the cosine and sine terms (a th and b th) and a constant term that corresponds to
the minimum flux (c th). As can be seen in the code snippet below, the parameter values, minimum
and maximum bounds, and a Boolean on whether or not to vary the parameter during the fitting
can be set in the add function.

The data can then be fitted using a chi-squared minimisation function defined in the code snippet
below and the model constructed function eval from the lmfit Python package to produce the result
of the Levenberg-Marquardt least squares fitting. The eval function can be used again to calculate
the flux of the best fitting model with the residuals obtainable using the residual function on the
result object created. Finally, a report detailing the statistics, variables used, and correlations
found during the fit can be returned using the fit report function.

In addition to the fitted parameters, multiple derived values are reported that users may find
useful. As can be seen in the thermal phase curve fitting report below, these are; the phase curve
peak-to-trough amplitude (A), the maximum and minimum flux (Fmax and Fmin), and the phase
to maximum flux (ph max).

As with the simultaneous transit and eclipse fitting shown above, it is also possible to build more
complex models, for example including detrending or eclipse fitting, by multiplying the ThermalPhaseModel()
by other model classes such as FactorModel() or EclipseModel() and adding the desired parame-
ters and their values. However, in pycheops there is a combined PlanetModel() that can be used
to model transits, eclipses, and thermal phase curves, as is described below.

from pycheops import Dataset

from pycheops.models import ThermalPhaseModel

import astropy.units as u

from lmfit import minimize

import numpy as np

from uncertainties import UFloat

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

def chisq prior(pars, *args):

r = (flux - model.eval(pars, t = time))/flux err

for p in pars:

u = pars[p].user data

if isinstance(u, UFloat):

r = np.append(r, (u.n - pars[p].value)/u.s)

return r

Model = ThermalPhaseModel()

39



pars = Model.make params()

pars.add("P", value = Period value, min = Period lower, max = Period upper)

pars.add("T 0", value = Centre time value, min = Centre time lower,

max = Centre time upper)

pars.add("a th", value = a th value, vary = True)

pars.add("b th", value = b th value, vary = True)

pars.add("c th", value = c th value, vary = True)

result = minimize( chisq prior, pars, nan policy = "propagate",

args = (model, time, flux, flux err))

flux model = Model.eval(result.params, t = time)

residuals = result.residual

figure, ax = subplots(2, 1, sharex = True)

ax[0].scatter(time, flux)

ax[0].plot(time, flux model, "r")

ax[1].scatter(time, residuals)

ax[0].set ylabel("Flux")

ax[1].set ylabel("Residuals")

ax[1].set xlabel("Time")

print(result.fit report())

40



Figure 21: A lmfit fit of the thermal phase curve generated using the code snippet above showing the flux
(blue) and fitted model (red) in the top panel, and the the residuals to the fit in the bottom panel.

Figure 22: The lmfit report of the thermal phase curve fitting produced by the code snippet above,
showing the fit statistics, determined parameter values and uncertainties, and parameter correlations

5.4.7 Fitting a Transit, Eclipse, and Thermal Phase Curve in the same Dataset

It has been shown in the previous subsections that it is possible within pycheops to use the
built in models to construct more complex models to fit CHEOPS data. One such model is the
PlanetModel() that provides a framework to fit a transit, eclipse, and thermal phase curve in a
dataset. If this is combined with a FactorModel() users can also conduct decorrelation in addition
to feature fitting. This can be done by building the desired model, adding parameters and their
corresponding values and limits, fitting the model to the data using a least squares method, and
plotting the result, as shown in the code snippet below.

As the procedure and parameters used are very similar to those provided in previous subsections,
a detailed explanation is superfluous and users are referred to those subsections in order to obtain
an understanding of the code snippet below. However, there are a few subtle differences between the
PlanetModel() and the component models described before that should be mentioned. Unlike in
the TransitModel() the stellar density is not a parameter, but rather is calculated explicitly within
the model class. Similarly, the eclipse depth is also not a parameter that can be defined. Finally,
to build the thermal phase curve model the parameters required are the thermal phase minimum
and maximum flux (F min and F max) and the maximum flux phase offset (ph off). These are
calculated within the separate ThermalPhaseModel() and are different to the thermal phase curve
coefficients used in that class.

Should users want to include these parameters in a model it is recommended that they replace the
PlanetModel() with TransitModel(prefix = "T ") * EclipseModel() * ThermalPhaseModel()

and link the common model parameters together as seen in the transit and eclipse fitting subsection
above. For example, the period and transit centre time between the transit, eclipse, and thermal

41



phase models, and the transit depth, width, impact parameter, and orbital eccentricity and longitude
of periastron components between the transit and eclipse models.

from pycheops import Dataset

from pycheops.models import PlanetModel, FactorModel

import astropy.units as u

from lmfit import minimize

import numpy as np

from uncertainties import UFloat

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

def chisq prior(pars, *args):

r = (flux - model.eval(pars, t = time))/flux err

for p in pars:

u = pars[p].user data

if isinstance(u, UFloat):

r = np.append(r, (u.n - pars[p].value)/u.s)

return r

Model = PlanetModel() * FactorModel()

pars = Model.make params()

pars.add("P", value = Period value, min = Period lower, max = Period upper)

pars.add("T 0", value = Centre time value, min = Centre time lower,

max = Centre time upper)

pars.add("D", value = Depth value, min = Depth lower, max = Depth upper)

pars.add("W", value = Width value, min = Width lower, max = Width upper)

pars.add("b", value = Impact value, min = Impact lower, max = Impact upper)

pars.add("F min", value = Flux minimum value, min = Flux minimum lower,

max = Flux minimum upper)

pars.add("F max", value = Flux maximum value, min = Flux maximum lower,

max = Flux maximum upper)

pars.add("ph off", value = Phase offset value, min = Phase offset lower,

max = Phase offset upper)

pars.add("f c", value = f c value, min = f c lower, max = f c upper)

pars.add("f s", value = f s value, min = f s lower, max = f s upper)

pars.add("h 1", value = h 1 value, vary=True)

pars.add("h 2", value = h 2 value, vary=True)

pars.add("a c", value = Travel time value, min = Travel time lower,

pars.add("dfdbg", value = 0, vary=True)

pars.add("dfdcontam", value = 0, vary=True)

max = Travel time upper)

result = minimize( chisq prior, pars, nan policy = "propagate",

42



args = (model, time, flux, flux err))

flux model = Model.eval(result.params, t = time)

residuals = result.residual

N plots = 2

figure, ax = subplots(ncols = N plots, nrows = N plots)

for i in range(N plots):

ax[0][i].scatter(time, flux)

ax[0][i].plot(time, flux model, "r")

for j in range(N plots):

ax[1][j].scatter(time, residuals)

ax[1][j].set xlabel("BJD")

for k in range(N plots):

ax[k][0].set xlim(Centre time value - 2 * Period value * Width value,

Centre time value + 2 * Period value * Width value)

for l in range(N plots):

ax[l][1].set xlim(Centre time value + Period value * (Eclipse phase value

- 2 * Eclipse width value),

Centre time value + Period value * (Eclipse phase value

+ 2 * Eclipse width value))

ax[0][0].set ylabel("Flux")

ax[1][0].set ylabel("Residuals")

print(result.fit report())

5.4.8 Saving your Datasets

Following the previous steps of obtaining and preparing your data, decorrelating and subsequent
fitting of an eclipse or transit in the dataset, users may want to save the Dataset object they
have been working on. This can be done by running the following code snippet after the steps the
decorrelating and fitting steps outlined before:

D.save()

This saves all decorrelation and fitting done on a Dataset, including the addition of a glint function
and modelling stellar variability using Gaussian processes, to a “.dataset” file in the current working
directory. Importantly, this must be done after a lmfit or emcee fit of an eclipse or transit is
conducted.

Conversely, saved datasets can be loaded using the corresponding load function:

D.load(filename)

Which be useful in order to inspect previous fits or when analysing multiple visits of the same target
in pycheops.

43



5.5 Fitting your Data - Multiple Visits

For targets observed multiple times with CHEOPS it is possible to use pycheops to analyse the
visits simultaneously by fitting any observed eclipses or transits across the datasets. Furthermore,
users can utilise functionality within pycheops to calculate any transit timing variations (TTVs)
and eclipse depth variations (EDVs) between the fits of the individual visits. The multiple dataset
fitting is done in a similar manner to the individual dataset fitting and is described below.

5.5.1 Loading your Datasets

In order to analyse multiple visits within pycheops a MultiVisit object needs to be created. This
is done by passing the target name to the MultiVisit class as shown in the code snippet below.
Importantly, in order to build this object the current working directory is searched for “.dataset” files
with the target name provided. Therefore, before attempting to create a Multivisit object users must
create and save Dataset objects of the individual visits to be analysed. Crucially, this also requires
the fitting of any eclipse or transit using the lmfit or emcee functions outlined in Section 5.4 before
saving and incorporation into a MultiVisit object.

from pycheops import MultiVisit

M = MultiVisit(target name, id kws = {"dace": False,

"teff": (Teff value, Teff error),

"match arcsec": 10})

The MultiVisit object also queries the StarProperties function and prints the retrieved stellar
property values (Teff , log(g), Fe/H) and calculate stellar density and limb-darkening coefficients for
potential use in subsequent fitting. Users can pass arguments from MultiVisit to StarProperties

by listing keys and corresponding values in the id kws dictionary argument. For example, users can
specify not to query the DACE stellar table, set their own Teff value, or change the search radius in
SIMBAD and SWEET-Cat as shown in the code snippet above. A description of the complete set
of StarProperties arguments is given in Section 5.4.1.

In addition to showing the stellar properties of the host star of the target, building a MultiVisit

object also prints to the screen the retrieved saved datasets and lists the file key, aperture, and
pipeline version of the data, the function last used to fit the eclipse or transit (i.e. lmfit or emcee),
and if a Gaussian process or glint function was included.

