kedro.io.ParquetLocalDataSet¶
-
class
kedro.io.
ParquetLocalDataSet
(filepath, engine='auto', load_args=None, save_args=None, version=None)[source]¶ Bases:
kedro.io.core.AbstractVersionedDataSet
AbstractDataSet
with functionality for handling local parquet files.Example:
from kedro.io import ParquetLocalDataSet import pandas as pd data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5], 'col3': [5, 6]}) data_set = ParquetLocalDataSet('myFile') data_set.save(data) loaded_data = data_set.load() assert data.equals(loaded_data)
Attributes
ParquetLocalDataSet.DEFAULT_LOAD_ARGS
ParquetLocalDataSet.DEFAULT_SAVE_ARGS
Methods
ParquetLocalDataSet.__init__
(filepath[, …])Creates a new instance of ParquetLocalDataSet
pointing to a concrete filepath.ParquetLocalDataSet.exists
()Checks whether a data set’s output already exists by calling the provided _exists() method. ParquetLocalDataSet.from_config
(name, config)Create a data set instance using the configuration provided. ParquetLocalDataSet.load
()Loads data by delegation to the provided load method. ParquetLocalDataSet.release
()Release any cached data. ParquetLocalDataSet.save
(data)Saves data by delegation to the provided save method. -
DEFAULT_LOAD_ARGS
= {}¶
-
DEFAULT_SAVE_ARGS
= {'compression': None}¶
-
__init__
(filepath, engine='auto', load_args=None, save_args=None, version=None)[source]¶ Creates a new instance of
ParquetLocalDataSet
pointing to a concrete filepath.Parameters: - filepath (
str
) – Path to a parquet file or a metadata file of a multipart parquet collection or the directory of a multipart parquet. - engine (
str
) – The engine to use, one of: auto, fastparquet, pyarrow. If auto, then the default behavior is to try pyarrow, falling back to fastparquet if pyarrow is unavailable. - load_args (
Optional
[Dict
[str
,Any
]]) – Additional loading options pyarrow: https://arrow.apache.org/docs/python/generated/pyarrow.parquet.read_table.html or fastparquet: https://fastparquet.readthedocs.io/en/latest/api.html#fastparquet.ParquetFile.to_pandas - save_args (
Optional
[Dict
[str
,Any
]]) – Additional saving options for pyarrow: https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.from_pandas or fastparquet: https://fastparquet.readthedocs.io/en/latest/api.html#fastparquet.write - version (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.
Return type: None
- filepath (
-
exists
()¶ Checks whether a data set’s output already exists by calling the provided _exists() method.
Return type: bool
Returns: Flag indicating whether the output already exists. Raises: DataSetError
– when underlying exists method raises error.
-
classmethod
from_config
(name, config, load_version=None, save_version=None)¶ Create a data set instance using the configuration provided.
Parameters: - name (
str
) – Data set name. - config (
Dict
[str
,Any
]) – Data set config dictionary. - load_version (
Optional
[str
]) – Version string to be used forload
operation if the data set is versioned. Has no effect on the data set if versioning was not enabled. - save_version (
Optional
[str
]) – Version string to be used forsave
operation if the data set is versioned. Has no effect on the data set if versioning was not enabled.
Return type: AbstractDataSet
Returns: An instance of an
AbstractDataSet
subclass.Raises: DataSetError
– When the function fails to create the data set from its config.- name (
-
load
()¶ Loads data by delegation to the provided load method.
Return type: Any
Returns: Data returned by the provided load method. Raises: DataSetError
– When underlying load method raises error.
-
release
()¶ Release any cached data.
Raises: DataSetError
– when underlying exists method raises error.Return type: None
-
save
(data)¶ Saves data by delegation to the provided save method.
Parameters: data ( Any
) – the value to be saved by provided save method.Raises: DataSetError
– when underlying save method raises error.Return type: None
-