
Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue
Argonne, IL 60439

ANL–95/18

Users Guide to the PGAPack Parallel

Genetic Algorithm Library

by

David Levine

Mathematics and Computer Science Division

and contributors

January 31, 1996, last updated Jan 2023

This work was supported by the Mathematical, Information, and

Computational Sciences Division subprogram of the Office of Compu-

tational and Technology Research, U.S. Department of Energy, under

Contract W-31-109-Eng-38.

This is not the original report, it contains small fixes reported by users

and documentation updates for new features.

Acknowledgments

Much of the code in PGAPack was originally developed as part of the author’s Ph.D. thesis. Significant
contributions to the development of PGAPack were made by Philip Hallstrom, David Noelle, Greg Reeder,
and Brian Walenz, participants in Argonne’s Science and Engineering Research Semester program.

Many aspects of PGAPack—including the user interface, choice of some data structures, and design of
Fortran wrappers—were strongly influenced by the design of the PETSc (Portable and Extensible Tools for
Scientific Computing) library. I thank Bill Gropp, Lois Curfman McInnes, and Barry Smith for many helpful
discussions. The code in PGAPack for parsing command line arguments is a modified version of that used
in the p4 system developed by Ralph Butler and Rusty Lusk.

1

Contents

0 Quick Start 1

I Getting Started 2

1 Introduction 3

2 Examples 4

2.1 Maxbit Problem in C . 4
2.2 Maxbit Problem in Fortran . 4
2.3 Specifying Nondefault Values . 6
2.4 Differential Evolution . 6
2.5 Parallel I/O . 7
2.6 Compiling, Linking, and Execution . 7

II Users Guide 11

3 The Structure of PGAPack 12

3.1 Native Data Types . 12
3.2 Context Variable . 12
3.3 Levels of Usage Available . 12
3.4 Function Call-Based Library . 13
3.5 Header File and Symbolic Constants . 13
3.6 Evaluation Function . 13
3.7 Parallelism . 13
3.8 Implementation . 14

4 Basic Usage 15

4.1 Required Functions . 15
4.2 Population Replacement . 16
4.3 Stopping Criteria . 20
4.4 Initialization . 20
4.5 Selection . 21
4.6 Crossover . 22
4.7 Mutation . 22
4.8 Restart . 25
4.9 String Evaluation and Fitness . 25
4.10 Accessing Allele Values . 27

4.10.1 Representing an Integer with a Binary String . 28
4.10.2 Representing a Real Value with a Binary String . 29
4.10.3 Example . 29

4.11 Report Options . 30

iii

4.12 Utility Functions . 30
4.12.1 Random Numbers . 30
4.12.2 Print Functions . 31
4.12.3 Miscellaneous . 31

4.13 Command-Line Arguments . 31

5 Explicit Usage 32

5.1 Notation . 32
5.2 Simple Sequential Example . 32
5.3 Complex Example . 33
5.4 Explicit PGAPack Functions . 35

6 Custom Usage: Native Data Types 36

6.1 Basics . 36
6.2 Example Problem: C . 38
6.3 Example Problem: Fortran . 38

7 Custom Usage: New Data Types 41

7.1 Basics . 41
7.2 Example Problem . 42

8 Hill-Climbing and Hybridization 48

9 Parallel Aspects 50

9.1 Basic Usage . 50
9.2 Explicit Use . 50
9.3 Example . 51
9.4 Performance . 51

10 Fortran Interface 53

11 Debugging Tools 55

III Appendixes 58

A Default Values 59

B Function Bindings 61

C Parallelism Background 68

D Machine Idiosyncrasies 72

E Common Problems 75

Bibliography 77

iv

Chapter 0

Quick Start

If you wish to get started by just typing a few lines and running an example, this section is for you. We trust
you know how to check out the latest version from github. Once you have a directory with the checked-out
version you can build with:

1. cd pgapack

2. make

The Makefile will auto-detect if you have an MPI-Implementation installed and will build a parallel
version. If no MPI is detected, the serial version will be built. If the version is not correctly auto-detected
or you want to force a certain MPI backend, refer to the build documentation in README.rst.

Chapter 2 (example problems) and Sections 4.1 (required functions) and 4.9 (string evaluation and fitness)
should be read next.

1

Part I

Getting Started

2

Chapter 1

Introduction

PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a
genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are
as follows:

• Ability to be called from Fortran or C.

• Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks.

• Binary-, integer-, real-, and character-valued native data types.

• Object-oriented data structure neutral design.

• Parameterized population replacement.

• Multiple choices for selection, crossover, and mutation operators.

• Easy integration of hill-climbing heuristics.

• Easy-to-use interface for novice and application users.

• Multiple levels of access for expert users.

• Full extensibility to support custom operators and new data types.

• Extensive debugging facilities.

• Large set of example problems.

3

Chapter 2

Examples

This chapter presents some simple PGAPack programs. The problem chosen is the Maxbit problem. The
objective is to maximize the number of 1-bits in a string.

Section 2.1 presents a simple PGAPack program in C whose structure is sufficient to solve many prob-
lems. Section 2.2 presents this same program in Fortran. Section 2.3 shows how to change default values
in PGAPack. Section 2.5 contains an example that shows how keyboard input may be read in an MPI
environment. Finally, Section 2.6 shows how to compile, link, and execute a PGAPack program. These and
other examples may be found in the ./examples/c and ./examples/fortran directories.

2.1 Maxbit Problem in C

Figure 2.1 shows a minimal program and evaluation function in C for the Maxbit problem. All PGAPack C
programs must include the header file pgapack.h. The PGACreate call is always the first function called in a
PGAPack program. It initializes the context variable, ctx. The parameters to PGACreate are the arguments
to the program (given by argc and argv), the data type selected (PGA DATATYPE BINARY), the string length
(100), and the direction of optimization (PGA MAXIMIZE). The PGASetUp call initializes all parameters and
function pointers not explicitly set by the user to default values.

PGARun executes the genetic algorithm. Its second argument is the name of a user-defined function
(evaluate) that will be called to evaluate the strings. PGADestroy releases all memory allocated by PGA-
Pack. Note that all PGAPack functions take the context variable as an argument (except PGACreate, which
creates the context variable).

The evaluate function must be written by the user, must return a double, and must follow the exact
calling sequence shown. An evaluation function may return more values than just the return value in the
array pointed to by aux. This can be used for evaluating constraints for constrained problems or for multi-
objective optimization. Usually the number of auxiliary return values is zero and the aux argument is
ignored. For details, see section 4.9. PGAGetStringLength returns the string length. PGAGetBinaryAllele
returns the value of the ith bit of string p in population pop.

2.2 Maxbit Problem in Fortran

The Fortran Maxbit problem in Figure 2.2 is similar to the C version in Figure 2.1. The Fortran include file
is pgapackf.h and should be included in every Fortran function or subroutine that makes PGAPack calls1.
Since Fortran provides no standard mechanism for specifying command line arguments, these are omitted
from the PGACreate function call. The context variable, ctx, is declared integer in Fortran.

The evaluation function evaluate must contain exactly the calling sequence shown and must return a
double precision value. The aux value is optional in fortran because fortran does less strict type-checking
than C and with standard calling conventions the argument can be omitted if not needed. Note that evaluate

1Since not all Fortran compilers support the -I mechanism for specifying the include file search path, you will need to copy
or set up a symbolic link to pgapackf.h from the directory you are compiling a Fortran program in.

4

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetUp (ctx);

PGARun (ctx, evaluate);

PGADestroy (ctx);

return;

}

double evaluate (PGAContext *ctx, int p, int pop, double *aux)

{

int i, nbits, stringlen;

stringlen = PGAGetStringLength(ctx);

nbits = 0;

for (i=0; i<stringlen; i++)

if (PGAGetBinaryAllele(ctx, p, pop, i))

nbits++;

return((double) nbits);

}

Figure 2.1: PGAPack C Program for the Maxbit Example

include "pgapackf.h"

external evaluate

integer ctx

ctx = PGACreate (PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE)

call PGASetUp (ctx)

call PGARun (ctx, evaluate)

call PGADestroy(ctx)

stop

end

double precision function evaluate (ctx, p, pop)

include "pgapackf.h"

integer ctx, p, pop, i, bit, nbits, stringlen

stringlen = PGAGetStringLength(ctx)

nbits = 0

do i=1, stringlen

bit = PGAGetBinaryAllele(ctx, p, pop, i)

if (bit .eq. 1) then

nbits = nbits + 1

endif

enddo

evaluate = dble(nbits)

return

end

Figure 2.2: PGAPack Fortran Program for the Maxbit Example

5

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetPopSize (ctx, 500);

PGASetFitnessType (ctx, PGA_FITNESS_RANKING);

PGASetCrossoverType (ctx, PGA_CROSSOVER_UNIFORM);

PGASetUp (ctx);

PGARun (ctx, evaluate);

PGADestroy (ctx);

return;

}

Figure 2.3: Specifying Nondefault Values

is declared in an external statement in the program unit in which it is used as an actual argument. This
is a requirement of the Fortran language. In Fortran, the range of allele values is 1:stringlen, rather than
0:stringlen-1 as in C.

2.3 Specifying Nondefault Values

PGAPack offers a wide range of choices for parameter values, operators, and algorithmic choices. These will
be set to default values in PGASetUp if the user does not explicitly set a value for them. A nondefault value
may be set by using the PGASet family of calls after PGACreate has been called, but before PGASetUp has
been called.

In Figure 2.3 the PGASet calls change the default values for population size, fitness calculation, and
crossover type. PGASetPopSize changes the population size to 500. PGASetFitnessType specifies that
the fitness values be determined by using a ranking procedure rather than by direct use of the evaluation
function values. PGASetCrossoverType specifies that uniform crossover, rather than the default of two-point
crossover is to be used. Most PGASet calls are discussed in Chapter 4.

2.4 Differential Evolution

Differential Evolution (DE) is an evolutionary algorithm (EA) invented by Price and Storn in the 1990’s
[26, 27, 22]. It is used with floating-point genes and uses differences of individuals (floating-point vectors)
which are added to another vector to form a donor vector which is then crossed-over with an existing
individual. The algorithm is described in more detail in section 4.7, page 23. Since in PGAPack the DE
algorithm is implemented in a mutation strategy, typically for DE a strategy with only mutation is selected,
see PGASetMixingType with option PGA_MIX_MUTATE_ONLY in section 4.2.

DE applies selection pressure during population replacement: A newly-mutated string replaces its parent
if it has the same or a better fitness. There is no selection mechanism during the selection phase like in other
EAs. To emulate this (non-) selection, PGAPack introduces a new selection type, linear selection, which
just returns all individuals in sequence and is no selection operator in the genetic-algorithm sense because
no selection pressure is applied. More details of the selection operator for DE are given in section 4.5.

For the population replacement strategy the pairwise-best replacement type is introduced for DE, which
can also be used in other EA variants due to the modular nature of PGAPack, more details are given
in section 4.2. Typical settings for Differential Evolution are given in figure 2.4. In that example the
population size and the number of individuals replaced in each generation are set to the same value: Since

6

PGASetPopSize (ctx, 30);

PGASetNumReplaceValue (ctx, 30);

PGASetSelectType (ctx, PGA_SELECT_LINEAR);

PGASetPopReplaceType (ctx, PGA_POPREPL_PAIRWISE_BEST);

PGASetMixingType (ctx, PGA_MIX_MUTATE_ONLY);

PGASetMutationType (ctx, PGA_MUTATION_DE);

PGASetMutationBounceBackFlag (ctx, PGA_TRUE);

Figure 2.4: Specifying Nondefault Values for Differential Evolution

DE’s replacement strategy replaces individuals only if they are better than an existing individual this strategy
is elitist and it makes sense to apply DE to all individuals in each generation.

2.5 Parallel I/O

The examples in Figures 2.5 (C) and 2.6 (Fortran) read values for the two parameters len (string length)
and maxiter (maximum number of GA iterations) from standard input. These examples will work correctly
with either a sequential or parallel version of PGAPack. However, the explicit use of MPI calls for I/O is
necessary only if a parallel version of PGAPack is used, and parameter values are read from standard input.
The purpose is to be sure that each process receives a copy of the input values. See Appendix C for further
details.

MPI Init(&argc, &argv) is always the first function called in any MPI program. Each process
executes MPI Comm rank(MPI COMM WORLD, &myid) to determine its unique rank in the communicator2

MPI COMM WORLD. The logic used in this program is to have process 0 read and write from/to standard
input/output and broadcast (using MPI Bcast) the parameters to the other processes. The PGAPack func-
tion calls are similar to those in the previous examples. If the user called MPI Init, the user must also call
MPI Finalize before exiting.

We elaborate here on the MPI Bcast function because of its practical value in the model of parallel I/O
shown. For more detailed discussion of MPI concepts and functions, the user should consult [13, 15].

The C binding for MPI Bcast is

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

and the Fortran binding

MPI_BCAST(buffer, count, datatype, root, comm, ierror)

<type> buffer(*)

integer count, datatype, root, comm, ierror

MPI Bcast will result in every process in communicator comm receiving a copy of the contents of *buf/buffer.
The other parameters are the number of items (count), the datatype (datatype), which may be one of
MPI DOUBLE, MPI INT, MPI CHAR, MPI UNSIGNED, or MPI LONG; the rank of the process with the original copy
(root); the MPI communicator (comm); and, for Fortran, a variable to handle an error return code (ierror).