5.5.2 Fitting Multiple Datasets - Transits or Eclipses

After loading the multiple datasets and prior to a global fit it can be beneficial to determine a transit
centre time near the centre of the CHEOPS observing window in order to aid the eclipse or transit
fitting, or the determination of TTVs if desired. This is be done by providing the tzero function with
a known transit centre time and period, for example from a fit of an individual dataset. It should
be noted that the known transit centre time should be provided in BJD. The function propagates
the ephemerides and returns the transit centre time closest to the mid-point of the multiple visits.

from pycheops import MultiVisit

M = MultiVisit(target name)

44



New centre time value = M.tzero(Old centre time value, Period value)

In the MultiVisit class there are three functions that can be used to fit observed features and
returns the result in the form of a lmfit object that includes the derived parameter values, fit
statistics, and metadata; fit transit, fit eclipse, and fit eblm, where the last routine fits
both transits and eclipses in the saved datasets. These functions utilise the emcee Python package
to conduct the fitting in a similar manner to the emcee sampler function of the Dataset class.
Therefore, there are many arguments in common, for example setting the number of walkers, and
burn-in and main steps in the MCMC, and the option to model the stellar noise using a Gaussian
process regression utilising the celerite2 Python package. These arguments are covered in more
detail in Section 5.4.3 and references therein, however briefly, the stellar variability and granulation
has been found to be well modelled by a stochastically driven, damped harmonic oscillator and
white noise that can be represented using SHOTerm and JitterTerm kernels that are built using the
log sigma w, log omega0, and log S0 terms and arguments.

It has been found that CHEOPS data can be affected by systematic trends that occur over
a range of roll angle frequencies. Within the Dataset fitting routines it was possible to detrend
against these effects using the sines and cosines of the first, second, and third order of roll angle
frequencies, however when analysing multiple datasets this number of parameters scales quickly and
becomes computationally intractable. Therefore, common to all three fitting functions is a new
feature available in the MultiVisit class that conducts roll angle decorrelation on each dataset
separately, automatically without the needed for any additional definition from the user. Instead of
explicitly calculating the scaling factor free parameters for the sines and cosines of each roll angle
frequency, these factors are implicitly marginalised over in the MCMC using a method presented
here[12], and therefore this lack of calculation can significantly reduce the time needed to fit multiple
datasets. By default, this feature is set to run up to the third order frequencies. Should users want
to disable or alter this method it is possible by setting the unroll argument to False or changing the
value of nroll. However, it is strongly recommended utilise this feature as roll angle decorrelation
when not needed is unlikely to degrade the light curve, but trends in the data are seen this is a
straight-forward method to potentially remove them. If the instrumental noise that is correlated
with roll angle is large conducting decorrelation via this method may add additional noise to the
dataset. Therefore, users can set the unwrap argument to True in order to divide the individual
datasets by the corresponding roll angle trends found in previous Dataset fitting before conducting
the simultaneous roll angle decorrelation detailed above.

The last feature common to all fitting routines is the extra priors dictionary argument. This
allows users to pass additional constraints, such as stellar density, or decorrelation basis vectors, for
example flux versus time, in the same fashion as for the eclipse and transit fitting in the Dataset

class, as can be seen in the examples below.

5.5.2.1 Fitting Transits

In addition to the features mentioned above, there are some arguments that are unique to the
fit transit function. As well as the parameters that define the transit fit (the orbital period (P),
the transit centre time (T 0), the transit depth (D), the transit width (W), the impact parameter
(b), the limb-darkening coefficients (h 1 and h 2), and the orbital eccentricity and longitude of
periastron components (f c and f s)), users can also fit for TTVs by setting the ttv argument to
True and defining the range in seconds of the TTVs to be searched over in ttv prior, as can be
seen in the code snippet below:

45



from pycheops import MultiVisit

M = MultiVisit(target name)

result = M.fit transit(T 0 = New centre time value, P = Period value,

ttv = True, ttv prior = TTV prior value,

D = ufloat(Depth value, Depth error),

W = ufloat(Width value, Width error),

h 1 = h 1 value, h 2 = h 2 value,

steps = N steps, nwalkers = N walkers, burn = N burn,

log sigma w = (log sigma w lower, log sigma w upper),

log omega0 = (log omega0 lower, log omega0 upper),

log S0 = (log S0 lower, log S0 upper),

extra priors = {"logrho": Log stellar density,

"dfdt 1": ufloat(0, 1),

"dfdt 2": ufloat(0, 1),

"dfdt 3": ufloat(0, 1)})

In this example, as TTVs are being fitted the transit centre time and period are fixed.

5.5.2.2 Fitting Eclipses

For fitting multiple eclipses, users can utilise the fit eclipse function that contains the common
features outlined above, and some functionality specific to eclipse fitting. This include the parameters
used in the fitting (the orbital period (P), the eclipse depth (L), the transit centre time (T 0), the
transit depth (D), the transit width (W), the light travel time (a c), the impact parameter (b), and
the stellar orbit eccentricity and longitude of periastron components (f c and f s)), and the option
to fit EDVs. Similarly to fitting TTVs, this can be done by setting edv to True and providing a
range of EDVs to fit over in edv prior as can be seen in the following:

from pycheops import MultiVisit

M = MultiVisit(target name)

result = M.fit eclipse(L = Eclipse depth value,

edv = True, edv prior = EDV prior value,

T 0 = ufloat(New centre time value,

New centre time error),

P = ufloat(Period value, Period error),

D = ufloat(Depth value, Depth error),

W = ufloat(Width value, Width error),

steps = N steps, nwalkers = N walkers, burn = N burn,

log sigma w = (log sigma w lower, log sigma w upper),

log omega0 = (log omega0 lower, log omega0 upper),

log S0 = (log S0 lower, log S0 upper),

extra priors = {"logrho": Log stellar density})

As this example shows the fitting of EDVs the absolute eclipse depth is fixed with the error taken
to be in the range of the EDV prior given. Importantly, it should be noted that the T 0 value here is

46



the transit centre time and not the eclipse centre time. Therefore, if users only have observations of
eclipses they should subtract half the phase from the observed eclipse centre time for the correct T 0.

5.5.2.3 Fitting Transits and Eclipses

As well as fitting transits and eclipses seen in multiple visits separately, it is also possible to fit
multiple visits that contain both an eclipse and a transit simultaneously. This can be done in using
the fit eblm function that uses all the features outlined above including fitting the transits for
TTVs and the eclipses for EDVs. It should be noted that whilst both sets of features are fitted, the
function does not include the fitting of any thermal or phase effects.

from pycheops import MultiVisit

M = MultiVisit(target name)

result = M.fit eblm(T 0 = New centre time value, P = Period value,

L = Eclipse depth value,

ttv = True, ttv prior = TTV prior value,

edv = True, edv prior = EDV prior value,

D = ufloat(Depth value, Depth error),

W = ufloat(Width value, Width error),

h 1 = h 1 value, h 2 = h 2 value,

steps = N steps, nwalkers = N walkers, burn = N burn,

log sigma w = (log sigma w lower, log sigma w upper),

log omega0 = (log omega0 lower, log omega0 upper),

log S0 = (log S0 lower, log S0 upper),

extra priors = {"logrho": Log stellar density,

"dfdt 1": ufloat(0, 1),

"dfdt 2": ufloat(0, 1),

"dfdt 3": ufloat(0, 1)})

5.5.3 Plotting and Assessing the Multiple Visit Fits

There are several plotting and assessment functions available in the MultiVisit class that users can
run to view the fitting of multiple transits, eclipses, or both conducted with the functions mentioned
above. These include plotting the fitted feature, the trail and corner plots of the fit, printing the
fit report, and in the case of fitting TTVs, an observed minus calculated (O-C) plot. It should be
noted that the first four functions described above can be run after the fitting of multiple transits,
eclipses, or both.

To highlight the functionality of MultiVisit, the code snippet below shows a simplified MultiVisit

fit including EDVs showing the plotting and assessment functions of the CHEOPS observations of
WASP-189b that have been recently published [7]:

from pycheops import MultiVisit

M = MultiVisit(target name)

result = M.fit eclipse(L = Eclipse depth value,

edv = True, edv prior = EDV prior value,

47



T 0 = ufloat(New centre time value,

New centre time error),

P = ufloat(Period value, Period error),

h 1 = h 1 value, h 2 = h 2 value,

steps = N steps, nwalkers = N walkers, burn = N burn,

extra priors = {"logrho": Log stellar density})

figure = M.plot fit(detrend = True, add gaps = True, gap tol = 0.001,

data offset = 0.0005, res offset = 0.0005)

trail figure = M.trail plot(plotkeys = "all", plot kws = {"color": "k"})
corner figure = M.corner plot(plotkeys = "all", show priors = True)

print(M.fit report())

fig, ax = plt.subplots()

for j in range(len(M.datasets)):

t = M.datasets[j].lc["time"].mean() - 1900

edv = M.result.params[f"L j+1:02d"].value - M.result.params["L"].value

edv err = M.result.params[f"L j+1:02d"].stderr

ax.errorbar(t, edv, yerr = edv err, color = "b")

plt.axhline(0, c = "darkcyan", ls = ":")

ax.set xlabel("BJD - 2458900")

ax.set ylabel(r"∆L (ppm)")

The plot fit function is similar to the Dataset plot lmfit and plot emcee functions described
in Section 5.4.3, albeit with multiple unique features to aid in viewing multiple visits. For example,
in addition to plotting the decorrelated light curves by setting the detrend argument to True, users
can specify the offset between the fluxes and residuals from each visit using the data offset and
res offset arguments, and set the y-axes limits for the data and residual subplots by giving a
length=2 tuple to the data ylim and res ylim arguments. When plotting after using fit eblm,
fluxes and residuals can be offset for transits and eclipses separately using a length=2 tuple. As
can be seen below it is also possible to avoid plotting over gaps in the data by setting the add gaps

argument to True. The fitted model will then not be plotted over gaps larger than specified by the
gap tol argument.

48



Figure 23: The multiple visit eclipse fit of WASP-189b showing the raw photometry in light blue, binned
values in dark blue, transit model in green, and the combined transit, Gaussian process, and decorrelation
model in brown, with gaps in the combined model apparent.

Figure 24: The EDV plot of the WASP-189b CHEOPS observations produced using the code snippet above
showing the transit centre time shift from the calculated value against the observed epoch.

49



The trail plot, corner plot, and fit report MultiVisit functions are effectively identical to
the corresponding Dataset functions detailed in Section 5.4.3. For example, the plotkeys argument
allows users to select which fitted parameters should be plotted by including parameter names in a list
or by giving the string: “all”. Another useful feature to highlight is the plot kws dictionary argument
in the trail plot function. This allows the user to tweak aesthetic aspects of the trail plot, such
as plotting all the chains in black.

