processing Package

ExtractNLargestBlobsn Module

WORC.processing.ExtractNLargestBlobsn.ExtractNLargestBlobsn(binaryImage, numberToExtract=1)[source]

Extract N largest blobs from binary image.

Arguments:

binaryImage: boolean numpy array one or several contours. numberToExtract: number of blobs to extract (integer).

Returns:
binaryImage: boolean numpy are containing only the N

extracted blobs.

classes Module

class WORC.processing.classes.switch(value)[source]

Bases: object

Object to mimic the MATLAB switch - case statement.

__dict__ = mappingproxy({'__module__': 'WORC.processing.classes', '__doc__': ' Object to mimic the MATLAB switch - case statement.', '__init__': <function switch.__init__>, '__iter__': <function switch.__iter__>, 'match': <function switch.match>, '__dict__': <attribute '__dict__' of 'switch' objects>, '__weakref__': <attribute '__weakref__' of 'switch' objects>})
__init__(value)[source]

Initialize self. See help(type(self)) for accurate signature.

__iter__()[source]

Return the match method once, then stop

__module__ = 'WORC.processing.classes'
__weakref__

list of weak references to the object (if defined)

match(*args)[source]

Indicate whether or not to enter a case suite

label_processing Module

WORC.processing.label_processing.findlabeldata(patientinfo, label_type, filenames, image_features_temp=None)[source]

Load the label data and match to the unage features.

Args:

patientinfo (string): file with patient label data label_type (string): name of the label read out from patientinfo filenames (list): names of the patient feature files, used for matching image_features (np.array or list): array of the features

Returns:

label_data (dict): contains patient ids, their labels and the label name

WORC.processing.label_processing.load_config_XNAT(config_file_path)[source]

Configparser for retreiving patient data from XNAT.

WORC.processing.label_processing.load_label_XNAT(label_info)[source]

Load the patient IDs and label data from XNAT, Only works if you have a file /resources/GENETICS/files/genetics.json for each patient containing a single dictionary of all labels.

Args:

url (string): XNAT URL project: XNAT project ID

Returns:

label_names (numpy array): Names of the different labels patient_ID (numpy array): IDs of patients for which label data is

loaded

label_status (numpy array): The status of the different labels

for each patient

WORC.processing.label_processing.load_label_csv(input_file)[source]

Load the patient IDs and label data from the label file

Args:

input_file (string): Path of the label file

Returns:

label_names (numpy array): Names of the different labels patient_ID (numpy array): IDs of patients for which label data is

loaded

label_status (numpy array): The status of the different labels

for each patient

WORC.processing.label_processing.load_label_txt(input_file)[source]

Load the patient IDs and label data from the label file

Args:

input_file (string): Path of the label file

Returns:

label_names (numpy array): Names of the different labels patient_ID (numpy array): IDs of patients for which label data is

loaded

label_status (numpy array): The status of the different labels

for each patient

WORC.processing.label_processing.load_labels(label_file, label_type)[source]

Loads the label data from a label file

Args:

label_file (string): The path to the label file label_type (list): List of the names of the labels to load

Returns:
dict: A dict containing ‘patient_IDs’, ‘label’ and

‘label_type’