2.6 Compiling, Linking, and Execution

When PGAPack was installed, the makefiles in the ./examples/c and ./examples/fortran directories were
correctly configured for the machine PGAPack was installed on using the version of MPI specified (if any).
To run your own programs, it is best to copy the appropriate makefile (C or Fortran) to your directory and
modify it to use your source code files. The makefile will compile your source code files, link in the PGAPack
library (and MPI library if a parallel version of PGAPack was built), and build your executable.

2See Appendix C

7

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

int myid, len, maxiter;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid == 0) { /* Process 0 has a dialog */

printf("String length? "); /* with the user and */

scanf("%d", &len); /* broadcasts the user’s */

printf("Max iterations? "); /* parameters to all */

scanf("%d", &maxiter); /* other processes */

}

MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(&maxiter, 1, MPI_INT, 0, MPI_COMM_WORLD);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE);

PGASetMaxGAIterValue(ctx, maxiter);

PGASetUp(ctx);

PGARun(ctx, evaluate);

PGADestroy(ctx);

MPI_Finalize();

return(0);

}

Figure 2.5: PGAPack Maxbit Example in C with I/O

8

include ’pgapackf.h’

include ’mpif.h’

double precision evaluate

external evaluate

integer ctx, myid, len, maxiter, ierror

call MPI_Init(ierror)

call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierror)

c Process 0 has a dialog with the user and broadcasts the user’s

c parameters to all other processes

if (myid .eq. 0) then

print *, ’String length?’

read *, len

print *, ’Max iterations?’

read *, maxiter

endif

call MPI_Bcast(len, 1, MPI_INT, 0, MPI_COMM_WORLD, ierror)

call MPI_Bcast(maxiter, 1, MPI_INT, 0, MPI_COMM_WORLD, ierror)

ctx = PGACreate(PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE)

call PGASetMaxGAIterValue(ctx, maxiter)

call PGASetUp(ctx)

call PGARun(ctx, evaluate)

call PGADestroy(ctx)

call MPI_Finalize(ierror)

stop

end

Figure 2.6: PGAPack Maxbit Example in Fortran with I/O

9

How you execute your program will depend on whether a sequential or parallel version of PGAPack was
built, the MPI implementation used and the machine you are running on. If a sequential version of PGAPack
was built (i.e., one where the user did not supply a version of MPI), the executable maxbit can be executed
on a uniprocessor Unix system by typing maxbit. If the MPICH implementation of MPI was used, it may be
executed (using four processes) by mpirun maxbit -np 4. Appendix D contains some examples.

10

Part II

Users Guide

11

Chapter 3

The Structure of PGAPack

This chapter provides a general overview of the structure of PGAPack.

3.1 Native Data Types

PGAPack is a data-structure-neutral library. By this we mean that a data-hiding capability provides the
full functionality of the library to the user, in a transparent manner, irrespective of the data type used.
PGAPack supports four native data types: binary-valued, integer-valued, real-valued, and character-valued
strings. In addition, PGAPack is designed to be easily extended to support other data types (see Chapter 6).

The binary (or bit) data type (i.e., |1|0|1|1|) is the traditional GA coding. The bits may either be inter-
preted literally or decoded into integer or real values by using either binary coded decimal or binary-reflected
Gray codes. In PGAPack the binary data type is implemented by using each distinct bit in a computer word
as a gene, making the software very memory-efficient. The integer-valued data type (i.e., |3|9|2|4|) is often
used in routing and scheduling problems. The real-valued data type (i.e., |4.2|7.1|-6.3|0.8|) is useful in
numerical optimization applications. The character-valued data type (i.e., |h|e|l|l|o|w|o|r|l|d|is useful
for symbolic applications.

3.2 Context Variable

In PGAPack the context variable is the data structure that provides the data hiding capability. The con-
text variable is a pointer to a C language structure, which is itself a collection of other structures. These
(sub)structures contain all the information necessary to run the genetic algorithm, including data type spec-
ified, parameter values, which functions to call, operating system parameters, debugging flags, initialization
choices, and internal scratch arrays. By hiding the actual data type selected and specific functions that op-
erate on that data type in the context variable, user-level functions in PGAPack can be called independent
of the data type.

Almost all fields in the context variable have default values. However, the user can set values in the
context variable by using the PGASet family of function calls. The values of fields in the context variable
may be read with the PGAGet family of function calls.

3.3 Levels of Usage Available

PGAPack provides multiple levels of control to support the requirements of different users. At the simplest
level, the genetic algorithm “machinery” is encapsulated within the PGARun function, and the user need
specify only three parameters: the data type, the string length, and the direction of optimization. All
other parameters have default values. At the next level, the user calls the data-structure-neutral functions
explicitly (e.g., PGASelect, PGACrossover, PGAMutation). This mode is useful when the user wishes more
explicit control over the steps of the genetic algorithm or wishes to hybridize the genetic algorithm with a

12

hill-climbing heuristic. At the third level, the user can customize the genetic algorithm by supplying his or
her own function(s) to provide a particular operator(s) while still using one of the native data types. Finally,
the user can define his or her own datatype, write the data-structure-specific low-level GA functions for
the datatype (i.e., crossover, mutation, etc.), and have the data-structure-specific functions executed by the
high-level data-structure-neutral PGAPack functions.

3.4 Function Call-Based Library

All the access to, and functionality of, the PGAPack library is provided through function calls.

• The PGASet family of functions sets parameter values, allele values, and specifies which GA operators
to use. For example, PGASetPopSize(ctx,500) sets the GA population size to 500.

• The PGAGet family of functions returns the values of fields in the context variable and allele values in
the string. For example, bit = PGAGetBinaryAllele(ctx,p,pop,i) returns the value of the ith bit
in string p in population pop into bit.

• The simplest level of usage is provided by the PGARun function. This function will run the genetic
algorithm by using any nondefault values specified by the user and default values for everything else.

• The next level of usage is provided by the data-structure-neutral functions, which the user can call
to have more control over the specific steps of the genetic algorithm. Some of these functions are
PGASelect, PGACrossover, PGAMutate, PGAEvaluate, and PGAFitness.

• The data-structure-specific functions deal directly with native data types. In general, the user never
calls these functions directly.

• System calls in PGAPack provide miscellaneous functionality, including debugging, random number
generation, output control, and error reporting.

3.5 Header File and Symbolic Constants

The PGAPack header file contains symbolic constants and type definitions for all functions and should
be included in any file (or function or subroutine in Fortran) that calls a PGAPack function. For
example, PGA CROSSOVER UNIFORM is a symbolic constant that is used as an argument to the function
PGASetCrossoverType to specify uniform crossover. In C the header file is pgapack.h. In Fortran it is
pgapackf.h

3.6 Evaluation Function

PGAPack requires that the user supply a function that returns an evaluation of a string that it will map to
a fitness value. This function is called whenever a string evaluation is required. The calling sequence and
return value of the function must follow the format discussed in Section 4.9.

3.7 Parallelism

PGAPack can be run on both sequential computers (uniprocessors) and parallel computers (multiprocessors,
multicomputers, and workstation networks). The parallel programming model used is message passing, in
particular the single program, single data (SPMD) model. PGAPack version 1.0 supports sequential and
parallel implementations of the global population model (see Chapter 9).

13

3.8 Implementation

PGAPack is written in ANSI C. A set of interface functions allows most user-level PGAPack functions
to be called from Fortran. All message-passing calls follow the Message Passing Interface (MPI) standard
[13, 15]. Nonoperative versions of the basic MPI functions used in the examples are supplied if the user
does not provide an MPI implementation for their machine. These routines simply return and provide no
parallel functionality. Their purpose is to allow the PGAPack library to be built in the absence of an MPI
implementation.

Most low-level internal functions in PGAPack are data-structure specific and use addresses and/or offsets
of the population data structures. The user-level routines, however, provide the abstractions of data-structure
neutrality and an integer indexing scheme for access to population data structures.

14

Chapter 4

Basic Usage

As the examples in Chapter 2 show, a PGAPack program can be written with just four function calls and
a string evaluation function. This basic usage is discussed further in Section 4.1. Sections 4.3–4.12 explain
options available in PGAPack. Section 4.13 discusses PGAPack command line arguments.

4.1 Required Functions

Any file (or function or subroutine in Fortran) that uses a PGAPack function must include the PGAPack
header file. In C this file is pgapack.h. In Fortran this file is pgapackf.h. The first PGAPack call made is
always to PGACreate. In C this call looks like

PGAContext *ctx;

ctx = PGACreate (&argc, argv, datatype, len, maxormin);

PGACreate allocates space for the context variable, ctx (Section 3.2), and returns its address. argc and
argv are the standard list of arguments to a C program. datatype must be one of PGA DATATYPE BINARY,
PGA DATATYPE INTEGER, PGA DATATYPE REAL, or PGA DATATYPE CHARACTER to specify strings consisting of
binary-valued, integer-valued, real-valued, or character-valued strings, respectively. len is the length of the
string (i.e., the number of genes). maxormin must be PGA MAXIMIZE or PGA MINIMIZE to indicate whether
the user’s problem is maximization or minimization, respectively.

In Fortran the call to PGACreate is

integer ctx

ctx = PGACreate (datatype, len, maxormin)

where datatype, len, and maxormin are the same as for C programs. After the PGACreate call, the user
may optionally set nondefault values. These are then followed by a call to PGASetUp to initialize to default
values all options, parameters, and operators not explicitly specified by the user. For example,

ctx = PGACreate(&argc, argv, datatype, len, maxormin);

PGASetPopSize (ctx, 500);

PGASetFitnessType (ctx, PGA_FITNESS_RANKING);

PGASetCrossoverType (ctx, PGA_CROSSOVER_UNIFORM);

PGASetUniformCrossoverProb (ctx, 0.6);

PGASetUp (ctx);

will change the default values for the population size, the mapping of the user’s evaluation to a fitness
value, and the crossover type. All PGASet calls should be made after PGACreate has been called, but before
PGASetUp has been called; all such calls are optional. Note also that all PGAPack functions other than
PGACreate take the context variable as their first argument.

The PGARun function executes the genetic algorithm. Its second argument is the name of a user-supplied
evaluation function that returns a double (double precision in Fortran) value that is the user’s evaluation
of an individual string. In C the prototype for this function looks like

15

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

and in Fortran

double precision function evaluate (ctx, p, pop, aux)

integer ctx, p, pop

double precision aux(*)

The user must write the evaluation function, and it must have the calling sequence shown above and discussed
further in Section 4.9, except that depending on the architecture and the calling convention of the compiler,
the aux argument can be left out. After PGARun terminates, PGADestroy is called to release all memory
allocated by PGAPack. 1

Except for writing an evaluation function (Section 4.9) the information contained in rest of this chapter
is optional—defaults will be set for all other GA parameters. We do note, however, that the defaults used
are the result of informal testing and results reported in the GA literature. They are by no means optimal,
and additional experimentation with other values may well yield better performance on any given problem.

4.2 Population Replacement

PGAPack supports several different population replacement schemes. Among them the two most common
replacement schemes in the literature. The first, the generational replacement genetic algorithm (GRGA),
replaces the entire population each generation and is the traditional genetic algorithm [19]. The second,
the steady-state genetic algorithm (SSGA), typically replaces only a few strings each generation and is a
more recent development [28, 32, 33]. A third scheme, originally called restricted tournament selection
by Harik [16, 17] and later adopted under the name of restricted tournament replacement by Pelikan [21]
replaces offspring candidates into the original population by selecting a number of members from the original
population and selecting the member most similar to the candidate. The similarity metric is implemented
by a genetic difference function, see section 6.1, p. 37. The candidate is then compared to the most similar
member and only if the new solution candidate is better than the member it replaces it. This approach is
repeated for each new solution. A fourth approach used by evolutionary algorithm variants that mutate an
individual into an offspring that replaces its parent only when it is better is also supported. This variant is
used by the popular Differential Evolution [26, 27, 22] algorithm. We call this replacement variant pairwise
best in the following. Individuals with the same index in the old and the new population are compared and
the one with the better fitness is used.

Two algorithms are typically used for multi-objective optimization. The first one is the elitist Nondom-
inated Sorting Genetic Algorithm (Version 2), NSGA-II [10] and is called NSGA-II replacement. It can be
used for single-objective optimization, too, both with and without constraints. If constraints are present, by
default the constraint violations are summed. An alternative is to use nondominated sorting for constraints,
too. This can be switched on by setting PGASetSumConstraintsFlag to PGA_FALSE.

The second is the Nondominated Sorting Genetic Algorithm for many-objective optimization, NSGA-
III [9], [20]. NSGA-II and NSGA-III are the only possible population replacement algorithms when using
multi-objective optimization.

With NSGA-III you need to define a regular set of points or a set of directions where you want solutions to
the multi-objective problem to be found, both can be combined, you can specify both, a number of reference
directions and reference points. The reference points are in a hyperplane defined by the M positive axes of
the objective space, the hyperplane goes through the axes intercepts at coordinate 1 for each of the axes.
An example for three objectives with a partition size of 12 is shown in figure 4.1.

The discovered pareto-front is projected onto this hyperplane [2]. When specifying reference directions,
these are directly defined in the objective space (without any projection).