A unique feature of the MultiVisit class is the ttv plot function that produces an O-C plot
of the determined TTV values from the MultiVisit fit and plots them against the fitted transit
centre time. Similarly to the trail plot, the dictionary argument plot kws can be used to change
aesthetic aspects, for example, the marker colour and shape, or errorbar cap size.

5.6 Further Analysis of the Data

5.6.1 Estimating Light Curve Noise

In addition to fitting features of the light curves as detailed above, pycheops also provides the
ability to estimate the noise in the data. This is done by determining the depth of a transit that
would be detected with a signal-to-noise (S/N) of 1, which is similar to the Combined Differential
Photometric Precision (CDPP) method used to calculated noise in Kepler light curves. To calculate
this value a nominal transit model (with an impact parameter, b = 0, and a width, in hours, over
which the noise is calculated) is inserted into the light curve and scaled until the S/N is met.

To determine the transit depth that satisfies this requirement the model is fit to the data with
the true standard errors of the data calculated via two methods; the scaled errors method and the
minimum errors method. In the scaled errors method it is assumed that the true flux uncertainties are
underestimated by a factor compared to the reported errors, whereas in the minimum errors method
the reported errors are taken to be the lower-bound of the true flux uncertainty distribution. In
general, the minimum errors method usually assumes greater true standard errors of the data and,
thus, produces a larger S/N = 1 transit depth. A detailed break-down of the calculation of the errors
via these methods is beyond the scope of this document and therefore, users are referred here [14].

pycheops calculates these values for a light curve using the transit noise plot function in
the Dataset module. This function assumes a flat light curve with no transit that is normalised to 1.
Therefore, prior to estimating the noise of the dataset, any transit apparent in the light curve must
be fit and removed. This can be done using either the lmfit or emcee methods detailed above to
obtain the transit parameters which are then input in the lmfit transit. The example below shows
how to use lmfit transit, plot transit, and transit noise plot functions to fit and remove a
transit from the light curve and then calculate the transit noise. In this example, parameter values
are previously defined in Section 5.4.

from pycheops import Dataset

from uncertainties import ufloat

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate = True)

D.lmfit transit(P = ufloat(Period value, Period error),

50



T 0 = ufloat(Centre time value, Centre time error),

D = ufloat(Depth value, Depth error),

logrhoprior = Log stellar density,

W = ufloat(Width value, Width error),

b = ufloat(Impact value, Impact error),

h 1 = h 1 value, h 2 = h 2 value)

figure = D.plot lmfit()

residuals = (D.lc["flux"] - D.model.eval(D.lmfit.params, t = D.lc["time"]))

D.lc["flux"] = residuals + 1

Window width value = 3

noise dictionary = D.transit noise plot(width = Window width value)

In order to provide a more representative noise estimate value the transit noise plot function
splits the light curve into 500 segments, by default, and calculates the noise on each of those segments
separately. The minimum, maximum, and mean of the array of noises is then reported, as can be
seen above, and return in the form of a dictionary if the return values argument is set to True. In
the output noise plot the green line indicates the minimum error noise estimates and the blue line
indicates the scaled error noise values. It should be noted that as no transit fit is perfect additional
noise may be added into the light curve when the model is subtracted from the data to obtain the
residuals. Therefore, the produced noise estimates are more conservative than the true noise of the
light curve.

Figure 25: A lmfit fit to the transit of KELT-11b identical to Figure. 5. In order to calculate the noise
of the dataset the residuals of the fit (seen in the bottom plot) must be used.

51



Figure 26: The calculated transit noise statistics for both scaled noise and minimum error noise methods.
The plots show the flux of the light curve against time (top). Here it is the residuals of the transit fit. The
blue horizontal bar indicates the input transit width. Bottom. The transit noise calculated via the scaled
noise method, in blue, and via the minimum error noise method, in green. The dashed line at the top of the
plot shows the “required noise value” that the user wishes to compare the true noise against. This can be
set using the requirement argument in the transit noise plot function.

5.6.2 Calculating and Plotting the Planet Properties against Internal Structure Mod-
els

Following the fitting of a transit, pycheops users may want to plot the CHEOPS derived planetary
radius against a known value of the planet mass and theoretical internal structure models in order
to infer the internal properties of the target. This can be done using the massradius function after
fitting the transit using either the lmfit and/or emcee methods detailed above. In order to calculate
the planetary properties users should provide the host star’s mass and radius in Solar units in the
m star and r star arguments, respectively. If only one is provided, then the other stellar parameter
is derived using the stellar density determined from the transit fit. The stellar density is calculated
assuming that the planet to star mass ratio tends to 0. If this is invalid for the target system, users
can provide a mass ratio in the argument q.

To determine the planetary mass, users should provide a known value of the semi-amplitude
of the planet’s orbit in m/s using the argument K. Finally, users can choose to view the outputted
information relative to Jupiter, or Earth values by setting jovian equal to True or False, respectively.
If the following code snippet is run then above the mass versus radius plot, a range of stellar and
planetary properties will be reported, for example: the stellar and planetary mass, radius, and
density, mass ratio, planet semi-major axis, and planetary surface gravity as can be seen below.

As mentioned above, this function can be used to over-plot a range of theoretical internal struc-
ture models on the mass versus radius figure for the planet. Currently, models from Zeng et al. (2016)

52



[17] and Baraffe et al (2008) [1] can be selected by setting the "zeng models" or "baraffe models"

key in the plots kws argument to be equal to “all” or an array of specific models. By default, a
range of well-studied planets will be plotted with values taken from TEPCat [15].

from pycheops import Dataset

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

stellar mass value, stellar mass error = 1.44, 0.06

stellar radius value, stellar radius error = 2.72, 0.21

semi amplitude value, semi amplitude error = 18.5, 1.7

mass ratio value, mass ratio error = 0.00013, 0.00001

result, figure = D.massradius(m star = (stellar mass value,

stellar mass error),

r star = (stellar radius value,

stellar radius error),

K = (semi amplitude value,

semi amplitude error),

q = (mass ratio value, mass ratio error),

jovian = True,

plot kws = {"baraffe models": "all"})

Figure 27: Example mass versus radius plot with the planet shown in maroon with dark blue error contours.
Theoretical internal structure models from Baraffe et al. (2008) are shown with well-studied planets in cyan.

It should be noted that as well as producing mass versus radius plots for individual datasets, it is
also possible to construct these plots using radii determined via fitting multiple visits using the same
models and arguments as detailed above. This can be done after a MultiVisit fit by running:

result, figure = M.massradius(m star = (stellar mass value,

stellar mass error),

r star = (stellar radius value,

stellar radius error),

53



K = (semi amplitude value,

semi amplitude error))

The inputted and calculated values are returned in the form of a dictionary, with the samples used
in the determination of parameter statistics and uncertainties also provided if the return samples

argument is set equal to True.

5.6.3 Ploting the Fourier Transform of the Dataset

Upon fitting the light curve, if users notice a periodic variability in the dataset then they can utilise
the plot fft function to construct and plot a Lomb-Scargle power spectrum of the residuals to the
eclipse or transit fit in order to assess if the periodic trend is due to stellar variability. In addition, a
fast Fourier transform of the smoothed residuals is shown, along with an indicator of the CHEOPS
orbital frequency and the first two harmonics. If the stellar Teff and log(g) are known, for example
by using the StarProperties functionality, then the maximum stellar variability frequencies can be
calculated [3], and over-plotted on the figure, as shown below:

from pycheops import Dataset, StarProperties

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

host star properties = StarProperties(D.target)

figure = D.plot fft(host star properties)

Figure 28: Example Lomb-Scargle power spectrum, in grey, and smoothed in dark green. CHEOPS orbital
frequency harmonics are in red, and maximum stellar variability frequency estimates are in light green.

54



Appendix

A A Code Compilation for Downloading, Viewing, Decorre-
lating, and Fitting your Data

This section provides a code example compiling many of the code snippets presented in Sections 4
and 5 to download, view, decorrelate, and fit CHEOPS data of an observed transit with the aim to
provide pycheops users with a holistic code capable of basic light curve analysis. The code below
has been written in a generalised manner and therefore, can be used as a template to fit eclipses, if
the lmfit transit function is replaced with the lmfit eclipse function, or for further analysis.

# Import the relevant modules.

from pycheops import Dataset, PlanetProperties, StarProperties

from uncertainties import ufloat

# Download the data from DACE and view the DRP report.

file key = "CH PR300024 TG000101 V0100"

D = Dataset(file key)

# Obtain properties of the host star and planet to be used in the fitting.

host star properties = StarProperties(D.target)

Log star density = host star properties.logrho

h 1 value = host star properties.h 1.n

h 2 value = host star properties.h 2.n

planet properties = PlanetProperties("KELT-11b", query tepcat = True,

query dace = False)

Transit centre time = planet properties.T0

Period value, Period error = planet properties.P.n, planet properties.P.s

Depth value = planet properties.D.n / 1.e6

Width value = planet properties.W.n / Period value

# View the light curve by selecting which aperture size to use.

# For most visits "OPTIMAL" is recommended.

aperture = "OPTIMAL"

time, flux, flux err = D.get lightcurve(aperture = aperture,

decontaminate=True)

plt.plot(time, flux, "k.")

plt.title(D.target + " - aperture = " + aperture)

plt.xlabel("BJD Date (d)")

plt.ylabel("Normalised Flux")

# Animate every 10th subarray and imagette frame of the light curve

# to assess if any nearby objects have contaminated the photometry.

Nth frames = 10

Min values scaling factor = 1.0

Max values scaling factor = 1.0

55



frames = D.animate frames(nframes = Nth frames,

vmin = Min values scaling factor,

vmax = Max values scaling factor,

subarray = True, imagette = True)

# Create a diagnostic plot of the dataset to view key properties

# of the observations.

D.diagnostic plot()

# Run the decorrelation tool to assess if there are any trends in the data

# that should be removed.

D.should I decorr()

# Check the separation between the target and bright Solar System objects

# to assess if any glint flux artefacts need to be modelled and removed.

D.planet check()

# If glint flux artefacts are seen, do a preliminary fit of the transit

# to produce flux residuals that are used to construct the glint model,

# and plot flux residuals against roll angle.

Centre time value, Centre time error = Transit centre time.n,

Transit centre time.s

D.lmfit transit(P = ufloat(Period value, Period error),

T 0 = ufloat(Centre time value, Centre time error),

logrhoprior = Log stellar density)