To compute a set of points we use an algorithm originally defined in a paper by I. Das and J. E. Dennis [3]
with the function LIN_dasdennis. This function gets the dimension (the number of objectives to optimize
which is the number of auxiliary evaluations +1 minus the number of constraints) and the number of
partitions. It returns the points in result and optionally takes a scale factor in the range 0..1 and a

1PGADestroy will also call MPI finalize, if MPI was started by PGACreate.

16

Figure 4.1: Reference points in 3 dimensions, partition-size 12

direction to shift this scaled set of points. The direction is only needed if the scale factor is less than one.
The first time the function is called, the result must point at a NULL pointer. The function automatically
allocates the necessary memory. It can be called multiple times to extend the points already allocated. The
resulting points are then passed into the function PGASetReferencePoints:

int npoints = 0;

void *result = NULL;

double point [3] = {1, 1, 1};

PGASetNumAuxEval (ctx, 2);

PGASetNumConstraint (ctx, 0);

npoints = LIN_dasdennis (3, 2, &result, 0, 1, NULL);

npoints = LIN_dasdennis (3, 1, &result, npoints, 0.5, point);

PGASetReferencePoints (ctx, npoints, result);

For defining reference directions, the function PGASetReferenceDirections is used. It gets the number
of directions and the vector of directions (each direction is a vector of the dimensionality of the number
of objectives) and the number of partitions (for Das/Dennis points) and the scale factor of the generated
points:

double directions [][3] = {{1, 1, 1}, {1, 2, 3}};

PGASetReferenceDirections (ctx, 2, directions, 12, 0.05);

The difference to the reference points above is that the reference directions are in the objective space and
the Das/Dennis points are generated dynamically in each generation.

Note that by default when no population size if specified, NSGA-III uses the number of points defined
by the reference points and reference directions for the population size.

The NSGA-III replacement optimizes the solutions to be near the reference points and/or reference di-
rections. With a high number of objective functions, the N-dimensional space forming the solution space
increases exponentially with the number of objective functions. This is known as the “curse of dimension-
ality”. With NSGA-II it is increasingly hard to find a well distributed set of solutions with more than two
or three objectives. With the NSGA-III replacement it is possible to concentrate the search to a predefined
number of reference points or reference directions.

PGAPack supports both GRGA and SSGA and variants in between via parameterized population re-
placement. For example, the PGASet calls

PGASetPopSize (ctx,200);

PGASetNumReplaceValue (ctx,10);

PGASetPopReplaceType (ctx, PGA_POPREPL_BEST);

specify that each generation a new population is created consisting of ten strings created via recom-
bination, and the 190 most fit strings from the old population. The 190 strings can also be selected

17

randomly, with or without replacement, by setting the second argument of PGASetPopReplaceType to
PGA_POPREPL_RANDOM_REP or PGA_POPREPL_RANDOM_NOREP, respectively.

For selecting restricted tournament replacement PGA_POPREPL_RTR is used. The default for the window
size (number of members of the old population that are chosen for comparison with a new candidate) is
min (n,N/20) where n is the string length and N is the population size [21]. The window size can be set
or queried with PGASetRTRWindowSize and PGAGetRTRWindowSize, respectively. Note that when restricted
tournament replacement is in use, the maximum number of new candidates is limited with the number set
with PGASetNumReplaceValue but fewer—depending on fitness–may be replaced into the new population.
Note that it depends on the selection which individuals in the old population are replaced. Since restricted
tournament replacement is an elitist strategy the overall fitness never dimishes with this replacement strategy.

For pairwise best replacement PGA_POPREPL_PAIRWISE_BEST is used as the replacement type. Like re-
stricted tournament replacement it is an elitist strategy.

For NSGA-II replacement PGA_POPREPL_NSGA_II is used. For NSGA-II replacement PGA_POPREPL_NSGA_III
is used. The number of auxiliary evaluation function can be set with PGASetNumAuxEval and the number
of constraints can be set with PGASetNumConstraint. If the difference between the two is > 0 (i.e. the
number of objectives is > 1), these auxiliary evaluations are used for multi-objective optimization. Only the
NSGA-II and NSGA-III replacement are possible with these settings (i.e. when the number of objectives is
> 1).

The replacement types pairwise best, restricted tournament replacement, NSGA-II, and NSGA-III re-
placement have selection pressure in addition to providing a population replacement strategy. So these can
be used if a selection scheme without selection pressure (a tournament strategy with only one participant in
the tournament or linear selection) is used.

By default, the number of new strings created each generation is 10 percent of the population size (an
SSGA population replacement strategy). A GRGA can be implemented by setting PGASetNumReplaceValue

to the population size (the default population size is 100). Setting PGASetNumReplaceValue to one less than
the population size will result in an elitist GRGA, where the most fit string is always copied to the new
population (since PGA POPREPL BEST is the default population replacement strategy).

Traditionally, strings created through recombination first undergo crossover and then mutation. Some
practitioners [4] have argued that these two operators should be separate. By default, PGAPack applies
mutation only to strings that did not undergo crossover.

This is equivalent to setting PGASetMixingType to PGA_MIX_MUTATE_OR_CROSS which is also the de-
fault. To have strings undergo both crossover and mutation, one should set PGASetMixingType to
PGA_MIX_TRADITIONAL. Note that there is also a mode that will not mutate strings that are not also crossed
over. This can be enabled by setting PGASetMixingType to PGA_MIX_MUTATE_AND_CROSS.

If an evolutionary algorithm variant without crossover is used or if special crossover techniques with more
that two parents should be applied, all the logic can be implemented in a custom crossover operator and the
PGASetMixingType can be set to PGA_MIX_MUTATE_ONLY. In this mode no crossover is performed at all.

There is also a legacy interface which should not be used for new code. Functions used in that interface are:
PGASetMutationOrCrossoverFlag, PGASetMutationAndCrossoverFlag, and PGASetMutationOnlyFlag.

By default, PGAPack allows duplicate strings in the population. Some practitioners advocate not allowing
duplicate strings in the population in order to maintain diversity. The function call PGASetNoDuplicatesFlag
(ctx,PGA TRUE) will not allow duplicate strings in the population: It repeatedly applies the mutation oper-
ator (with an increasing mutation rate) to a duplicate string until it no longer matches any string in the new
population. If the mutation rate exceeds 1.0, however, the duplicate string will be allowed in the population,
and a warning message will be issued.

Figure 4.2 shows the generic population replacement scheme in PGAPack. Both populations k and k+1
are of fixed size (the value returned by PGAGetPopSize). First, PGAGetPopSize - PGAGetNumReplaceValue
strings are copied over directly from generation k. The way the strings are chosen, the most fit, or ran-
domly with or without replacement, depends on the value set by PGASetPopReplaceType. The remaining
PGAGetNumReplaceValue strings are created by crossover and mutation.

18

k+1k

temp

PGAGetPopSize()

PGAGetNumReplaceValue()

PGAGetPopSize() -

PGAGetNumReplaceValue()

Figure 4.2: Population Replacement

19

4.3 Stopping Criteria

PGAPack terminates when at least one of the stopping rule(s) specified has been met. The three stopping
rules are (1) iteration limit exceeded, (2) population too similar, and (3) no change in the best solution found
in a given number of iterations. The default is to stop when the iteration limit (by default, 1000 iterations)
is reached. Note that when ǫ-constraint optimization is in use, stopping is not triggered as long as ǫ > 0, see
section 4.9.

The choice of stopping rule is set by PGASetStoppingRuleType. For example, PGASetStoppingRuleType
(ctx,PGA STOP MAXITER) is the default. Other choices are PGA STOP TOOSIMILAR and PGA STOP NOCHANGE

for population too similar and no change in the best solution found, respectively. PGASetStoppingRuleType
may be called more than once. The different stopping rules specified are ored together.

If PGA STOP MAXITER is one of the stopping rules, PGASetMaxGAIterValue(ctx,500)will change the max-
imum iteration limit to 500. If PGA STOP NOCHANGE is one of the stopping rules, PGASetMaxNoChangeValue
(ctx,50) will change from 100 (the default) to 50 the maximum number of iterations in which no change
in the best evaluation is allowed before the GA stops. If PGA STOP TOOSIMILAR is one of the stopping rules,
PGASetMaxSimilarityValue(ctx,99) will change from 95 to 99 the percentage of the population allowed
to have the same evaluation function value before the GA stops.

4.4 Initialization

Strings are either initialized randomly (the default), or set to zero. The choice is specified by setting
the second argument of PGASetRandomInitFlag to either PGA TRUE or PGA FALSE, respectively. Random
initialization depends on the datatype.

If binary-valued strings are used, each gene is set to 1 or 0 with an equal probability. To set the probability
of randomly setting a bit to 1 to 0.3, use PGASetBinaryInitProb(ctx,0.3).

For integer-valued strings, the default is to set the strings to a permutation on a range of integers. The
default range is [0, L− 1], where L is the string length. PGASetIntegerInitPermute(ctx, 500, 599) will
set the permutation range to [500, 599]. The length of the range must be the same as the string length.

Alternatively, PGASetIntegerInitRange will set each gene to a random value selected uniformly from a
specified range. For example, the code

stringlen = PGAGetStringLength(ctx);

for(i=0;i<stringlen;i++) {

low[i] = 0;

high[i] = i;

}

PGASetIntegerInitRange(ctx, low, high);

will select a value for gene i uniformly randomly from the interval [0,i].
If real-valued strings are used, the alleles are set to a value selected uniformly randomly from a specified

interval. The interval may be specified with either the PGASetRealInitRange or PGASetRealInitPercent
functions. For example, the code

stringlen = PGAGetStringLength(ctx);

for(i=0; i<stringlen; i++) {

low[i] = -10.0;

high[i] = (double) i;

}

PGASetRealInitRange(ctx, low, high);

will select a value for allele i uniformly randomly from the interval [−10.0, i]. This is the default strategy
for initializing real-valued strings. The default interval is [0, 1.0].

PGASetRealInitPercent specifies the interval with a median value and percent offset. For example,

stringlen = PGAGetStringLength(ctx);

for(i=1; i<=stringlen; i++) {

20

median [i-1] = (double) i;

percent [i-1] = .5;

}

PGASetRealInitPercent(ctx, median, percent);

will select a value for allele i uniformly randomly from the increasing intervals [1
2
i, 3

2
i]. Note that if the

median value is zero for some i, then an interval of [0, 0] will be defined.
If character-valued strings are used, PGASetCharacterInitType(ctx,PGA CINIT UPPER) will set the al-

lele values to uppercase alphabetic characters chosen uniformly randomly. Other options are PGA CINIT LOWER

for lower case letters only (the default) and PGA CINIT MIXED for mixed case letters, respectively.

4.5 Selection

The selection phase allocates reproductive trials to strings on the basis of their fitness. PGAPack supports
five selection schemes: proportional selection, stochastic universal selection, truncation selection, tournament
selection (default is binary tournament selection), and probabilistic binary tournament selection. A sixth
scheme which is called linear selection that is not a selection scheme in the genetic sense (it has no selection
pressure) is used for evolutionary algorithms that rely on modification of individuals that later replace their
parent if the offspring has higher fitness, so the selection pressure is applied in the replacement strategy.
The linear scheme is guaranteed to return individuals in population order.

The choice may be specified by setting the second argument of PGASetSelectType to one
of PGA_SELECT_PROPORTIONAL, PGA_SELECT_SUS, PGA_SELECT_TRUNCATION, PGA_SELECT_TOURNAMENT,
PGA_SELECT_PTOURNAMENT, and PGA_SELECT_LINEAR for proportional, stochastic universal, truncation, tour-
nament, probabilistic tournament selection, and linear selection, respectively. The default is tournament
selection. For tournament selection, the size of the tournament (number of participants) can be set e.g., with
PGASetTournamentSize(ctx, 3). The default is binary tournament (size = 2). To allow a more fine-grained
selection pressure, the tournament size is a floating-point value. The integer part of that value specifies the
minimum tournament size. For each tournament for the fractional part, a biased coin is flipped (using
PGARandomFlip) and the tournament size is increased by one if the outcome is positive. This mechanism for
fine-grained tournaments was first proposed by Harik and Goldberg [18] and later rediscovered by Filipović
et. al. [11].

Note that with a tournament size of 1 (or with the linear selection scheme) there is no selection pressure.
Having no selection pressure in this step can be compensated by using a replacement scheme with selection
pressure, i.e., one of restricted tournament replacement or pairwise best replacement, see section 4.2 for
details on population replacement. If no selection pressure is used in the selection scheme and in the
population replacement strategy, the genetic search degenerates to a random walk.

In addition, for tournament selection it can be specified if the selection is with or without replacement
using the function PGASetTournamentWithReplacement with a parameter of PGA_FALSE or PGA_TRUE. Sam-
pling without replacement guarantees that for n tournaments, each individual participates in the same
number of tournaments (as long as n multiplied by the tournament size is a multiple of the population size)
[14]. The was later re-invented by Sokolov and Whitley under the name Unbiased Tournament Selection
[24].

The default sampling is with replacement as if PGASetTournamentWithReplacement had been called with
the parameter PGA_TRUE. The probabilistic tournament selection is always binary (two participants in the
tournament), the default probability that the string that wins the tournament is selected is 0.6. It may be set
to 0.8, for example, with PGASetPTournamentProb(ctx, 0.8). The tournament for probabilistic tournament
selection is always with replacement. The truncation selection by default selects half of the population. This
proportion of selected individuals can be set with PGASetTruncationProportion for which the default value
is 0.5.

When using multi-objective optimization with, e.g., the NSGA-II [10] population replacement (see sec-
tion 4.2), it is possible to either use a selection scheme with or without selection pressure. However, selection
schemes that rely on direct comparison of individuals (e.g. tournament selection) will sort by the domi-
nation rank of the individuals established by the NSGA-II algorithm. This is because for multi-objective
optimization there is no full order established by multiple objectives as would be the case for single-objective

21

optimization. This may result in less selection pressure because multiple individuals will typically have the
same rank. This lower selection pressure is compensated by the selection pressure introduced by the NSGA-II
(or -III) population replacement algorithm.

Most selection schemes (except stochastic universal selection) already return a randomized sequence.
In previous implementations all sequences got an additional randomization step. By default this is no
longer the case (exect for PGA_SELECT_SUS). You can enable the previous behavior by setting it to PGA_TRUE

with PGASetRandomizeSelect. Note that even with this flag set, the sequence returned by the linear
selection scheme is never randomized. This has adverse effects on crossover with linear selection: With
this scheme the same two adjacent population members are always crossed over which makes crossover
almost ineffective. Linear selection is typically only useful when using special mutation operators most often
with PGASetMixingType set to PGA_MIX_MUTATE_ONLY. If you need a randomized sequence without selection
pressure, use tournament selection without replacement with a tournament size of one.

4.6 Crossover

The crossover operator takes bits from each parent string and combines them to create child strings.
The type of crossover may be specified by setting PGASetCrossoverType to PGA_CROSSOVER_ONEPT,
PGA_CROSSOVER_TWOPT, PGA_CROSSOVER_UNIFORM, or PGA_CROSSOVER_SBX for one-point, two-point, uniform,
or simulated binary (SBX) crossover, respectively. For integer alleles there is PGA_CROSSOVER_EDGE for Edge
Recombination crossover [34]. If the integer gene is initialized to be a permutation, this variant preserves
this property. In addition some edges can be defined to be fixed (unmutable). This is done with the
PGAIntegerSetFixedEdges. An example is given in examples/sequence.

The default is two-point crossover. By default the crossover rate is 0.85. It may be set to 0.6 by
PGASetCrossoverProb(ctx, 0.6), for example. Simulated binary crossover is available only for integer and
real genes.

Uniform crossover and simulated binary crossover are parameterized by pu, the probability of swapping
two parent bit values [25] in the case of uniform crossover and for mutating an allele for SBX. By default,
pu = 0.5. The function call PGASetUniformCrossoverProb(ctx, 0.7) will set pu = 0.7.

SBX uses a polynomial distribution with a parameter ηc that defines how far the child may deviate
from each parent. For high values of this parameter, children stay nearer to the parents [6]. Recommended
values of this parameter are typically in the range 2–5, the default is 2 and a different value can be set with
PGASetCrossoverSBXEta.

When crossing strings with SBX, typically for each allele a new random number is computed for the
polynomial distribution. With PGASetCrossoverSBXOncePerString you can define that a random number
is only drawn once for each individual to be crossed over. This ensures that the child is on the line in
N-dimensional space between the two parents if all alleles are crossed over. This may be beneficial when
handling optimization problems that are not decomposable [23] similar to the crossover rate in differential
evolution [22, p. 98].

Crossover types that may yield child individuals outside the range of the parents (currently only SBX) may
want to call PGASetCrossoverBoundedFlag or PGASetCrossoverBounceBackFlag with the context variable
and PGA_TRUE to select an algorithm that keeps the child alleles within the bounds of the initialization
ranges of the gene for each allele. These parameters work analogous to PGASetMutationBoundedFlag and
PGASetMutationBounceBackFlag for mutation. For the bounce-back implementation the parent nearer to
the initialisation boundary is used for each check.

4.7 Mutation

The mutation rate is the probability that a gene will undergo mutation. The mutation rate is independent
of the datatype used. The default mutation rate is the reciprocal of the string length. The function call
PGASetMutationProb(ctx,.001) will set the mutation rate to .001.

The type of mutation depends on the data type. For binary-valued strings, mutation is a bit complement
operation. For character-valued strings, mutation replaces one alphabetic character with another chosen

22

uniformly randomly. The alphabetic characters will be lower, upper, or mixed case depending on how the
strings were initialized.

For integer-valued strings, if the strings were initialized to a permutation and gene i is to be mutated,
the default mutation operator swaps gene i with a randomly selected gene. If the strings were initialized to
a random value from a specified range and gene i is to be mutated, by default gene i will be replaced by a
value selected uniformly random from the initialization range.

The mutation operator for integer-valued strings may be changed irrespective of how the strings were
initialized. If PGASetMutationType is set to PGA MUTATION RANGE, gene i will be replaced with a value
selected uniformly randomly from the initialization range. If the strings were initialized to a permutation,
the minimum and maximum values of the permutation define the range. If PGASetMutationType is set to
PGA MUTATION PERMUTE, gene i will be swapped with a randomly selected gene. If PGASetMutationType is set
to PGA MUTATION CONSTANT, a constant integer value (by default one) will be added (subtracted) to (from) the
existing allele value. The constant value may be set to 34, for example, with PGASetMutationIntegerValue

(ctx,34).
Three of the real-valued mutation operators are of the form v ← v ± p× v, where v is the existing allele

value. They vary by how p is selected. First, if PGASetMutationType is set to PGA MUTATION CONSTANT, p
is the constant value 0.01. It may be set to .02, for example, with PGASetMutationRealValue(ctx,.02).
Second, if PGASetMutationType is set to PGA MUTATION UNIFORM, p is selected uniformly from the interval
(0, .1). To select p uniformly from the interval (0, 1) set PGASetMutationRealValue(ctx,1). Third, if
PGASetMutationType is set to PGA MUTATION GAUSSIAN, p is selected from a Gaussian distribution (this
is the default real-valued mutation operator) with mean 0 and standard deviation 0.1. To select p from
a Gaussian distribution with mean 0 and standard deviation 0.5 set PGASetMutationRealValue(ctx,.5).
Finally, if PGASetMutationType is set to PGA MUTATION RANGE, gene i will be replaced with a value selected
uniformly random from the initialization range of that gene.

For integer and real genes there is a polynomial mutation operator selected with the mutation type
constant PGA_MUTATION_POLY [8]. It works by drawing a random number from a polynomial probabilty
density function for a fixed mutation interval. The mutation interval by default is between the current allele
value and the lower/upper initialisation range of the gene. Unless you also call PGASetMutationBoundedFlag
or PGASetMutationBounceBackFlag to keep mutation within the bounds of the initialization range, the
default value does not make much sense (because the current value may already exceed the boundary). In
that case (and other cases where you want a fixed mutation range) you can call PGASetMutationPolyValue
to set the mutation range. The polynomial mutation distribution has a parameter ηm that specifies how
likely values far away from the current allele are selected, the higher this value gets, the nearer the mutated
values stays to the parent. You can set this parameter with PGASetMutationPolyEta, the default is 100 [7].

For Differential Evolution (DE), the strategy is implemented as the mutation type PGA_MUTATION_DE.
Note that for the full DE algorithm not just a special mutation type is needed, see section 2.4 for an
introduction. You typically want to chose mutation only, linear selection, and pairwise-best replacement.
For DE, real-valued genes are typically called vectors (because a gene is a vector of real-valued alleles), we
use that term in the following.

The default strategy of DE is to compute the distance of a pair of random vectors in the population and
add this difference to a randomly-chosen third vector:

Vi,g = Xr0,g + F · (Xr1,g −Xr2,g) (4.1)

Where g denotes the generation, i is the running population index, and r0, r1, and r2 are random
population indeces different from each other and the running index i. The factor F , called the scale factor, is
a parameter of the search and can be specified with PGASetDEScaleFactor, the default is 0.9. The range for
this parameter is [0, 2] but typical values are in the range [0.3, 1), the exact value 1.0 should not be chosen
because it reduces the number of mutants and thus potentially the genetic variance [22, p. 75].

The resulting mutant vector Vi, also called the donor vector, is then combined via crossover with the
ith member of the population Xi. Note that the crossover in this implementation of DE is not the normal
genetic algorithm crossover (from section 4.6), in fact when using DE, crossover is typically turned off by
setting PGASetMixingType to PGA_MIX_MUTATE_ONLY. Instead DE uses its own crossover implementation
within the PGA_MUTATION_DEmutation implementation. For each vector element (allele), a random variable
with a crossover probability specified by PGASetDECrossoverProb (default 0.9) is chosen. In the default

23

binomial crossover variant of DE this variable selects an element from either the donor vector Vi or Xi.
In the DE literature this parameter is typically called Cr. At least one random element from Vi is always
selected, so with a crossover probability of 0, exactly one element from the donor vector is selected. With
a crossover probability of 1, all elements from the donor vector are selected. Crossover plays a significat
role in optimisation. For decomposable problems (where each dimension of the problem can be optimized
separately [23]) a low crossover rate 0 ≤ Cr ≤ 0.2 is a good choice. For non-decomposable problem a high
crossover rate should be chosen, i.e. 0.9 ≤ Cr ≤ 1 [22, p. 98].

The resulting individual after crossover is placed in the new population. If pairwise-best population
replacement is selected (the default in the DE literature, see section 4.2) it is later compared with the old
individual Xi in the old population which it replaces if it has better fitness.

There are different variants of DE and a notation was established to distinguish these variants. The
notation uses a 4-tuple where each element is delimited with a ’/’. The first element in the tuple is always
the string DE for Differential Evolution. The second element describes the variant. The most common
(often called the classic variant) selects a random element from the population for modification and is
therefore called rand, see equation 4.1. The third tuple-element is the number of difference-pairs applied to
the modified element, it is typically one or two. If we use two differences, the formula in equation 4.1 would
become:

Vi,g = Xr0,g + F · (Xr1,g −Xr2,g) + F · (Xr3,g −Xr4,g) (4.2)

The number of differences can be specified with PGASetDENumDiffs and defaults to 1. Note that not all DE
strategies use this parameter.

The fourth final element specifies the crossover strategy. For the default DE-crossover strategy following
a binomial distribution (in standard GA terms this type of crossover is often called uniform crossover) this
final element is termed bin. The crossover for DE can be set with PGASetDECrossoverProb. The default is
binomial crossover PGA_DE_CROSSOVER_BIN, exponential crossover can be set with PGA_DE_CROSSOVER_EXP.
So for the default DE strategy the name is DE/rand/1/bin with the exponential crossover selected, we would
get DE/rand/1/exp. Binomial crossover tosses a biased coin with probability Cr for each allele. If the coin
turns out ’1’, the allele is taken from the donor vector, otherwise the allele from the current individual is
retained. For exponential crossover an index in the gene is randomly selected and taken from the donor
vector. For all subsequent alleles (starting at the randomly selected index) a coin is tossed. As long as the
coin is ’1’, the allele is taken from the donor vector. The first time the coin-toss doesn’t yield a ’1’, all the
remaining alleles are taken retained from the original individual. This is a form of two-point crossover like in
other types of genetic algorithms but with a different distribution. The binomial crossover is beneficial if the
allele positions in the problem are uncorrelated. If there is a corellation between allele positions, exponential
crossover may be beneficial [31].

The DE variant (the second tuple element) can be selected with PGASetDEVariant and defaults to
PGA_DE_VARIANT_RAND. Another variant is the best variant which uses the current best individual for modi-
fication according to equation 4.3. This variant is selected with the contant PGA_DE_VARIANT_BEST.

Vi,g = Xbest,g + F · (Xr1,g −Xr2,g) (4.3)

A third variant called either-or [22, p. 117] is selected with the constant PGA_DE_VARIANT_EITHER_OR.
It randomly selects among a mutation operator and a recombination operator according to equation 4.4.

Vi,g =

{

Xr0,g + F · (Xr1,g −Xr2,g) if randi(0, 1) < pF
Xr0,g +K · (Xr1,g +Xr2,g − 1 ·Xr0,g) otherwise

(4.4)

The probability pF defaults to 0.5 and can be set with PGASetDEProbabilityEO. The parameter K
defaults to 0.5 · (F + 1) [22, p. 118] where F is the scale factor, it can be set with PGASetDEAuxFactor.
Note that the either-or variant ignores the parameter specifying the number of difference vectors (specified
with PGASetDENumDiffs). The expression randi(0, 1) denotes a random number in the range [0, 1) which is
re-generated for each individual i.

When computing the donor vector Vi, the scale factor F can be perturbed. This can either be done
anew for each individual or for each allele of each individual. The first variant is called dither while the
second variant is called jitter. Note that jitter not only changes the length of the difference vector but also

24

its orientation [22, p. 80]. With uniform jitter we get a new factor Fj , the index j denoting the allele while
i is the index of the current individual [22, p. 80]:

Fj = (F +Kjit · (randj(0, 1)− 0.5), Kjit < 2 · F (4.5)

The same applies for dither, but in the case of dither the factor is either applied anew for each individual
(when setting PGASetDEDitherPerIndividual to PGA_TRUE) or only once per generation (the default being
once per generation), note that for the case where the dither is applied once per generation the index i of
Kjit in equation 4.6 would refer the the generation:

Fi = (F +Kdit · (randi(0, 1)− 0.5), Kdit < 2 · F (4.6)

The new Fj and/or Fi replaces F in equations 4.1–4.4 and both, the default Kjit and the default Kdit are
zero by default. If both are non-zero, both are applied. Defaults can can be set with PGASetDEJitter and
PGASetDEDither, respectively. Very small amounts of uniformly distributed jitter (on the order of 0.001)
have been recommended for some problems [22, p. 90] like digital filter design [22, p. 440]. Likewise quite
large amounts of dither (on the order of 0.5) are recommended for these problems.