N spline = 30

glint = D.add glint(nspline=N spline)

D.rollangle plot()

# Conduct a fit of the transit using the lmfit package,

# and produce plots of the fit and a report of the derived parameters.

# Remember that light curve decorrelation can be done simultaneously

# with transit fitting, for example against x and y centroid position,

# and glint if needed.

D.lmfit transit(P = ufloat(Period value, Period error),

T 0 = ufloat(Centre time value, Centre time error),

logrhoprior = Log stellar density,

h 1 = h 1 value, h 2 = h 2 value,

dfdx = ufloat(0., 1.), dfdy = ufloat(0., 1.),

glint scale = (0., 2.))

figure = D.plot lmfit(detrend = True)

print(D.lmfit report())

# Conduct any clipping of outliers not cleaned by the decorrelation.

clipping factor value = 5

56



time, flux, flux err = D.clip outliers(clip = clipping factor value)

# Run a MCMC transit fit that automatically uses the least-squares

# fit transit properties derived from the lmfit fit as priors, and

# produce a report of the derived properties, corner and trail plots of the

# posterior probability distributions, and a plot of the fit to the data.

N steps = 256

N walkers = 32

N burn = 128

N samples = 32

result = D.emcee sampler(steps = N steps, nwalkers = N walkers,

burn = N burn)

print(D.emcee report())

corner figure = D.corner plot("all")

trail figure = D.trail plot("all")

figure = D.plot emcee(nsamples = N samples)

# Estimate the noise of the light curve from the residuals to the fit.

residuals = (D.lc["flux"] - D.model.eval(D.lmfit.params, t = D.lc["time"]))

D.lc["flux"] = residuals + 1

Window width value = 3

noise dictionary = D.transit noise plot(width = Window width value)

# If a periodic flux trend is still noticeable in the flux residuals of

# the fit, conduct a Fourier transform to assess if this is due to

# stellar variability.

fft figure = D.plot fft(host star properties)

# Lastly, if the mass of the target planet is known then plot a mass

# versus radius diagram with theoretical internal structure models shown.

stellar mass value, stellar mass error = 1.44, 0.06

semi amplitude value, semi amplitude error = 18.5, 1.7

result, figure = D.massradius(m star=(stellar mass value, stellar mass error),

K=ufloat(semi amplitude value,

semi amplitude error),

jovian=True, plot kws={"baraffe models":"all"})

B Description of the pycheops Functions in this Cookbook

In this section detailed outline of the pycheops functions used in this cookbook are given with
a brief description of the specific function followed by an instance of the function with the key-
word arguments showing the default values, and a listing and description of all function argument
parameters and the expected returned variables.

57



pycheops.Dataset

A class that creates a Dataset object that downloads or extracts CHEOPS data from the DACE
archive or a local directory based on the inputted file key, and produces object specific tables and
arrays. The Dataset object is a fundamental tool in pycheops analysis of CHEOPS light curves,
and it should be noted that the following dataset based functions can only be run after a Dataset
object is created.

pycheops.Dataset(self, file key, force download=False, download all=True,
configFile=None, target=None, verbose=True, metadata=True,
view report on download=True):

Parameters file key: String of the file key of the dataset to be analysed
force download: Boolean on if data should be downloaded

regardless of the presence of a local file with the
same file key

download all: Boolean on downloading all data (light curves,
images, and logs) or only light curves

configFile: String of the directory of the pycheops
configuration file, if set to “None” the default
directory is used

target: String of the target name
verbose: Boolean on the printing of information to

the screen
metadata: Boolean on the loading of the metadata
view report on download: Boolean on showing the DRP report

pycheops.Dataset.add glint

A function that creates a smooth spline function that can be used to model the glint or flux artefacts
seen periodically with roll angle. This spline function can be fit to the residuals of an eclipse or
transit fit, or data outside of a mask provided by the user. By default the glint is fitted as a function
of roll angle, but the moon angle may also be used. The number of splines can also be inputted.
The fitted spline function of the glint is returned.

pycheops.Dataset.add glint(self, nspline=8, mask=None, fit flux=False, moon=False,
angle0=None, gapmax=30, shot plot=True, binwidth=15,
figsize=(6,3), fontsize=11):

58



Parameters nspline: Integer number of spline used in the created model
mask: Array of Booleans indicating the data to fit
fit flux: Boolean on fitting the flux or residuals
moon: Boolean on fitting the data to the moon or roll angle
angle0: Integer or float of the roll angle after the gap in units of degrees
gapmax: Integer or float of the maximum gap in the data in units of degrees
show plot: Boolean on showing a plot of the fit
binwidth: Integer or float of width of each bin for the binned data in

units of degrees
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size

Returns glint function: A spline function of glint versus roll or moon angle

pycheops.Dataset.animate frames

A function that produces, saves, and displays animations of the subarrays and imagettes of a dataset
by including every tenth frame of the visit, by default. This frequency can be changed by setting the
nframes argument to the desired value. The minimum and maximum flux levels of the animation
can be changed by inputting new scaling factors, vmin and vmax, and a grid over-plotted. The
resulting animations for the subarrays and/or imagettes are save in the current working directory,
with the frame cubes used in the animation returned to the user.

pycheops.Dataset.animate frames(self, nframes=10, vmin=1., vmax=1., subarray=True,
imagette=False, grid=False, writer=’pillow’):

Parameters nframes: Integer value of every n-th frame to be animated
vmin: Integer or float of the scaling factor of the

minimum flux level
vmax: Integer or float of the scaling factor of the

maximum flux level
subarray: Boolean on animating the subarrays of a dataset
imagette: Boolean on animating the subarrays of a dataset
grid: Boolean on over-plotting a grid
writer: String of the name of the animation writer

to be used
Returns subarray animation cube: The subarray cube used in the animation

imagette animation cube: The imagette cube used in the animation

pycheops.Dataset.clip outliers

A function that calculates the mean absolute deviation (MAD) of the median smoothed light curve
and removes outliers from the dataset that are exterior to this value multiplied by an inputted scal-
ing factor with the clipped time, flux, and flux error arrays returned.

pycheops.Dataset.clip outliers(self, clip=5, width=11, verbose=True):

59



Parameters clip: Integer or float of MAD scaling factor used for clipping
width: Integer or float of the window width for the median-smoothing

filter in units of data points
verbose: Boolean on the printing of information to the screen

Returns time: The MAD-clipped time array of the dataset
flux: The MAD-clipped flux array of the dataset
flux error: The MAD-clipped flux error array of the dataset

pycheops.Dataset.corner plot

A function that produces a corner plot of the posterior distributions of selected eclipse or transit
fitted properties with the option to over-plot prior values and to plot the tick labels with the figure
returned.

pycheops.Dataset.corner plot(self, plotkeys=[’T 0’, ’D’, ’W’, ’b’], show priors=True,
show ticklabels=False, kwargs=None):

Parameters plotkeys: Array of eclipse or transit properties to plot or “all”
show priors: Boolean on the plotting of the prior values
show ticklabels: Boolean on the plotting of the tick labels
kwargs: Key word arguments to parse to the corner.corner function

Returns figure: A figure of the corner plot

pycheops.Dataset.correct ramp

A function that corrects the flux of a dataset based on the telescope temperature and a ramp correct
factor, beta, that depends on the aperture radius used in the photometry. The measured and cor-
rected fluxes can be plotted using the plot argument with the correction able to be applied multiple
times using the force argument. Corrected fluxes are returned to the user, along with the time and
flux error arrays, and saved in the Dataset object.

pycheops.Dataset.correct ramp(self, beta=None, plot=False, force=False, figsize=(6,3),
fontsize=12):

Parameters beta: Float of ramp correct factor
plot: Boolean on the plotting of the measured and corrected fluxes
force: Boolean on forcing the correction of the ramp
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size

Returns time: The ramp corrected time array of the dataset
flux: The ramp corrected flux array of the dataset
flux error: The ramp corrected flux error array of the dataset

pycheops.Dataset.decorr

A function that decorrelates the flux of a dataset against time, x and y centroid positions, roll angle,
contamination, and/or smear using the lmfit package and a constructed trend model, plots the fit
and decorrelated light curve, and returns the decorrelated flux and flux errors.

60



pycheops.Dataset.decorr(self, dfdt=False, df2dt2=False, dfdx=False, d2fdx2=False, dfdy=False,
d2fdy2=False, d2fdxdy=False, dfdsinphi=False, dfdcosphi=False,
dfdsin2phi=False, dfdcos2phi=False, dfdsin3phi=False,
dfdcos3phi=False, dfdbg=False, dfdcontam=False, dfdsmear=False):

Parameters dfdt: Boolean on linearly decorrelating flux against time
df2dt2: Boolean on quadratically decorrelating flux against time
dfdx: Boolean on linearly decorrelating flux against x

centroid position
d2fdx2: Boolean on quadratically decorrelating flux against x

centroid position
dfdy: Boolean on linearly decorrelating flux against y

centroid position
d2fdy2: Boolean on quadratically decorrelating flux against y

centroid position
d2fdxdy: Boolean on quadratically decorrelating flux against x and

y centroid positions
dfdsinphi: Boolean on linearly decorrelating flux against the sine

of the roll angle
dfdcosphi: Boolean on linearly decorrelating flux against the cosine

of the roll angle
dfdsin2phi: Boolean on quadratically decorrelating flux against the sine

of the roll angle
dfdcos2phi: Boolean on quadratically decorrelating flux against the cosine

of the roll angle
dfdsin3phi: Boolean on cubically decorrelating flux against the sine

of the roll angle
dfdcos3phi: Boolean on cubically decorrelating flux against the cosine

of the roll angle
dfdbg: Boolean on linearly decorrelating flux against the background
dfdcontam: Boolean on linearly decorrelating flux against the contamination
dfdsmear: Boolean on linearly decorrelating flux against the smear

Returns flux: An array of the decorrelated flux
flux error: An array of the flux errors divided by the trend model

pycheops.Dataset.diagnostic plot

A function that creates a set of eight plots comparing properties of a dataset: time versus flux; roll
angle versus flux; time versus background flux; roll angle versus background flux; x centroid posi-
tion versus flux; y centroid position versus flux; contamination estimate versus flux; smear estimate
versus flux; and roll angle versus x and y centroid offsets.

pycheops.Dataset.diagnostic plot(self, fname=None, figsize=(8,8), fontsize=10,
flagged=None):