Some of the integer- and real-valued mutation operators may generate allele values outside the initial-
ization range of that gene. By default, the allele value will not be reset to the lower (upper) value of the
initialization range for that gene. By setting PGASetMutationBoundedFlag(ctx, PGA_TRUE) the allele val-
ues will be set to the value of the bound if they fall outside of the initialization range. It was argued that
setting the value to the bound would reduce the genetic variance and could lead to premature convergence
if several individuals get the same value [22, p. 204]. Therefore an alternative called “Bounce-Back” was
proposed: If PGASetMutationBounceBackFlag(ctx, PGA_TRUE) is set, the new value is set to a random
value between the old value and the bound.

A note on the use of the DE mutation type together with other selection or replacements schemes: The
DE mutation is very disruptive. It will not work well or not work at all with a non-elitist replacement scheme.
Due to the high disruption, if not retaining at least one best individual in each generation, it is very likely
that the search will diverge. Good choices for an elitist strategy are the two elitist replacement schemes
PGA_POPREPL_PAIRWISE_BEST (which is the standard replacement scheme for Differential Evolution) and
PGA_POPREPL_RTR. The latter may help if the algorithm stagnates due to premature convergence. In that
case RTR can help to retain more genetic diversity. For details see section 4.2.

4.8 Restart

The restart operator reseeds a population from the best string. It does so by seeding the new population
with the best string and generating the remainder of the population as mutated variants of the best string.

By default the restart operator is not invoked. Setting PGASetRestartFlag(ctx,PGA TRUE) will
cause the restart operator to be invoked. By default PGAPack will restart every 50 iterations.
PGASetRestartFrequencyValue (ctx,100) will restart every 100 iterations instead. When creating the
new strings from the best string an individual allele undergoes mutation with probability 0.5. This can be
changed to 0.9 with the function call PGASetRestartAlleleChangeProb(ctx,0.9).

For binary-valued strings the bits are complemented. For integer- and real-valued strings the amount to
change is set with PGASetMutationIntegerValue and PGASetMutationRealValue, respectively. Character-
valued strings are changed according to the rules in Section 4.7 for mutating character strings.

4.9 String Evaluation and Fitness

In a genetic algorithm each string is assigned a nonnegative, real-valued fitness. This is a measure, relative to
the rest of the population, of how well that string satisfies a problem-specific metric. In PGAPack calculating
a string’s fitness is a two-step process. First, the user supplies a real-valued evaluation (sometimes called
the raw fitness) of each string. Second, this value is mapped to a fitness value.

It is the user’s responsibility to supply a function to evaluate an individual string. As discussed in
Section 4.1, the name of this function is specified as the second argument to PGARun. The calling sequence

25

for this function (which we call evaluate in the rest of this section, but may have any name) must follow
the format given here. In C the format is

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

and in Fortran

double precision function evaluate (ctx, p, pop, aux)

integer ctx, p, pop

double precision aux(*)

The function evaluate will be called by PGARun whenever a string evaluation is required. p is the index
of the string in population pop that will be evaluated. The correct values of p and pop will be passed to the
evaluation function by PGARun. (If PGARun is not used, PGAEvaluate must be. See Chapter 5.) As shown
below, p and pop are used for reading (and sometimes writing) allele values. Sample evaluation functions
are shown in Figures 2.1 and 2.2, and online in the ./examples directory.

In addition to returning just one evaluation, PGAPack supports additional auxiliary evaluations. The
default use for this mechanism is the specification of constraints on the objective function. If a problem does
not allow all areas of the search space because it may contain invalid solutions, additional restrictions on the
validity of points in the search space may be specified via constraints.

Another use-case for auxiliary evaluations is multiobjective optimization: The algorithm is not just
searching for one solution but for an array of objectives that can usually not all be optimized to their
optimum value. Instead a better value for one objective may necessitate a worse value for another objective.
A multiobjective algorithm tries to find many non dominated solutions to a problem (a solution is said to
dominate another solution if it is better in at least one objective but not worse in any other objective). These
non-dominated solutions are said to lie on a Pareto Front after the mathematician Vilfredo Pareto who first
defined the concept today known as pareto optimality.

PGAPack now implements multi-objective optimization with the Nondominated Sorting Genetic Algo-
rithm (Version 2) [10] as a replacement strategy. You can mix multi-objective optimization and constraints.
See below and section 4.2 for details.

By default, auxiliary evaluations are used for constraints. All auxiliary evaluation are summed if the value
is positive. If it is zero or negative, the constraint is not violated and not included in the sum. So the algorithm
is minimizing constraint violations. Individuals are sorted by the amount of their constraint violations and
the value of the objective function. If an individual without constraint violations is compared to one with
constraint violations, the one without violations wins. For two individuals with constraint violations the
one with the lower sum of violations wins. For two individuals without constraint violations the normal
comparison (depending on the direction of the search, i.e. minimization or maximization) is used. This
algorithm works better than trying to code the constraint violations into a complicated evaluation function.
It was shown to work better than customized penalty functions by Deb [5].

With this algorithm for optimizing constraints, the constraints are optimized first, only after solutions
without constraint violations have been found is the objective function considered. This has the drawback
that for certain problems the search will end up in a region of the search space where the constraints are not
violated but where no good solutions exist. So with some problems the solutions found are very far from
the optimum. An idea by Takahama and Sakai [30], [29] introduces an ǫ-constraint mechanism. An epsilon
tolerance is introduced and initialized with the constraint violation sum of the θ-best individual. The index
of the individual θ can be set with PGASetEpsilonTheta, the default is 0.2 the population size.

The comparison of evaluations is modified to include an ǫ-tolerance: If both individuals have a constraint
violation below the tolerance, the evaluation is compared. If only one individual exceeds the tolerance the
other individual wins and if both exceed the tolerance, the one with the lower constraint sum wins. The ǫ
is slowly decreased until it becomes zero at some generation Tc. The slope of decrease can be specified with
the PGASetEpsilonExponent function, values between 2 (slow decrease) and 10 (fast decrease) are possible.
The default is an adaptive algorithm for decrease of ǫ described in the 2010 paper [29] that works well in
practise.

For using the ǫ-constraint method, the generation Tc until which ǫ is decreased needs to be set using the
PGASetEpsilonGeneration function, the default is zero. Note that PGASetEpsilonGeneration needs to be

26

below the value set with PGASetMaxGAIterValue even if the latter is not used as a stopping criterion. Also
note that the stopping criteria (see section 4.3) are modified to not stop as long as ǫ is not zero.

Auxiliary evaluations are returned in an array pointed to by the aux parameter of the users’s evaluation
function. To use auxiliary evaluations, the number of auxiliary evaluations has to be specified with the
PGASetNumAuxEval function which gets the number of auxiliary evaluations as the second parameter. The
default is 0. If you want to use multi-objective optimization, optionally with constraints, you need to specify
the number of constraints using the PGASetNumConstraint function. By default the number of constraints
is equal to the number of auxiliary evaluations. So if you want to use multi-objective evaluation you need to
set the number of constraints lower (optionally to zero if you have only multi-objective optimization without
constraints) than the number of auxiliary evaluations.

Note that auxiliary evaluations can not be used together with selection schemes that use mechanisms
where individuals are not directly compared. These currently are proportional selection and stochastic
universal selection, see section 4.5.

Traditionally, genetic algorithms assume fitness values are nonnegative and monotonically increasing the
more fit a string is. The user’s evaluation of a string, however, may reflect a minimization problem and/or
be negative. Most modern selection algorithms (e.g. the default tournament variants) directly compare
individuals and will directly use the users evaluation. There are two selection mechanisms, PGA_SELECT_SUS
and PGA_SELECT_PROPORTIONAL which need a nonnegative and monotonically increasing fitness. Only for
these the user’s evaluation value is mapped to a nonnegative and monotonically increasing fitness value.

You may think of the algorithm used as follows (actually for the ranking method the evaluation value is
never translated): First, all evaluations are mapped to positive values (if any were negative). Next, these
values are translated to a maximization problem (if the direction of optimization specified was minimization).
Finally, these values are mapped to a fitness value by using the identity (the default), linear ranking, or
linear normalization, The choice of fitness mapping may be set with the function PGASetFitnessType. The
second argument must be one of PGA_FITNESS_RAW, PGA_FITNESS_RANKING, or PGA_FITNESS_NORMAL, for
the identity, linear ranking, or linear normalization, respectively.

Note that PGA_FITNESS_RAW and PGA_FITNESS_NORMAL are subject to overflows if you have very large (or
very small negative) fitness values. If this occurs, an error message is printed and the program terminates.
Letting the search continue with such an overflow would map many different evaluation values to the same
fitness. For such ill-conditioned problems you should use the ranking variant PGA_FITNESS_RANKING.

A linear rank fitness function [1, 32] is given by

Min+ (Max−Min) ·
rank(p)− 1

N − 1
, (4.7)

where rank(p) is the index of string p in a list sorted in order of decreasing evaluation function value, and
N is the population size. Ranking requires that 1 ≤ Max ≤ 2, and Min+Max = 2. The default value for
Max is 1.2. It may be set to 1.1 with PGASetMaxFitnessRank(ctx,1.1).

In linear normalization the fitness function is given by

K − (rank(p) · C), (4.8)

where K and C are the constants σ · N and σ, where σ is the standard deviation of the user’s evaluation
function values after they have been transformed to positive values for a maximization problem.

If the direction of optimization is minimization, the values are remapped for maximization. The function
call PGASetFitnessMinType(ctx,PGA FITNESSMIN CMAX) will remap by subtracting the worst evaluation
value from each evaluation value (this is the default). The worst evaluation value is multiplied by 1.01 before
the subtraction so that the worst string has a nonzero fitness. The function call PGASetFitnessCmaxValue
(ctx, 1.2) will change the multiplier to 1.2 Alternatively, if PGA FITNESSMIN RECIPROCAL is specified the
remapping is done by using the reciprocal of the evaluation function.

Note that for algorithms that can directly compare individuals in the selection method (any of the
tournament selection methods, truncation selection, and linear selection, see section 4.5) or in the replacement
scheme (restricted tournament replacement or pairwise best replacement, see section 4.2) do not use the
fitness but compare the evaluation value (and optionally the sum of constraint violations) directly.

27

4.10 Accessing Allele Values

For each of the native data types, PGAPack provides a matched pair of functions that allow the user to read
or write (change) any allele value. If the data type is PGA DATATYPE BINARY

int bit;

bit = PGAGetBinaryAllele (ctx, p, pop, i);

will assign to bit the binary value of the ith gene in string p in population pop. To set the ith gene in
string p in population pop to 1, use

PGASetBinaryAllele(ctx, p, pop, i, 1);

If the data type is PGA DATATYPE INTEGER

int k;

k = PGAGetIntegerAllele (ctx, p, pop, i);

will assign to k the integer value of the ith gene in string p in population pop. To set the ith gene in string
p in population pop to 34, use

PGASetIntegerAllele(ctx, p, pop, i, 1, 34);

If the data type is PGA DATATYPE REAL

double x;

x = PGAGetRealAllele (ctx, p, pop, i);

will assign to x the real value of the ith gene in string p in population pop. To set the ith gene in string p

in population pop to 123.456, use

PGASetRealAllele(ctx, p, pop, i, 1, 123.456);

If the data type is PGA DATATYPE CHARACTER

char c;

c = PGAGetCharacterAllele (ctx, p, pop, i);

will assign to c the character value of the ith gene in string p in population pop. To set the ith gene in
string p in population pop to “Z”, use

PGASetCharacterAllele(ctx, p, pop, i, 1, ’Z’);

4.10.1 Representing an Integer with a Binary String

A binary string may be used to represent an integer by decoding the bits into an integer value. In a binary
coded decimal (BCD) representation, a binary string is decoded into an integer k ∈ [0, 2N − 1] according to

k =
N
∑

i=1

bi2
i−1, (4.9)

where N is the string length, and bi the value of the ith bit. For example, to decode the integer k from the
ten bits in bit positions 20–29, use

int k

k = PGAGetIntegerFromBinary(ctx,p,pop,20,29);

The function PGAEncodeIntegerAsBinary will encode an integer as a binary string. For example, to encode
the integer 564 as a 12-bit binary string2 in the substring defined by bits 12–23, use

PGAEncodeIntegerAsBinary(ctx,p,pop, 12, 23, 564);

In a BCD representation, two numbers that are contiguous in their decimal representations may be far
from each other in their binary representations. For example, 7 and 8 are consecutive integers, yet their 4-bit
binary representations, 0111 and 1000, differ in the maximum number of bit positions.3 Gray codes define a

2Even though only ten bits are necessary to encode 564, the user may want to allow the GA any value between [0, 4095],
hence the twelve bits.

3Technically, this is known as a Hamming cliff.