Parameters fname: String of file name used to save figure
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size
flagged: Boolean on comparing data against DRP flagged data

61



pycheops.Dataset.emcee report

A function that produces a report of the eclipse or transit fit produced by the pycheops emcee sampler

function that includes the model, fit statistics, model variables, and correlations between the vari-
ables.

pycheops.Dataset.emcee report(self, **kwargs):

Parameters **kwargs: Key word arguments to parse to the lmfit.fit report function
Returns report: A report of the eclipse or transit fit

pycheops.Dataset.emcee sampler

A function that samples the posterior probability distributions of eclipse or transit fitting parame-
ters using the Python emcee package with the number of sampling and burn-in steps, walkers, and
samples to be thin inputted. The shot noise of the observations can be modelled by constructing shot
and jitter term kernel using the Python celerite2 package. The posterior probability distributions
are returned to the user.

pycheops.Dataset.emcee sampler(self, params=None, steps=128, nwalkers=64, burn=256,
thin=1, log sigma=None, add shoterm=False,
log omega0=None, log S0=None, log Q=None,
init scale=1e-2, progress=True):

Parameters params: Dictionary of fit parameter priors, if set = None and a lmfit

function was run previously then this dictionary will be taken
from the previous fit

steps: Integer number of sampling steps for the MCMC to perform
nwalkers: Integer number of walkers in the MCMC
burn: Integer number of burn-in steps for the MCMC to perform
thin: Integer number of n-th sampled value to be thinned
log sigma: Logarithm of sigma of the jitter term of the kernel
add shoterm: Boolean on whether to included modelled shot noise to

the sampler
log omega0: Logarithm of omega0 of the shot-term kernel
log S0: Logarithm of S0 of the shot-term kernel
log Q: Logarithm of Q of the shot-term kernel
init scale: Float of the initial scale of steps to be taken
progress: Boolean on printing the progress of the sampler

Returns result: The result of the MCMC fit to the data

pycheops.Dataset.flatten

A function that normalises a dataset using a polynomial fit of order to be inputted with the option
to include a mask centre and width that can be used to avoid normalisation of a section of the light
curve. The time, flux, and flux error arrays of the dataset are returned.

pycheops.Dataset.flatten(self, mask centre, mask width, npoly=2):

62



Parameters mask centre: Integer or float of the time at the mask centre
mask width: Integer or float of the mask width in the same units as

the time array
npoly: Integer of the polynomial order used to normalise the data

Returns time: The normalised time array of the dataset
flux: The normalised flux array of the dataset
flux error: The normalised flux error array of the dataset

pycheops.Dataset.get lightcurve

A function that extracts the light curve data of the dataset from a pre-downloaded .tgz file, decon-
taminates the data of any nearby sources, and returns it in the form of an astropy table or three
arrays.

pycheops.Dataset.get lightcurve(self, aperture=None, decontaminate=None,
returnTable=False, reject highpoints=True,
verbose=True):

Parameters aperture: String selecting the aperture size of the photometry
conducted on the observations: “OPTIMAL”, “RSUP”,
“RINF”, or “DEFAULT”

decontaminate Boolean on the subtraction of contaminating flux from
background sources

returnTable: Boolean on returning a table of the light curve data or the
time, flux, and flux error of the observations

reject highpoints: Boolean on cutting high flux points from the light curve
verbose: Boolean on the printing of information to the screen

Returns table: An astropy table of the light curve data returned if
returnTable=True

time: An array of the time of the light curve returned if
returnTable=False

flux: An array of the flux of the light curve returned if
returnTable=False

flux err: An array of the flux error of the light curve returned if
returnTable=False

pycheops.Dataset.lmfit eclipse

A function that fits an eclipse in a dataset using a constructed eclipse model and parameters de-
scribed below, via a least-squares fitting method with the options to decorrelate the flux of a dataset
against time, x and y centroid positions, roll angle, background, contamination, and/or smear. The
eclipse parameters and decorrelation trends can be input in an integer or float value, length = 2
list of upper and lower limit values, ufloat value and uncertainty object, or lmfit.parameter value,
minimum, and maximum object.

pycheops.Dataset.lmfit eclipse(self, T 0=None, P=None, D=None, W=None, b=None,
L=None, f c=None, f s=None, a c=None, dfdbg=None,
dfdcontam=None, dfdsmear=None, ramp=None,

63



c=None, dfdx=None, dfdy=None, d2fdx2=None,
d2fdy2=None, dfdsinphi=None, dfdcosphi=None,
dfdsin2phi=None, dfdcos2phi=None,
dfdsin3phi=None, dfdcos3phi=None, dfdt=None,
d2fdt2=None, glint scale=None):

Parameters T 0: Transit centre time (days)
P: Orbital period (days)
D: Transit depth (0.0-1.0))
W: Transit width (phase)
b: Impact parameter
L: Eclipse depth (0.0-1.0)
f c: Orbital eccentricity and longitude of periastron component
f s: Orbital eccentricity and longitude of periastron component
a c: Light travel time (days)
dfdbg: Linear flux against the background
dfdcontam: Linear flux against the contamination
dfdsmear: Linear flux against the smear
ramp: Linear flux against the telescope temperature
c: Flux scaling factor (set = 1 by default)
dfdx: Linear flux against x centroid position trend
dfdy: Linear flux against y centroid position trend
d2fdx2: Quadratic flux against x centroid position trend
d2fdy2: Quadratic flux against y centroid position trend
dfdsinphi: Linear flux against the sine of the roll angle trend
dfdcosphi: Linear flux against the cosine of the roll angle trend
dfdsin2phi: Quadratic flux against the sine of the roll angle trend
dfdcos2phi: Quadratic flux against the cosine of the roll angle trend
dfdsin3phi: Cubic flux against the sine of the roll angle trend
dfdcos3phi: Cubic flux against the cosine of the roll angle trend
dfdt: Linear flux against time trend
df2dt2: Quadratic flux against time trend
glint scale: Glint model scaling factor

Returns result: The result of the least-squares eclipse fit to the data

pycheops.Dataset.lmfit report

A function that produces a report of the eclipse or transit fit produced by the pycheops lmfit eclipse

or lmfit transit functions that includes the model, fit statistics, model variables, and correlations
between the variables.

pycheops.Dataset.lmfit report(self, **kwargs):

Parameters **kwargs: Key word arguments to parse to the lmfit.fit report function
Returns report: A report of the eclipse or transit fit

64



pycheops.Dataset.lmfit transit

A function that fits a transit in a dataset using a transit model constructed with the power-2 limb-
darkening law and transit parameters described below, via a least-squares fitting method with the
options to decorrelate the flux of a dataset against time, x and y centroid positions, roll angle, back-
ground, and/or contamination. The transit parameters and decorrelation trends can be input in an
integer or float value, length = 2 list of upper and lower limit values, ufloat value and uncertainty
object, or lmfit.parameter value, minimum, and maximum object.

pycheops.Dataset.lmfit transit(self, T 0=None, P=None, D=None, W=None, b=None,
f c=None, f s=None, h 1=None, h 2=None, c=None,
dfdbg=None, dfdcontam=None, dfdsmear=None,
ramp=None, dfdx=None, dfdy=None, d2fdx2=None,
d2fdy2=None, dfdsinphi=None, dfdcosphi=None,
dfdsin2phi=None, dfdcos2phi=None,
dfdsin3phi=None, dfdcos3phi=None, dfdt=None,
d2fdt2=None, glint scale=None, logrhoprior=None):

Parameters T 0: Transit centre time (days)
P: Orbital period (days)
D: Transit depth (0.0-1.0))
W: Transit width (phase)
b: Impact parameter
f c: Orbital eccentricity and longitude of periastron component
f s: Orbital eccentricity and longitude of periastron component
h 1: First limb-darkening coefficient
h 2: Second limb-darkening coefficient
c: Flux scaling factor (set = 1 by default)
dfdbg: Linear flux against the background
dfdcontam: Linear flux against the contamination
dfdsmear: Linear flux against the smear
ramp: Linear flux against the telescope temperature
dfdx: Linear flux against x centroid position trend
dfdy: Linear flux against y centroid position trend
d2fdx2: Quadratic flux against x centroid position trend
d2fdy2: Quadratic flux against y centroid position trend
dfdsinphi: Linear flux against the sine of the roll angle trend
dfdcosphi: Linear flux against the cosine of the roll angle trend
dfdsin2phi: Quadratic flux against the sine of the roll angle trend
dfdcos2phi: Quadratic flux against the cosine of the roll angle trend
dfdsin3phi: Cubic flux against the sine of the roll angle trend
dfdcos3phi: Cubic flux against the cosine of the roll angle trend
dfdt: Linear flux against time trend
df2dt2: Quadratic flux against time trend
glint scale: Glint model scaling factor
logrhoprior: Logarithm of stellar density (solar units)

Returns result: The result of the least-squares transit fit to the data

65



pycheops.Dataset.load

A function that loads a pickle file of a previously save Dataset object.

pycheops.Dataset.load(self, filename):

Parameters filename: A string of the filename of the saved pickle file
Returns dataset: The saved Dataset object

pycheops.Dataset.mask data

A function that removes sections of the dataset that are indicated by an array of Booleans to be
inputted by the user where True means data should be masked.

pycheops.Dataset.mask data(self, mask, verbose=True):

Parameters mask: Boolean array indicating the data to be masked
verbose: Boolean on the printing of information to the screen

Returns time: The masked time array of the dataset
flux: The masked flux array of the dataset
flux error: The masked flux error array of the dataset

pycheops.Dataset.massradius

A function that calculates the mass, radius, and density of the host star and target planet, alongside
mass ratio, semi-major axis, and planetary surface gravity. The function takes user inputs for stellar
mass and radius as well as the semi-amplitude of the planetary orbit and the mass ratio. These
values can be input in an integer or float value, length = 2 list of upper and lower limit values, ufloat
value and uncertainty object, or lmfit.parameter value, minimum, and maximum object.

A plot of the planetary mass versus radius can be produced with theoretical internal structure
models over-plotted and is returned with a dictionary of the calculated stellar, planetary, and orbital
properties.

pycheops.Dataset.massradius(self, m star=None, r star=None, K=None, q=0, jovian=True,
plot kws=None, return samples=False, verbose=True):

Parameters m star: Host star mass in solar units
r star: Host star radius in solar units
K: Planet orbit semi-amplitude in units of m/s
q: Planet to star mass ratio
jovian: Boolean on printing the values relative to Jupiter or Earth
plot kws: Dictionary detailing properties of the produced plot, such as

over-plotted models and plot title
return samples: Boolean on returning the calculated posterior samples in the

result dictionary
verbose: Boolean on the printing of information to the screen

Returns result Dictionary of the determined stellar and planetary properties
fig: Figure of the mass versus radius plot

66



pycheops.Dataset.planet check

A function that computes the separation of the target to the Moon, Mars, Jupiter, Saturn, Uranus,
and Neptune, and prints the values in degrees.

pycheops.Dataset.planet check(self):

pycheops.Dataset.plot emcee

A function that creates plots of the light curve of the dataset over-laid with the eclipse or transit fit
produced by the emcee sampler function, and the residuals to the fit.

pycheops.Dataset.plot emcee(self, title=None, nsamples=32, detrend=False, binwidth=0.01,
show model=True, figsize=(6,4), fontsize=11):

Parameters title: String of the plot title
nsamples: Integer number of parameter sets from the MCMC produced

posterior distribution to be plotted
detrend: Boolean on conducting a separate detrending of the dataset
binwidth: Integer or float of width of each bin for the binned data in

units of days
show model: Boolean on plotting the fitted model
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size

Returns fig: The figure of the eclipse or transit fit and residual plots

pycheops.Dataset.plot fft

A function that conducts a fast Fourier transform of the raw and Gaussian smoothed residuals to an
eclipse or transit fit and returns a figure of the Lomb-Scargle power spectrum that includes estimates
of the maximum stellar variability frequency based on stellar properties.

pycheops.Dataset.plot fft(self, star=None, gsmooth=5, logxlim=(1.5,4.5), title=None,
fontsize=12, figsize=(8,5)):

Parameters star: A StarProperties object of the target
gmsooth: Integer value that determines the width of the Gaussian kernel

used for smoothing the data in units of datapoints
logxlim: Length = 2 list of the x-axis limits
title: String of the plot title
fontsize: Integer or float of figure axes font size
figsize: Length = 2 list of produced figure size

Returns fig: The figure of the Lomb-Scargle power spectrum plot

pycheops.Dataset.plot lmfit

A function that creates plots of the light curve of the dataset over-laid with the eclipse or transit fit
produced by the lmfit eclipse or lmfit transit functions, and the residuals to the fit.

67



pycheops.Dataset.plot lmfit(self, figsize=(6,4), fontsize=11, title=None, show model=True,
binwidth=0.01, detrend=False):

Parameters figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size
title: String of the plot title
show model: Boolean on plotting the fitted model
binwidth: Integer or float of width of each bin for the binned data in

units of days
detrend: Boolean on conducting a separate detrending of the dataset

Returns fig: The figure of the eclipse or transit fit and residual plots

pycheops.Dataset.rollangle plot

A function that plots the residuals of a prior eclipse or transit fit against roll angle with the fitted
glint model over-plotted if previously applied. If a decorrelation against Moon angle has been done
this is also shown. A figure of the plots is returned.

pycheops.Dataset.rollangle plot(self, binwidth=15, figsize=None, fontsize=11, title=None):

Parameters binwidth: Integer or float of width of each bin for the binned data in
units of degrees

figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size
title: String of the plot title

Returns fig: Figure of the roll angle versus residuals plots and glint
model fit if applied

pycheops.Dataset.save

A function that saves the current Dataset object to a pickle file in the current working directory.

pycheops.Dataset.save(self):

pycheops.Dataset.should I decorr

A function that fits combinations of trends in flux versus time, x and y centroid positions, roll angle,
background, and contamination for a dataset and assess whether the dataset needs to be decor-
related. This is done by calculating the Bayesian Information Criteria (BIC) of each combination
under the assumption that the combination that induces the lowest BIC best describes any trends.
This combination is returned to the user along with the BIC value. Users have the option to mask
out regions of the light curve in order to avoid trend fitting over features such as eclipses or transits.

pycheops.Dataset.should I decorr(self, mask centre=0, mask width=0):

68



Parameters mask centre: Integer or float of the time at the mask centre
mask width: Integer or float of the mask width in the same units as

the time array
Returns min BIC: A float of the minimum BIC produced by the trend fitting

decorr params: A list of the parameters which should be decorrelated against

pycheops.Dataset.trail plot

A function that shows the chains of the MCMC parameters from the eclipse or transit fit with the
parameter values against step number plotted. Users can define the parameters to plot or choose
“all”. A figure of the chains is returned.

pycheops.Dataset.trail plot(self, plotkeys=[’T 0’, ’D’, ’W’, ’b’], width=8, height=1.5):

Parameters plotkeys: Array of eclipse or transit properties to plot or “all”
width: Integer or float of the subplot width
height: Integer or float of the subplot height

Returns fig: Figure of the MCMC trails for the conducted eclipse or transit fit

pycheops.Dataset.transit noise plot

A function that calculates the transit noise of a dataset by inserting a simulated transit of inputted
width into the light curve, sliding along the light curve, and determining the depth at which the
S/N = 1 at each step with the uncertainties on the data calculated using two methods; scaled error
and minimum error. The light curve and transit noise estimates are subsequently plotted, with the
noises returned to the users as a dictionary if return values is set to True.

pycheops.Dataset.transit noise plot(self, width=3, steps=500, fname=None, figsize=(6,4),
fontsize=11, return values=False,
requirement=None, local=False, verbose=True):

Parameters width: Integer or float of transit width (hours) of simulated
inserted transit

steps: Integer number of transit noise calculations to be conducted
fname: String of file name used to save figure
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size
return values: Boolean on returning the calculated noises in the

result dictionary
requirement: Integer or float of required noise level to be plotted
local: Boolean on using data near the inserted transit centre time
verbose: Boolean on the printing of information to the screen

Returns d: Dictionary of calculated noises if return values is set to True

pycheops.Dataset.view report

A function that shows the DRP report of the CHEOPS visit contained in the Dataset object with
the option to change the PDF viewer used.

69



pycheops.Dataset.view report(self, pdf cmd=None, configFile=None):

Parameters pdf cmd: String of the command to launch a PDF
configFile: String of the file location and name of the pycheops

configuration file

pycheops.funcs.transit width

A function that takes the stellar radius to planet semi-major axis ratio (R∗/a), planetary-to-stellar
radii ratio (Rp/R∗), impact parameter (b), and orbital period (P), and calculates and returns the
transit width in the same units as the inputted period.

pycheops.funcs.transit width(r, k, b, P=1):

Parameters r: Integer or float of the stellar radius to planet semi-major axis ratio
k: Integer or float of the planetary-to-stellar radii ratio
b: Integer or float of the impact parameter
P: Integer or float of the planet orbital period

Returns width: Float value of the calculated transit width in the same units as
the inputted orbital period

pycheops.ld.stagger power2 interpolator

A class that creates an object that can be used to determine the parameters of the power-2 limb-
darkening law that are interpolated from the Stagger grid of models based upon stellar parameters
(T eff, log g, Fe H) given to the created object.

pycheops.ld.stagger power2 interpolator(self, passband=’CHEOPS’):

Parameters passband: String of the spacecraft, instrument, or passband name
Returns interpolated grid: List of limb-darkening coefficients (c, alpha, h 1, h 2)

pycheops.models.EclipseModel

A function that constructs an eclipse model used to fit data using the Python lmfit package.

pycheops.models.EclipseModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
**kwargs):

Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced eclipse model

70



pycheops.models.EBLMModel

A function that constructs an eclipse and transit model used to fit data using the Python lmfit

package.

pycheops.models.EBLMModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
**kwargs):

Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced eclipse and transit model

pycheops.models.FactorModel

A function that constructs a factor model used to detrend data using the Python lmfit package.

pycheops.models.FactorModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
dx=None, dy=None, sinphi=None, cosphi=None,
bg=None, contam=None, smear=None, deltaT=None,
**kwargs):

Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
dx: A list of the centroid x position over the dataset
dy: A list of the centroid y position over the dataset
sinphi: A list of the sine of the roll angle over the dataset
cosphi: A list of the cosine of the roll angle over the dataset
bg: A list of the background over the dataset
contam: A list of the contamination over the dataset
smear: A list of the smear over the dataset
deltaT: A list of the change in temperature over the dataset
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced factor model

pycheops.models.PlanetModel

A function that constructs an eclipse, transit, and thermal phase curve model used to fit data using
the Python lmfit package.

pycheops.models.PlanetModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
**kwargs):

71



Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced eclipse, transit, and thermal phase

curve model

pycheops.models.ThermalPhaseModel

A function that constructs a thermal phase curve model used to fit data using the Python lmfit

package.

pycheops.models.ThermalPhaseModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
**kwargs):

Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced thermal phase curve model

pycheops.models.TransitModel

A function that constructs a transit model used to fit data using the Python lmfit package.

pycheops.models.TransitModel(self, independent vars=[’t’], prefix=”, nan policy=’raise’,
**kwargs):

Parameters independent vars: A list of independent variables to build the model against,
set to time by default

prefix: String to append to the beginning of model name
nan policy: String of the policy of NaN values when fitting the model
**kwargs: Additional keyword arguments, such as parameters used

to build the model, values, and constraints
Returns model: The produced transit model

pycheops.MultiVisit

A class that creates a MultiVisit object that loads multiple saved Dataset objects of the same target
and runs StarProperties to retrieve stellar parameters of the host star. The individual light curves
can then be decorrelated separately and have transits, eclipses, or both fitted simultaneously using
fitting routines that use the Python emcee package. Plotting functions can be used to view and
assess the fits.

pycheops.MultiVisit(self, target=None, datadir=None, ident=None, id kws={’dace’:True},

72



verbose=True):

Parameters target: String of the target name
datadir: String of the directory of the saved dataset pickle files
ident: String of the target identifier in the table retrieved by

StarProperties

id kws: Dictionary of keywords to pass to StarProperties

verbose: Boolean on the printing of information to the screen

pycheops.MultiVisit.corner plot

A function that produces a corner plot of the posterior distributions of selected eclipse or transit
fitted properties with the option to over-plot prior values and to plot the tick labels with the figure
returned.

pycheops.MultiVisit.corner plot(self, plotkeys=None, show priors=True,
show ticklabels=False, kwargs=None):