28

Table 4.1: Binary and Gray Codes

k Eq. (4.9) Gray code
0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

different mapping of binary strings to integer values from that given by Eq. (4.9) and may alternatively be
used for representing integer (or real, see below) values in a binary string. The second and third columns in
Table 4.1 show how the integers 0–7 are mapped to Eq. (4.9) and to the binary reflected Gray code (the most
commonly used Gray code sequence), respectively. In the binary reflected Gray code sequence, the binary
representations of consecutive integers differ by only one bit (a Hamming distance of one).

To decode the integer k from a binary reflected Gray code interpretation of the binary string, use

k = PGAGetIntegerFromGrayCode(ctx,p,pop,20,29);

To encode 564 as a 12-bit binary string in the substring defined by bits 12–23 using a Gray code, use

PGAEncodeIntegerAsGaryCode(ctx,p,pop, 12, 23, 564);

4.10.2 Representing a Real Value with a Binary String

A binary string may also be used to represent a real value. The decoding of a binary string to a real-value is
a two-step process. First, the binary string is decoded into an integer as described in Section 4.10.1. Next,
the integer is mapped from the discrete interval [0, 2N − 1] to the real interval [L,U] by using the formula

x = (k − a)× (U − L)/(b− a) + L

(and generalizing [0, 2N − 1] to [a, b]). For example, to decode the double x from the 20 bits given by the
binary string stored in bit positions 10–29 onto the interval [−10.0, 20.0], use

x = PGAGetRealFromBinary(ctx,p,pop,10,29,-10.0,20.0);

To encode -18.3 on the interval [−50.0, 50.0] using a 20-bit BCD binary string, use

PGAEncodeRealAsBinary(ctx,p,pop,0,19,-50.0,50.0,-18.3);

The functions PGAGetRealFromGrayCode and PGAEncodeRealAsGrayCode provide similar functionality for
Gray-coded strings.

4.10.3 Example

As an example, suppose the user has a real-valued function f of three real variables x1, x2, and x3. Further,
the variables are constrained as follows.

−10 ≤ x1 ≤ 0

0 ≤ x2 ≤ 10

−10 ≤ x3 ≤ 10

The user wishes to use 10 bits for the binary representation of x1 and x2, and 20 bits for the binary
representation of x3 (perhaps for higher accuracy), and a Gray code encoding. This may be done as follows.

29

#include "pgapack.h"

double grayfunc (PGAContext *ctx, int p, int pop);

double f (double x1, double x2, double x3);

int main(int argc, char **argv)

{

PGAContext *ctx;

ctx = PGACreate (&argc, argv, PGA_DATATYPE_BINARY, 40, PGA_MINIMIZE);

PGASetUp (ctx);

PGARun (ctx, grayfunc);

PGADestroy (ctx);

return;

}

double grayfunc (PGAContext *ctx, int p, int pop)

{

double x1, x2, x3, v;

x1 = PGAGetRealFromGrayCode (ctx, p, pop, 0, 9, -10., 0.);

x2 = PGAGetRealFromGrayCode (ctx, p, pop, 10, 19, 0., 10.);

x3 = PGAGetRealFromGrayCode (ctx, p, pop, 20, 39, -10., 10.);

v = f(x1,x2,x3);

return(v);

}

In Fortran, the bit indices would be 1–10, 11–20, and 21–40, respectively. The number of bits allocated for
the binary representation determines the accuracy with which the real value can be calculated. Note in this
example the function f need not be modified; the function grayfunc is used as a “wrapper” to get variable
values out of the GA and return the value calculated by f.

4.11 Report Options

PGASetPrintFrequencyValue(ctx,40) will print population statistics every 40 iterations. The default
is every ten iterations. The best evaluation is always printed. To print additional statistics, set the
second argument of the function PGASetPrintOptions to PGA_REPORT_ONLINE, PGA_REPORT_OFFLINE,
PGA_REPORT_WORST, PGA_REPORT_AVERAGE, PGA_REPORT_GENE_DISTANCE, or PGA_REPORT_STRING to print
the online analysis, offline analysis, worst evaluation, average evaluation, genetic distance, or string itself,
respectively. PGASetPrintOptions may be called multiple times to specify multiple print options.

4.12 Utility Functions

4.12.1 Random Numbers

By default, PGAPack will seed its random number generator by using a value from the system clock.
Therefore, each time PGAPack is run, a unique sequence of random numbers will be used. For debugging
or reproducibility purposes, however, the user may wish to use the same sequence of random numbers each
time. This may be done using the function PGASetRandomSeed to initialize the random number generator
with the same seed each time, for example, PGASetRandomSeed(ctx,1).

PGARandom01(ctx,0) will return a random number generated uniformly on [0, 1]. If the second
argument is not 0, it will be used to reseed the random number sequence. PGARandomFlip flips a
biased coin. For example, PGARandomFlip(ctx,.7) will return PGA TRUE approximately 70% of the
time. PGARandomInterval(-10,30) will return an integer value generated uniformly on [−10, 30].
PGARandomUniform (ctx,-50.,50.) will return a real value generated uniformly randomly on the interval
[-50,50]. PGARandomGaussian (ctx,0.,1.) will return a real value generated from a Gaussian distribution
with mean zero and standard deviation one.

30

4.12.2 Print Functions

PGAPrintPopulation(ctx,stdout,pop) will print the evaluation function value, fitness value, and string
for each member of population pop to stdout. This function may not be called until after PGASetUp has been
called. PGAPrintContextVariable(ctx,stdout) will print the value of all fields in the context variable to
stdout. PGAPrintIndividual(ctx,stdout,p,pop) will print the evaluation function value, fitness value,
and string of individual p in population pop to stdout. PGAPrintString(ctx,stdout,p,pop)will print the
string of individual p in population pop to stdout. PGAPrintVersionNumber(ctx) will print the PGAPack
version number.

4.12.3 Miscellaneous

PGAGetGAIterValue(ctx) will return the current iteration of the GA. PGAGetBestIndex(ctx,pop)

(PGAGetWorstIndex) will return the index of the most (least) fit member of population pop.
PGAUpdateOffline(ctx,pop) (PGAUpdateOnline) will update the offline (online) analysis based on the

new generation’s results. PGAGeneDistance(ctx,pop) returns a double, which is the average genetic dis-
tance between the strings in population pop. The function call

PGAError(ctx, "popindex=", PGA_FATAL, PGA_INT, (void *)&popindex)

will print the message “popindex=-1” (assuming the value of popindex is -1) and then exit PGAPack. If
the third argument had been PGA WARNING instead, execution would have continued. In addition to PGA INT,
valid data types are PGA DOUBLE, PGA CHAR, and PGA VOID.

4.13 Command-Line Arguments

PGAPack provides several command-line arguments. These are only available to C programs, although
in some cases both C and Fortran programs can achieve the equivalent functionality with function calls.
For example, PGAUsage(ctx) provides the same functionality as the -pgahelp command line option. See
Chapter 11 for the function call equivalents.

-pgahelp get this message

-pgahelp debug list of debug options

-pgadbg <level> set debug option

-pgadebug <level> set debug option

-pgaversion Print current PGAPack version number, parallel or

sequential, and debug or optimized

31

Chapter 5

Explicit Usage

This chapter discusses how the user may obtain greater control over the steps of the GA by not using the
PGARun command, but instead calling the data-structure-neutral functions directly. One ramification of
this is that the PGARun interface no longer masks some of the differences between parallel and sequential
execution. The examples in this chapter are written for sequential execution only. Chapter 9 shows how
they may be executed in parallel.

5.1 Notation

To understand the calling sequences of the functions discussed in this chapter, one must know of the existence
of certain data structures and the user interface for accessing them. It is not necessary to know how these
data structures are implemented, since that is hidden by the user interface to PGAPack.

PGAPack maintains two populations: an old one and a new one. The size of each population is the value
returned by PGAGetPopSize. In addition, each population contains two temporary working locations. The
string length is the value specified to PGACreate and returned by PGAGetStringLength.

Formally, string p in population pop is referred to by the 2-tuple (p,pop) and the value of gene i in that
string by the 3-tuple (i,p,pop). In PGAPack, pop must be one of the two symbolic constants PGA OLDPOP or
PGA NEWPOP to refer to the old or new population, respectively. At the end of each GA iteration, the function
PGAUpdateGeneration makes sure these symbolic constants are remapped to the correct population. The
string index p must be either an integer between 0 and P − 1 (or 1 and P in Fortran) or one of the symbolic
constants PGA TEMP1 or PGA TEMP2, to reference one of the two temporary locations, respectively.

5.2 Simple Sequential Example

The example in Figure 5.1 is a complete PGAPack program that does not use PGARun. It is an alternative
way to write the main program for the Maxbit example of Section 2.1. We refer to it as a simple example
because it uses PGARunMutationAndCrossover to encapsulate the recombination step. The PGACreate and
PGASetUp functions were discussed in the last chapter. PGASetUp creates and randomly initializes the initial
population. This population, referred to initially by the symbolic constant PGA OLDPOP, is evaluated by the
PGAEvaluate function. The third argument to PGAEvaluate is the name of the user’s evaluation function.
The function prototype for evaluate must be as shown in Figure 5.1 and discussed earlier in Sections 4.1
and 4.9. The PGAFitness function maps the user’s evaluation function values into fitness values.

The while loop runs the genetic algorithm. PGADone returns PGA TRUE if any of the specified stopping
criteria have been met, otherwise PGA FALSE. PGASelect performs selection on population PGA OLDPOP.
PGARunMutationAndCrossover uses the selected strings to create the new population by applying the
crossover and mutation operators. PGAEvaluate and PGAFitness evaluate and map to fitness values the
newly created population. PGAUpdateGeneration updates the GA iteration count and resets several im-
portant internal arrays (don’t forget to call it!). PGAPrintReport writes out genetic algorithm statistics

32

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetUp (ctx);

PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);

PGAFitness (ctx, PGA_OLDPOP);

while(!PGADone(ctx, NULL)) {

PGASelect (ctx, PGA_OLDPOP);

PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);

PGAEvaluate (ctx, PGA_NEWPOP, evaluate, NULL);

PGAFitness (ctx, PGA_NEWPOP);

PGAUpdateGeneration (ctx, NULL);

PGAPrintReport (ctx, stdout, PGA_OLDPOP);

}

PGADestroy(ctx);

return(0);

}

Figure 5.1: Simple Example of Explicit Usage

according to the report options specified. Note that the argument to PGAPrintReport is the old popula-
tion, since after PGAUpdateGeneration is called, the newly created population is in PGA OLDPOP. Finally,
PGADestroy releases any memory allocated by PGAPack when execution is complete.

The functions PGADone, PGAUpdateGeneration, and PGAEvaluate take an MPI communicator (see Ap-
pendix C and Chapter 9) as an argument. For sequential execution the value NULL should be specified for
this argument. A parallel, or sequential and parallel, version of this example is given in Section 9.2.

5.3 Complex Example

The primary difference between the “complex” example in Figure 5.2 and the “simple” example in Fig-
ure 5.1 is that the steps encapsulated by PGARunMutationAndCrossover have been written out explicitly.
The function PGASortPop sorts a population according to the criteria specified by PGASetPopReplaceType

(Section 4.2). The sorted indices are accessed via PGAGetSortedPopIndex. In the example, the five lines
that follow PGASortPop copy the strings that are not created by recombination from the old population to
the new population.

The while loop that follows creates the remainder of the new population. PGASelectNextIndex re-
turns the indices of the strings selected by PGASelect. PGARandomFlip flips a coin biased by the crossover
probability to determine whether the selected strings should undergo crossover and mutation or should be
copied directly into the new population. PGACrossover uses the parent strings m1 and m2 from population
PGA OLDPOP to create two child strings in the temporary locations PGA TEMP1 and PGA TEMP2 in PGA NEWPOP

population.
PGAMutatemutates the child strings and PGACopyIndividual, then copies them into the new population.

If the strings do not undergo crossover and mutation, they are copied into the new population unchanged.
The rest of the steps are the same as those in Figure 5.1, except that for illustrative purposes we call
PGAPrintReport before PGAUpdateGeneration. In that case we use population PGA NEWPOP as the population
pointer.

33

#include "pgapack.h"

double evaluate(PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

int i, j, n, m1, m2, popsize, numreplace;

double probcross;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetUp(ctx);

probcross = PGAGetCrossoverProb(ctx);

popsize = PGAGetPopSize(ctx);

numreplace = PGAGetNumReplaceValue(ctx);

PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);

PGAFitness (ctx, PGA_OLDPOP);

while(!PGADone(ctx, NULL)) {

PGASelect (ctx, PGA_OLDPOP);

PGASortPop(ctx, PGA_OLDPOP);

n = popsize - numreplace;

for (i=0; i < n; i++) {

j = PGAGetSortedPopIndex(ctx, i);

PGACopyIndividual(ctx, j, PGA_OLDPOP, i, PGA_NEWPOP);

}

while (n < popsize) {

m1 = PGASelectNextIndex(ctx, PGA_OLDPOP);

m2 = PGASelectNextIndex(ctx, PGA_OLDPOP);

if(PGARandomFlip(ctx, probcross)) {

PGACrossover(ctx, m1, m2, PGA_OLDPOP, PGA_TEMP1, PGA_TEMP2, PGA_NEWPOP);

PGAMutate (ctx,PGA_TEMP1,PGA_NEWPOP);

PGAMutate (ctx,PGA_TEMP2,PGA_NEWPOP);

PGACopyIndividual (ctx,PGA_TEMP1,PGA_NEWPOP,n, PGA_NEWPOP);

PGACopyIndividual (ctx,PGA_TEMP2,PGA_NEWPOP,n+1,PGA_NEWPOP);

n += 2;

}

else {

PGACopyIndividual (ctx, m1, PGA_OLDPOP, n, PGA_NEWPOP);

PGACopyIndividual (ctx, m2, PGA_OLDPOP, n+1, PGA_NEWPOP);

n += 2;

}

}

PGAEvaluate(ctx, PGA_NEWPOP, evaluate, NULL);

PGAFitness (ctx, PGA_NEWPOP);

PGAPrintReport(ctx, stdout, PGA_NEWPOP);

PGAUpdateGeneration(ctx, NULL);

}

PGADestroy(ctx);

return 0;

}

Figure 5.2: Example of Explicit Usage

34

5.4 Explicit PGAPack Functions

This section briefly discusses other functions not shown in the previous examples or discussed in Chapter 4.
Additional information about these and other PGAPack functions is contained in Appendix B (function
bindings) and the ./examples directory.