Parameters plotkeys: Array of eclipse or transit properties to plot or “all”
show priors: Boolean on the plotting of the prior values
show ticklabels: Boolean on the plotting of the tick labels
kwargs: Key word arguments to parse to the corner.corner function

Returns figure: A figure of the corner plot

pycheops.MultiVisit.fit eclipse

A function that samples the posterior probability distributions of eclipse fitting to multiple datasets
with models constructed defined by given parameters using the Python emcee package with the
number of sampling and burn-in steps, walkers, and samples to be thin inputted. The eclipse pa-
rameters and extra priors can be input in an integer or float value, length = 2 list of upper and lower
limit values, or ufloat value and uncertainty object. Decorrelation against roll angle is done auto-
matically by default and there are options to include the fitting of eclipse depth variation (EDV).
The stellar noise of the observations can be modelled by constructing shot and jitter term kernel us-
ing the Python celerite2 package. The posterior probability distributions are returned to the user.

pycheops.MultiVisit.fit eclipse(self, steps=128, nwalkers=64, burn=256, T 0=None,
P=None, D=None, W=None, b=None, L=None,
f c=None, f s=None, a c=None, edv=False,
edv prior=1e-3, extra priors=None, log sigma w=None,
log omega0=None, log S0=None, log Q=None,
unroll=True, nroll=3, unwrap=False, thin=1,
init scale=1e-2, progress=True):

73



Parameters steps: Integer number of sampling steps for the MCMC to perform
nwalkers: Integer number of walkers in the MCMC
burn: Integer number of burn-in steps for the MCMC to perform
T 0: Transit centre time (days)
P: Orbital period (days)
D: Transit depth (0.0-1.0))
W: Transit width (phase)
b: Impact parameter
L: Eclipse depth (0.0-1.0)
f c: Orbital eccentricity and longitude of periastron component
f s: Orbital eccentricity and longitude of periastron component
a c: Light travel time (days)
edv: Boolean on whether to conduct fitting of EDV
edv prior: Float of the range of EDVs to probe
extra priors: Dictionary of additional parameters to include in the fitting
log sigma w: Logarithm of sigma of the jitter term of the kernel
log omega0: Logarithm of omega0 of the shot-term kernel
log S0: Logarithm of S0 of the shot-term kernel
log Q: Logarithm of Q of the shot-term kernel
unroll: Boolean on whether to automatically decorrelate against

roll angle
nroll: Integer of the roll angle frequency order to decorrelate up to
unwrap: Boolean on whether to first decorrelate against Dataset

derived roll angle
thin: Integer of the factor of samples to be removed from the MCMC
init scale: Float of the initial scale of steps to be taken
progress: Boolean on printing the progress of the sampler

Returns result: The result of the MCMC fit to the data

pycheops.MultiVisit.fit eblm

A function that samples the posterior probability distributions of simultaneous eclipse and transit
fitting to multiple datasets with models constructed defined by given parameters using the Python
emcee package with the number of sampling and burn-in steps, walkers, and samples to be thin in-
putted. The eclipse and transit parameters and extra priors can be input in an integer or float value,
length = 2 list of upper and lower limit values, or ufloat value and uncertainty object. Decorrelation
against roll angle is done automatically by default and there are options to include the fitting of
eclipse depth variation (EDV) and transit timing variation (TTV). The stellar noise of the obser-
vations can be modelled by constructing shot and jitter term kernel using the Python celerite2

package. The posterior probability distributions are returned to the user.

pycheops.MultiVisit.fit eblm(self, steps=128, nwalkers=64, burn=256, T 0=None, P=None,
D=None, W=None, b=None, h 1=None, h 2=None,
ttv=False, ttv prior=3600, L=None, a c=None, edv=False,
edv prior=1e-3, extra priors=None, log sigma w=None,
log omega0=None, log S0=None, log Q=None, unroll=True,
nroll=3, unwrap=False, thin=1, init scale=1e-2,

74



progress=True):

Parameters steps: Integer number of sampling steps for the MCMC to perform
nwalkers: Integer number of walkers in the MCMC
burn: Integer number of burn-in steps for the MCMC to perform
T 0: Transit centre time (days)
P: Orbital period (days)
D: Transit depth (0.0-1.0))
W: Transit width (phase)
b: Impact parameter
h 1: First limb-darkening coefficient
h 2: Second limb-darkening coefficient
ttv: Boolean on whether to conduct fitting of TTV
ttv prior: Float of the range of TTVs to probe
L: Eclipse depth (0.0-1.0)
a c: Light travel time (days)
edv: Boolean on whether to conduct fitting of EDV
edv prior: Float of the range of EDVs to probe
extra priors: Dictionary of additional parameters to include in the fitting
log sigma w: Logarithm of sigma of the jitter term of the kernel
log omega0: Logarithm of omega0 of the shot-term kernel
log S0: Logarithm of S0 of the shot-term kernel
log Q: Logarithm of Q of the shot-term kernel
unroll: Boolean on whether to automatically decorrelate against

roll angle
nroll: Integer of the roll angle frequency order to decorrelate up to
unwrap: Boolean on whether to first decorrelate against Dataset

derived roll angle
thin: Integer of the factor of samples to be removed from the MCMC
init scale: Float of the initial scale of steps to be taken
progress: Boolean on printing the progress of the sampler

Returns result: The result of the MCMC fit to the data

pycheops.MultiVisit.fit report

A function that produces a report of the eclipse or transit fit produced by the fit eclipse, fit eblm,
or fit transit functions that includes the model, fit statistics, model variables, and correlations
between the variables.

pycheops.MultiVisit.fit report(self, **kwargs):

Parameters **kwargs: Key word arguments to parse to the lmfit.fit report function
Returns report: A report of the eclipse or transit fit

pycheops.MultiVisit.fit transit

A function that samples the posterior probability distributions of transit fitting to multiple datasets
with models constructed defined by given parameters using the Python emcee package with the

75



number of sampling and burn-in steps, walkers, and samples to be thin inputted. The transit pa-
rameters and extra priors can be input in an integer or float value, length = 2 list of upper and lower
limit values, or ufloat value and uncertainty object. Decorrelation against roll angle is done auto-
matically by default and there are options to include the fitting of transit timing variation (TTV).
The stellar noise of the observations can be modelled by constructing shot and jitter term kernel us-
ing the Python celerite2 package. The posterior probability distributions are returned to the user.

pycheops.MultiVisit.fit transit(self, steps=128, nwalkers=64, burn=256, T 0=None,
P=None, D=None, W=None, b=None, f c=None,
f s=None, h 1=None, h 2=None, ttv=False,
ttv prior=3600, extra priors=None, log sigma w=None,
log omega0=None, log S0=None, log Q=None,
unroll=True, nroll=3, unwrap=False, thin=1,
init scale=1e-2, progress=True):

Parameters steps: Integer number of sampling steps for the MCMC to perform
nwalkers: Integer number of walkers in the MCMC
burn: Integer number of burn-in steps for the MCMC to perform
T 0: Transit centre time (days)
P: Orbital period (days)
D: Transit depth (0.0-1.0))
W: Transit width (phase)
b: Impact parameter
f c: Orbital eccentricity and longitude of periastron component
f s: Orbital eccentricity and longitude of periastron component
h 1: First limb-darkening coefficient
h 2: Second limb-darkening coefficient
ttv: Boolean on whether to conduct fitting of TTV
ttv prior: Float of the range of TTVs to probe
extra priors: Dictionary of additional parameters to include in the fitting
log sigma w: Logarithm of sigma of the jitter term of the kernel
log omega0: Logarithm of omega0 of the shot-term kernel
log S0: Logarithm of S0 of the shot-term kernel
log Q: Logarithm of Q of the shot-term kernel
unroll: Boolean on whether to automatically decorrelate against

roll angle
nroll: Integer of the roll angle frequency order to decorrelate up to
unwrap: Boolean on whether to first decorrelate against Dataset

derived roll angle
thin: Integer of the factor of samples to be removed from the MCMC
init scale: Float of the initial scale of steps to be taken
progress: Boolean on printing the progress of the sampler

Returns result: The result of the MCMC fit to the data

pycheops.MultiVisit.massradius

A function that calculates the mass, radius, and density of the host star and target planet, alongside
mass ratio, semi-major axis, and planetary surface gravity. The function takes user inputs for stellar

76



mass and radius as well as the semi-amplitude of the planetary orbit and the mass ratio. These
values can be input in an integer or float value, length = 2 list of upper and lower limit values, ufloat
value and uncertainty object, or lmfit.parameter value, minimum, and maximum object.

A plot of the planetary mass versus radius can be produced with theoretical internal structure
models over-plotted and is returned with a dictionary of the calculated stellar, planetary, and orbital
properties.

pycheops.MultiVisit.massradius(self, m star=None, r star=None, K=None, q=0, jovian=True,
return samples=False, plot kws=None, verbose=True):

Parameters m star: Host star mass in solar units
r star: Host star radius in solar units
K: Planet orbit semi-amplitude in units of m/s
q: Planet to star mass ratio
jovian: Boolean on printing the values relative to Jupiter or Earth
plot kws: Dictionary detailing properties of the produced plot, such as

over-plotted models and plot title
return samples: Boolean on returning the calculated posterior samples in the

result dictionary
verbose: Boolean on the printing of information to the screen

Returns result Dictionary of the determined stellar and planetary properties
fig: Figure of the mass versus radius plot

pycheops.MultiVisit.plot fit

A function that plots the data and model of fitted eclipses or transits for multiple visits and the
residuals to those fits with options to bin and offset the data, and avoid plotting the model over
gaps in the data.

pycheops.MultiVisit.plot fit(self, title=None, detrend=False, binwidth=0.001, add gaps=True,
gap tol=0.005, renorm=True, data offset=None,
res offset=None, phase0=None, xlim=None, data ylim=None,
res ylim=None, figsize=None, fontsize=12):

77



Parameters title: String of the plot title
detrend: Boolean on conducting a separate detrending of the dataset
binwidth: Integer or float of width of each bin for the binned data in

units of days
add gaps Boolean on over-plotting the fitted model on gaps in the data
gap tol Integer or float of the maximum gap in the data that should

be over-plotted with the model in units of days
renorm Boolean on renormalising all individual datasets to 1
data offset Float value of flux offset to be applied between individual

fitted datasets
res offset Float value of flux offset to be applied between individual

sets of residuals
phase0 Float value of the phase from which each individual dataset

is plotted
xlim Length = 2 list of the x-axis limits
data ylim Length = 2 list of the y-axis limits of the data
res ylim Length = 2 list of the y-axis limits of the residuals
figsize: Length = 2 list of produced figure size
fontsize: Integer or float of figure axes font size

Returns fig: The figure of the eclipses or transits fit and residual plots

pycheops.MultiVisit.trail plot

A function that shows the chains of the MCMC parameters from the eclipse or transit fit with the
parameter values against step number plotted. Users can define the parameters to plot or choose
“all”. A figure of the chains is returned.

pycheops.MultiVisit.trail plot(self, plotkeys=None, plot kws={’alpha’:0.1} width=8,
height=1.5):

Parameters plotkeys: Array of eclipse or transit properties to plot or “all”
plot kws: Dictionary detailing properties of the produced plot, such as

marker size, shape, and colour
width: Integer or float of the subplot width
height: Integer or float of the subplot height

Returns fig: Figure of the MCMC trails for the conducted eclipse or transit fit

pycheops.MultiVisit.ttv plot

A function that plots the fitted TTVs from the fit transit function against the centre time of
each transit in the MultiVisit object.

pycheops.MultiVisit.ttv plot(self, plot kws=None, figsize=(8,5)):

Parameters plot kws: Dictionary detailing properties of the produced plot that is
passed to plt.errorbar

figsize: Length = 2 list of produced figure size
Returns fig: Figure of the fitted TTVs

78



pycheops.MultiVisit.tzero

A function that calculates the transit centre time closest to the middle of the multiple visit time
series given a provided centre time of an individual transit in BJD and the planet period in days.

pycheops.MultiVisit.tzero(self, BJD 0, P):

Parameters BJD 0: Float or integer of a transit centre time in BJD
P: Float or integer of the period of the planet (days)

Returns mid-transit time: Float of the transit centre time closest to the middle
of the time series

pycheops.PlanetProperties

A class that creates an object that can be utilised to retrieve planetary parameter values from DACE
or TEPCat, and determines the eccentricity and argument of periastron for a given planet. The
planetary identifier is used to search in DACE or TEPCat and if object is found the planet param-
eter values are provided in the returned report along with the derived eccentricity and argument
of periastron. Any user inputted values with be reported and used in all calculations over-writing
those retrieved from DACE or TEPCat.

pycheops.PlanetProperties(self, identifier, force download=False, configFile=None,
query dace=True, query tepcat=True, T0=None, P=None,
ecosw=None, esinw=None, D=None, W=None, K=None,
verbose=True, dace=False, tepcat=False):

79



Parameters identifier: String of the target whose parameters are to be retrieved
force download: Boolean on if the catalogue should be downloaded regardless

of the presence of a local version of the catalogue
configFile: String of the directory of the pycheops configuration file
query dace: Boolean on if parameters should be retrieved from the

DACE planet table
query tepcat: Boolean on if parameters should be retrieved from TEPCat
T0: Integer or float of the user inputted transit centre time to

be reported
P: Integer or float of the user inputted period to be reported
ecosw: Integer or float of the user inputted eccentricity and argument

of periastron components to be reported
esinw: Integer or float of the user inputted eccentricity and argument

of periastron components to be reported
D: Integer or float of the user inputted transit depth to be reported
W: Integer or float of the user inputted transit width to be reported
K: Integer or float of the user inputted radial velocity

semi-amplitude to be reported
verbose: Boolean on the printing of information to the screen
dace: Boolean on if parameters should be retrieved from the

DACE planet table
tepcat: Boolean on if parameters should be retrieved from TEPCat

Returns report: A report of the DACE or TEPCat retrieved, user
inputted, or calculated stellar values

pycheops.StarProperties

A class that creates an object that can be utilised to retrieve stellar parameter values from SWEET-
Cat or DACE, and determines the stellar density and limb-darkening coefficients for a given object.
The coordinates of the target are obtained by querying the SIMBAD Astronomical Database us-
ing the inputted object name with the coordinates used as inputs for querying SWEET-Cat or
DACE. If the object is found in SWEET-Cat or DACE the stellar parameter values are provided
in the returned report along with the derived stellar density and limb-darkening coefficients. Any
user inputted values with be reported and used in all calculations over-writing those retrieved from
SWEET-Cat or DACE.

pycheops.StarProperties(self, identifier, force download=False, dace=False,
match arcsec=5, configFile=None, teff=None, logg=None,
metal=None, verbose=True):

80



Parameters identifier: String of the target whose parameters are to be retrieved
force download: Boolean on if the catalogue should be downloaded regardless

of the presence of a local version of the catalogue
dace: Boolean on if parameters should be retrieved from the

DACE stellar table
match arcsec: Integer or float of the radius around the target’s coordinates

used to search for data in SWEET-Cat
configFile: String of the directory of the pycheops configuration file
teff: Integer or float of the user inputted effective temperature to

be reported
logg: Integer or float of the user inputted gravity to be reported
metal: Integer or float of the user inputted metallicity to be reported
verbose: Boolean on the printing of information to the screen

Returns report: A report of the SWEET-Cat or DACE retrieved, user
inputted, or calculated stellar values

References

[1] Baraffe, I., Chabrier, G., & Barman, T. 2008. Structure and evolution of super-Earth to super-
Jupiter exoplanets. I. Heavy element enrichment in the interior. Astronomy and Astrophysics,
Volume 482, pp. 315-332

[2] Benz W., Ehrenreich D., Isaak K. 2018. CHEOPS: CHaracterizing ExOPlanets Satellite. In:
Deeg H., Belmonte J. (eds) Handbook of Exoplanets. Springer, Cham.

[3] Campante, T. L. 2016. The Asteroseismic Potential of TESS: Exoplanet-host Stars. The Astro-
physical Journal, Volume 830, Issue 2, id. 138, 15 pp.

[4] Claret, A.. 2019. Tables of Limb-darkening and Gravity-darkening Coefficients for the Space
Mission Gaia. Research Notes of the American Astronomical Society, Volume 3, id. 17

[5] Ehrenreich, D., et al. 2019. CHEOPS Observers Manual. European Space Agency.

[6] Hoyer, S., et al. 2019. Expected Performances of the Characterising Exoplanet Satellite
(CHEOPS) III. Data Reduction Pipeline: Architecture and Simulated Performances. Astronomy
& Astrophysics. Volume 635, id. A24, 14 pp.

[7] Lendl, M. C., et al. 2013. The Hot Dayside and Asymmetric Transit of WASP-189 b Seen by
CHEOPS. Astronomy & Astrophysics,

[8] Maxted, P. F. L. 2018. Comparison Of The Power-2 Limb-Darkening Law From The STAGGER-
Grid To Kepler Light Curves Of Transiting Exoplanets. Astronomy & Astrophysics, Volume 616,
id. A39, 13 pp.

[9] Maxted, P. F. L. & Gill, S. 2019. Qpower2: A Fast And Accurate Algorithm For The Computa-
tion Of Exoplanet Transit Light Curves With The Power-2 Limb-Darkening Law. Astronomy &
Astrophysics, Volume 622, id. A33, 7 pp.

[10] Moya, A., et al. 2018. Empirical Relations For The Accurate Estimation Of Stellar Masses And
Radii. The Astrophysical Journal Supplement Series, Volume 237, id. 21, 20 pp.

81



[11] Pereira, F., et al. 2019. Gaussian Process Modelling Of Granulation And Oscillations In Red
Giant Stars. Monthly Notices of the Royal Astronomical Society, Volume 489, 5764 pp.

[12] Rodrigo, L., et al. 2017. Linear Models for Systematics and Nuisances. Research Notes of the
American Astronomical Society, Volume 1, id. 7.

[13] Santos, N. C., et al. 2013. SWEET-Cat: A Catalogue Of Parameters For Stars With Exoplan-
ETs. I. New Atmospheric Parameters And Masses For 48 Stars With Planets. Astronomy &
Astrophysics, Volume 556, id. A150, 11 pp.

[14] Silva, D. & Skilling, J. 2006. Data Analysis - A Bayesian Tutorial. Oxford University Press.

[15] Southworth, J. 2011. Homogeneous studies of transiting extrasolar planets - IV. Thirty systems
with space-based light curves. Monthly Notices of the Royal Astronomical Society, Volume 417,
pp. 2166-2196.

[16] Trotta, R. 2007. Applications of Bayesian model selection to cosmological parameters. Monthly
Notices of the Royal Astronomical Society, Volume 378, pp. 72-82.

[17] Zeng, L., Sasselov, D. D., & Jacobsen, S. B. 2016. Mass-Radius Relation for Rocky Planets
Based on PREM. The Astrophysical Journal, Volume 819, id. 127, 5 pp.

82


	Introduction
	pycheops Dependencies
	pycheops Installation
	Accessing CHEOPS Data
	Using the DACE Web Interface
	Viewing the Data
	Visualising the Data
	Downloading the Data

	Using the DACE Python-Based API
	Querying the Database
	Downloading the Data

	Downloadable Data Products
	Light Curves
	Images
	Logs


	Useful Recipes
	Getting the Data and Plotting the Light Curves
	DACE Method
	pycheops Method

	Visualising Subarrays and Imagettes
	Subarrays
	Imagettes

	Preparing your Data
	Clipping Outliers in the Dataset
	How to Decorrelate your Dataset - Diagnosing the Issue
	How to Decorrelate your Dataset - Performing the Decorrelation
	How to Decorrelate your Dataset - To Decorrelate or not to Decorrelate
	Flattening or Masking Sections of the Light Curve

	Fitting your Data - A Single Visit
	Obtaining Stellar Parameters of the Host Star
	Obtaining Available Planetary Parameters of the Target
	Fitting a Transit
	Fitting an Eclipse
	Fitting a Transit and an Eclipse in the same Dataset
	Fitting a Thermal Phase Curve
	Fitting a Transit, Eclipse, and Thermal Phase Curve in the same Dataset
	Saving your Datasets

	Fitting your Data - Multiple Visits
	Loading your Datasets
	Fitting Multiple Datasets - Transits or Eclipses
	Plotting and Assessing the Multiple Visit Fits

	Further Analysis of the Data
	Estimating Light Curve Noise
	Calculating and Plotting the Planet Properties against Internal Structure Models
	Ploting the Fourier Transform of the Dataset


	A Code Compilation for Downloading, Viewing, Decorrelating, and Fitting your Data
	Description of the pycheops Functions in this Cookbook