PGARunMutationAndCrossover and PGARunMutationOrCrossover perform the recombination step. The
former applies mutation to strings that undergo crossover. The latter applies only mutation to strings
that did not undergo crossover. Note that this means that when PGARunMutationAndCrossover is selected,
strings that are not crossed over (because the random process did not select the individuals for crossover with
the given crossover probability) will also not be mutated! If no crossover is wanted, PGARunMutationOnly
can be used for mutation only without crossover.

The restart operator described earlier in Section 4.8 can be invoked explicitly with PGARestart(ctx,

oldpop, newpop), where the best string from population oldpop is used to initialize population newpop.
PGADuplicate(ctx,p,PGA_NEWPOP,PGA_NEWPOP) returns PGA_TRUE if string p in population PGA_NEWPOP

is a duplicate of any of the strings in population PGA_NEWPOP which were inserted into the hash table using
PGAHashIndividual. Note that this function is defined only for population PGA_NEWPOP.

PGAHashIndividual(ctx,p,PGA_NEWPOP) hashes individual p in population PGA_NEWPOP for duplicate
checking.

PGAChange(ctx, p, PGA_OLDPOP) repeatedly applies the mutation operator to string p in population
PGA_OLDPOP until at least one mutation has occurred.

All functions related to duplicate checking do nothing if duplicate checking has not been enabled with
PGASetNoDuplicatesFlag, the function PGAGetNoDuplicatesFlag can be used for checking if duplicate
checking is enabled.

In PGAPack three values are associated with each string: (1) the user’s evaluation function value, (2)
a Boolean flag to indicate whether the evaluation function value is up to date with respect to the actual
string, and (3) the fitness value. If PGARun is not used, the user must manage these values explicitly.

PGAEvaluate(ctx, PGA NEWPOP, evaluate, comm) will execute the user’s evaluation function,
evaluate, on each string in population PGA NEWPOP that has changed (for example, from crossover) since
its last evaluation. PGAEvaluate will set both the evaluation function value and associated Boolean flag
automatically. The argument comm is an MPI communicator. Valid values are NULL for an explicitly se-
quential example, or any valid MPI communicator. Depending on the number of processes specified when
the program was invoked, and the value of the comm argument, PGAEvaluate may be run with one or more
processes. See Chapter 9 for further discussion.

PGAFitness will calculate the population fitness values from the evaluation function values. It is an error
to call PGAFitness if all the evaluation function values are not up to date.

These same three values may be read also. PGAGetEvaluation(ctx, p, PGA OLDPOP) returns the
evaluation function value. PGAGetEvaluationUpToDateFlag(ctx, p, PGA OLDPOP) returns PGA TRUE or
PGA FALSE to indicate whether the evaluation is up to date with the actual string or not, respectively. If
PGAPack was compiled for debugging,PGAGetEvaluation will print a warning message if the evaluation is
not up to date. PGAGetFitness(ctx, p, PGA OLDPOP) returns the fitness value.

At times, (e.g., applying a hill-climbing function) the user may need to explicitly set the eval-
uation function value and associated Boolean flag (fitness values can be calculated only by calling
PGAFitness). PGASetEvaluation(ctx, p, PGA OLDPOP, 123.4) will set the evaluation function value
to 123.4 and the associated Boolean flag to PGA TRUE. The Boolean flag may be set independently with
PGASetEvaluationUpToDateFlag. For example, PGASetEvaluationUpToDateFlag (ctx, p, PGA OLDPOP,

PGA FALSE) sets the status of the Boolean flag of string p in population PGA OLDPOP to out of date.
PGAMean(ctx, a, n) returns the mean of the n values in array a. PGAStddev(ctx, a, n, mean) returns

the standard deviation of the n values in array a whose mean is mean. PGARank(ctx, p, order, n) returns
an index that is the rank of string p as given by the sorted array order of length n.

PGAGetPrintFrequency(ctx) returns the frequency with which GA statistics are reported.
PGAGetWorstIndex (ctx, PGA OLDPOP) returns the index of the string in population PGA OLDPOP with the
worst evaluation function value. PGAGetBestIndex(ctx, PGA OLDPOP) returns the index of the string in
population PGA OLDPOP with the best evaluation function value.

35

Chapter 6

Custom Usage: Native Data Types

This chapter discusses how PGAPack may be extended by replacing some of the standard PGAPack functions
with user-defined functions for use with one of PGAPack’s four native data types. This can be done from
both C and Fortran.

6.1 Basics

In PGAPack, high-level (data-structure-neutral) functions call data-structure-specific functions that corre-
spond to the data type used. The implementation uses function pointers that, by default, are set to the
correct values for the datatype used. The user may change these defaults and set the function pointers
to execute their functions instead. The functions the user can substitute for are initialization, crossover,
mutation, checking for duplicate strings, string printing, termination criteria, a generic function called at
the end of each GA iteration, and another generic function called before evaluation but after mutation and
crossover.

The function call PGASetUserFunction(ctx, PGA USERFUNCTION MUTATION, mymute) will cause PGA-
Pack to execute the function mymute whenever the mutation operator is called. Table 6.1 is a list of
functions that can be customized for use with a native datatype. The first column describes the func-
tionality, and the second column the symbolic constant for use with PGASetUserFunction. The call-
ing sequence for these functions is fixed and must follow the function prototypes in Table 6.2. The files
./examples/templates/uf native.c and ./examples/templates/uf native.f contain template routines
for these functions. A specific example is given below.

Checking the termination criteria requires some discussion. The function PGADone will either check to
see if the standard stopping criteria (see Section 4.3) have been met, or call the user function specified by
PGA USERFUNCTION STOPCOND. If you wish to have the user function check for the standard stopping criteria
in addition to whatever else it does, it should call PGACheckStoppingConditions(ctx). Do not call PGADone

Table 6.1: Customizeable Functions: Native Data Types

Functionality Symbolic Constant
Initialization PGA_USERFUNCTION_INITSTRING

Crossover PGA_USERFUNCTION_CROSSOVER

Mutation PGA_USERFUNCTION_MUTATION

Duplicate Checking PGA_USERFUNCTION_DUPLICATE

Hashing PGA_USERFUNCTION_HASH

String Printing PGA_USERFUNCTION_PRINTSTRING

Termination Criteria PGA_USERFUNCTION_STOPCOND

End of generation PGA_USERFUNCTION_ENDOFGEN

Genetic distance PGA_USERFUNCTION_GEN_DISTANCE

Pre-Evaluate Hook PGA_USERFUNCTION_PRE_EVAL

36

Table 6.2: Calling Sequences for Customizable Functions

Symbolic Constant Return Function Prototype
PGA_USERFUNCTION_INITSTRING void (PGAContext*, int, int)

PGA_USERFUNCTION_CROSSOVER void (PGAContext*, int, int, int, int, int, int)

PGA_USERFUNCTION_MUTATION int (PGAContext*, int, int, double)

PGA_USERFUNCTION_DUPLICATE int (PGAContext*, int, int, int, int)

PGA_USERFUNCTION_HASH PGAHash (PGAContext*, int, int)

PGA_USERFUNCTION_PRINTSTRING void (PGAContext*, FILE *, int, int)

PGA_USERFUNCTION_STOPCOND int (PGAContext*)

PGA_USERFUNCTION_ENDOFGEN void (PGAContext*)

PGA_USERFUNCTION_GEN_DISTANCE double (PGAContext*, int, int, int, int)

PGA_USERFUNCTION_PRE_EVAL void (PGAContext*, int)

as this will cause an infinite loop to occur. Note that in a parallel program PGACheckStoppingConditions

should only be called by the master process (see Chapter 9).
The end of generation function (which is null by default) may be used for gathering statistics about the

GA, displaying custom output, etc. This function is called after all generational computation is complete, but
before the population pointers (PGA NEWPOP, PGA OLDPOP) have been switched and the standard PGAPack
output printed. Therefore, be sure to use PGA NEWPOP as the population pointer. There is no mechanism for
suppressing the standard PGAPack generational output.

The genetic difference function computes the genetic difference of two individuals. It is used when
restricted tournament selection is in use. In addition it is used when reporting of genetic distance is selected by
calling PGASetPrintOptionswith PGA_REPORT_GENE_DISTANCE. There are implementations for the standard
data types: For binary alleles it uses the hamming distance. For real- and integer valued genes it uses an
allele-by-allele absolute value of the difference by default (also know as Manhattan distance), i.e.

s−1
∑

i=0

|aij − aik|

where s is the string length, aij and aik are the alleles to be compared. For character alleles it counts the
number of differences. You can set the difference function for integer and real data types to an Euclidian
distance by calling, e.g., for the real data type:

PGASetUserFunction(ctx, PGARealEuclidianDistance);

or for the integer data type:
PGASetUserFunction(ctx, PGAIntegerEuclidianDistance);

This will use the Euclidian distance:
√

√

√

√

s−1
∑

i=0

(aij − aik)2

When using user-defined data types together with restricted tournament selection, an implementation of the
distance function for the user-defined data type has to be provided.

The Pre-Evaluate Hook function can be used for performing actions that need to be done before evaluating
the generated individuals after crossover and mutation. It can be used, e.g., for repairing genes after crossover
and mutation before evaluating them. It can also be used in concert with the end of generation function
to perform caching of evaluations: The end of generation function would cache genes and their evaluation
while the pre evaluate hook would look up newly-generated individuals in the cache: If a newly-generated
individual is found in the cache, an evaluation can be saved which may have an impact on the runtime if
evaluation is costly. Note that the probability of cache hits may be higher for binary and integer alleles
than for real alleles. Note that for non-parallel implementations, caching could also be implemented in the
evaluate function but for parallel implementations this would not work because each parallel instance would
use a separate cache. The pre evaluation user function is called only in the master instance for a parallel
implementation.

37

6.2 Example Problem: C

The example problem in Figure 6.1 is to maximize
∑L

j=1
xj with 1 ≤ xj ≤ L, where L is the string length.

The optimal solution to this problem, L2, is achieved by setting each xj to L. The files for this example,
./examples/maxint.c and ./examples/maxint.f, contain template routines for these functions.

The example shows the use of a custom mutation function with an integer data type. The function
PGASetUserFunction specifies that this function, MyMutation, will be called when the mutation operator is
applied, rather than the default mutation operator. MyMutation generates a random integer on the interval
[1, L].

6.3 Example Problem: Fortran

Figure 6.2 is the same example as in Figure 6.1 written in Fortran.

38

#include <pgapack.h>

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int myMutation (PGAContext *ctx, int p, int pop, double pm);

int main(int argc, char **argv)

{

PGAContext *ctx;

int i, maxiter;

ctx = PGACreate (&argc, argv, PGA_DATATYPE_INTEGER, 10, PGA_MAXIMIZE);

PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION, myMutation);

PGASetIntegerInitPermute(ctx, 1, 10);

PGASetUp (ctx);

PGARun (ctx, evaluate);

PGADestroy (ctx);

return(0);

}

int myMutation(PGAContext *ctx, int p, int pop, double pm)

{

int stringlen, i, k, count = 0;

stringlen = PGAGetStringLength(ctx);

for (i = 0; i < stringlen; i++)

if (PGARandomFlip(ctx, pm)) {

k = PGARandomInterval(ctx, 1, stringlen);

PGASetIntegerAllele(ctx, p, pop, i, k);

count++;

}

return ((double) count);

}

double evaluate(PGAContext *ctx, int p, int pop, double *aux)

{

int stringlen, i, sum = 0;

stringlen = PGAGetStringLength(ctx);

for (i = 0; i < stringlen; i++)

sum += PGAGetIntegerAllele(ctx, p, pop, i);

return ((double)sum);

}

Figure 6.1: PGAPack C Example Using Custom Mutation Operator

39

include ’pgapackf.h’

include ’mpif.h’

double precision evaluate

integer myMutation

external evaluate, myMutation

integer ctx, i, maxiter, ierror

call MPI_Init(ierror)

ctx = PGACreate (PGA_DATATYPE_INTEGER, 10, PGA_MAXIMIZE)

call PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION,

& myMutation)

call PGASetIntegerInitPermute(ctx, 1, 10);

call PGASetUp (ctx);

call PGARun (ctx, evaluate);

call PGADestroy (ctx);

call MPI_Finalize(ierror)

stop

end

integer function myMutation(ctx, p, pop, pm)

include ’pgapackf.h’

integer ctx, p, pop

double precision pm

integer stringlen, i, k, count

count = 0

stringlen = PGAGetStringLength(ctx)

do i=0, stringlen

if (PGARandomFlip(ctx, pm) .eq. PGA_TRUE) then

k = PGARandomInterval(ctx, 1, stringlen)

call PGASetIntegerAllele(ctx, p, pop, i, k)

count = count + 1

endif

enddo

myMutation = count

return

end

double precision function evaluate(ctx, p, pop)

include ’pgapackf.h’

integer ctx, p, pop

integer stringlen, i, sum

sum = 0

stringlen = PGAGetStringLength(ctx)

do i=0, stringlen

sum = sum + PGAGetIntegerAllele(ctx, p, pop, i)

enddo

evaluate = sum

return

end

Figure 6.2: PGAPack Fortran Example Using Custom Mutation Operator

40

Chapter 7

Custom Usage: New Data Types

This chapter discusses how PGAPack may be extended by defining a new data type. Defining a new data
type may be done only in C programs.

7.1 Basics

To create a new data type, you must (1) specify PGA_DATATYPE_USER for the datatype in the PGACreate call
and (2) for each entry in Table 7.1, call PGASetUserFunction to specify the function that will perform the
given operation on the new data type. If the data type is PGA_DATATYPE_USER, the string length specified
to PGACreate can be whatever the user desires. It will be returned by PGAGetStringLength but is not
otherwise used in the data-structure-neutral functions of PGAPack.

When specifying a user function for string creation (with PGA_USERFUNCTION_CREATESTRING, by default
the string is freed using the free function. If memory allocation uses different mechanisms, a user function
for freeing a chromosome can be specified with PGA_USERFUNCTION_CHROM_FREE.

Instead of specifying a user function for building an MPI data type, you can instead specify user functions
for a serialization API summarized in table 7.2. The user function for serialization PGA_USERFUNCTION_SERIALIZE
is used on the sending side. The function for deserialization PGA_USERFUNCTION_DESERIALIZE is used at the
receiving side. With the serialization API it is possible to send/receive variable-length data types. The se-
rialization must reserve memory for the serialized representation. If it uses memory allocation with malloc,
the default is to call free when the serialized value is no longer needed. If a memory allocation system
not compatible with free is used, the user function PGA_USERFUNCTION_SERIALIZE_FREE must be defined.
When using the serialization API a user function PGA_USERFUNCTION_BUILDDATATYPE must not be defined.

The calling sequences for the functions in Table 7.1 are given in Table 7.3. Template routines for these
functions are in the file ./examples/templates/uf_new.c.

The functions PGA_USERFUNCTION_DUPLICATE and PGA_USERFUNCTION_HASH for user defined data types
are needed only when duplicate checking is enabled with PGASetNoDuplicatesFlag(ctx, PGA_TRUE). Note

Table 7.1: Functions Required for New Data Types

Functionality Symbolic Constant
Memory allocation PGA_USERFUNCTION_CREATESTRING

Memory free PGA_USERFUNCTION_CHROM_FREE

String packing PGA_USERFUNCTION_BUILDDATATYPE

Mutation PGA_USERFUNCTION_MUTATION

Crossover PGA_USERFUNCTION_CROSSOVER

String printing PGA_USERFUNCTION_PRINTSTRING

String copying PGA_USERFUNCTION_COPYSTRING

Duplicate checking PGA_USERFUNCTION_DUPLICATE

Hashing PGA_USERFUNCTION_HASH

41

Table 7.2: Serialization API
Functionality Symbolic Constant

Serialization PGA_USERFUNCTION_SERIALIZE

Free serialization PGA_USERFUNCTION_SERIALIZE_FREE

Deserialization PGA_USERFUNCTION_DESERIALIZE

Table 7.3: Calling Sequences for New Data Type Functions

Symbolic Constant Return Function Prototype
PGA_USERFUNCTION_CREATESTRING void (PGAContext*, int, int, int)

PGA_USERFUNCTION_BUILDDATATYPE int (PGAContext*, int, int)

PGA_USERFUNCTION_SERIALIZE size_t (PGAContext*, int, int, const void **)

PGA_USERFUNCTION_DESERIALIZE void (PGAContext*, int, int, const void *, size_t)

PGA_USERFUNCTION_SERIALIZE_FREE void (void *)

PGA_USERFUNCTION_MUTATION int (PGAContext*, int, int, double)

PGA_USERFUNCTION_CROSSOVER void (PGAContext*, int, int, int, int, int, int)

PGA_USERFUNCTION_PRINTSTRING void (PGAContext*, FILE *, int, int)

PGA_USERFUNCTION_COPYSTRING int (PGAContext*, int, int, int, int)

PGA_USERFUNCTION_DUPLICATE int (PGAContext*, int, int, int, int)

that for duplicate checking to work, usually both, the hashing and the duplicate function need to be defined.
An example is given in examples/c/namefull.c for C and examples/fortran/namefull.f for Fortran.
These define a hash function and a duplicate check (comparison) function that treat all non-matching char-
acters alike. When implementing a hash function for user defined datatypes the function PGAUtilHash in
source/utility.c can be used.

While PGAPack requires that the user supply all the functions in Table 7.1, your program may not
require the functionality of all of them. For example, the user really does not need to write a function to
pack the strings for message-passing unless a parallel version of PGAPack is being used. In these cases,
we suggest that the user supply a stub function; i.e., a function with the correct calling sequence but no
functionality.

7.2 Example Problem

This example illustrates use of a user-defined structure as the new data type. The problem is one of molecular
docking where one protein molecule (the ligand) is to be docked into a second, target protein molecule.
Figure 7.1 contains the function prototypes for each function that will operate on the new datatype, the
definition of the user’s structure (ligand), and the main program.

The first three doubles of the array t in structure ligand represent the translation of the ligand molecule
in the x-, y-, and z-axes, respectively. The last three doubles in the array t represent the rotation of the
ligand molecule about each of the axes. The ints in the sc array represent side chain rotations (which are
discrete) of the ligand molecule.

Figure 7.2 contains the function CreateString that allocates and initializes the ligand structure. At this
level of usage it is no longer always possible to maintain the (p,pop) abstraction to specify an individual (a
string and associated fields). CreateString works directly with the string pointer that (p,pop) is mapped
to. If InitFlag is true, CreateString will initialize the fields; otherwise they are set to 0.

PGAGetIndividual(ctx, p, pop) returns a pointer of type PGAIndividual to the individual (the string
and associated fields) specified by (p,pop). PGAIndividual is a structure, one of the fields of which is chrom,
a void pointer to the string itself. That pointer, new->chrom, is assigned the address of the memory allocated
by the malloc function. As malloc returns a void pointer, no cast is necessary.

The value of InitFlag is passed by PGAPack to the user’s string creation routine. It specifies whether to
randomly initialize the string or set it to zero. By default, PGA OLDPOP (except for PGA TEMP1 and PGA TEMP1

which are set to zero) is randomly initialized, and PGA NEWPOP is set to zero. This choice may be changed

42

#include <pgapack.h>

double energy (double *, int *);

double Evaluate (PGAContext *, int, int);

void CreateString (PGAContext *, int, int, int);

int Mutation (PGAContext *, int, int, double);

void Crossover (PGAContext *, int, int, int, int, int, int);

void WriteString (PGAContext *, FILE *, int, int);

void CopyString (PGAContext *, int, int, int, int);

int DuplicateString (PGAContext *, int, int, int, int);

MPI_Datatype BuildDT (PGAContext *, int, int);

typedef struct {

double t[6]; /* ligand translation and rotation */

int sc[40]; /* ligand sidechain rotations */

} ligand;

int main(int argc, char **argv) {

PGAContext *ctx;

int maxiter;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_USER, 46, PGA_MINIMIZE);

PGASetRandomSeed (ctx, 1);

PGASetMaxGAIterValue(ctx, 5000);

PGASetUserFunction (ctx, PGA_USERFUNCTION_CREATESTRING, CreateString);

PGASetUserFunction (ctx, PGA_USERFUNCTION_MUTATION, Mutation);

PGASetUserFunction (ctx, PGA_USERFUNCTION_CROSSOVER, Crossover);

PGASetUserFunction (ctx, PGA_USERFUNCTION_PRINTSTRING, WriteString);

PGASetUserFunction (ctx, PGA_USERFUNCTION_COPYSTRING, CopyString);

PGASetUserFunction (ctx, PGA_USERFUNCTION_DUPLICATE, DuplicateString);

PGASetUserFunction (ctx, PGA_USERFUNCTION_BUILDDATATYPE, BuildDT);

PGASetUp (ctx);

PGARun (ctx, Evaluate);

PGADestroy (ctx);

return (0);

}

Figure 7.1: Main Program for Structure Data Type

43

void CreateString(PGAContext *ctx, int p, int pop, int InitFlag) {

int i;

ligand *ligand_ptr;

PGAIndividual *new;

new = PGAGetIndividual(ctx, p, pop);

if (!(new->chrom = malloc(sizeof(ligand)))) {

fprintf(stderr, "No room for new->chrom");

exit(1);

}

ligand_ptr = (ligand *)new->chrom;

if (InitFlag) {

for (i = 0; i < 3; i++)

ligand_ptr->t[i] = PGARandom01(ctx, 0) * 20.0 - 10.0;

for (i = 3; i < 6; i++)

ligand_ptr->t[i] = PGARandom01(ctx, 0) * 6.28 - 3.14;

for (i = 0; i < 40; i++)

ligand_ptr->sc[i] = PGARandomInterval(ctx, -20, 20);

} else {

for (i = 0; i < 6; i++)

ligand_ptr->t[i] = 0.0;

for (i = 0; i < 40; i++)

ligand_ptr->sc[i] = 0;

}

}

Figure 7.2: Creation and Initialization Function for Structure Data Type

44

int Mutation(PGAContext *ctx, int p, int pop, double mr) {

ligand *ligand_ptr;

int i, count = 0;

ligand_ptr = (ligand *)PGAGetIndividual(ctx, p, pop)->chrom;

for (i = 0; i < 6; i++)

if (PGARandomFlip(ctx, mr)) {

if (PGARandomFlip(ctx, 0.5))

ligand_ptr->t[i] += 0.1*ligand_ptr->t[i];

else

ligand_ptr->t[i] -= 0.1*ligand_ptr->t[i];

count++;

}

for (i = 0; i < 40; i++)

if (PGARandomFlip(ctx, mr)) {

if (PGARandomFlip(ctx, 0.5))

ligand_ptr->sc[i] += 1;

else

ligand_ptr->sc[i] -= 1;

count++;

}

return (count);

}

Figure 7.3: Mutation for Structure Data Type

with the PGASetRandomInitFlag function discussed in Section 4.4.)
Figure 7.3 contains the mutation function Mutation for the ligand data type. Each of the 46 genes has

a probability of mr of being changed. If a mutation occurs, Mutation adds or subtracts one tenth to the
existing value of a double, and adds or subtracts one to an int.

Figure 7.4 contains the crossover function Crossover, which implements uniform crossover for the ligand
data type. The lines

parent1 = (ligand *)PGAGetIndividual(ctx, p1, pop1)->chrom;

parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;

child1 = (ligand *)PGAGetIndividual(ctx, t1, pop2)->chrom;

child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;

are worthy of mention. Each implements in one line what the two lines

new = PGAGetIndividual(ctx, p, pop);

string = (ligand *)new->chrom;

in Mutation did. Either style is acceptable. PGAGetIndividual returns a pointer whose chrom field (a void

pointer) is cast to the ligand data type.
Figure 7.5 contains the code for DuplicateString, which checks for duplicate ligand structures. It uses

the ANSI C memcmp function for this purpose. In figure 7.6 the code for the hashing function is shown. It
uses the utility function PGAUtilHash for computing the hash over the user-defined data structure.

Figure 7.7 contains the evaluation function for this example. It again uses PGAGetIndividual to map
(p, pop) into a pointer to the string of interest. For user data types, PGAPack does not provide a
PGAGetUserAllele function, so access to the allele values is made directly through the pointer.

Figure 7.8 contains the function BuildDT that builds an MPI datatype for sending strings to other
processors. Consult an MPI manual for further information.

45

void Crossover

(PGAContext *ctx, int p1, int p2, int pop1, int t1, int t2, int pop2)

{

int i;

ligand *parent1, *parent2, *child1, *child2;

double pu;

parent1 = (ligand *)PGAGetIndividual(ctx, p1, pop1)->chrom;

parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;

child1 = (ligand *)PGAGetIndividual(ctx, t1, pop2)->chrom;

child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;

pu = PGAGetUniformCrossoverProb(ctx);

for (i = 0; i < 6; i++)

if (PGARandomFlip(ctx, pu)) {

child1->t[i] = parent1->t[i];

child2->t[i] = parent2->t[i];

} else {

child1->t[i] = parent2->t[i];

child2->t[i] = parent1->t[i];

}

for (i = 0; i < 40; i++)

if (PGARandomFlip(ctx, pu)) {

child1->sc[i] = parent1->sc[i];

child2->sc[i] = parent2->sc[i];

} else {

child1->sc[i] = parent2->sc[i];

child2->sc[i] = parent1->sc[i];

}

}

Figure 7.4: Crossover for Structure Data Type

int DuplicateString(PGAContext *ctx, int p1, int pop1, int p2, int pop2)

{

void *a, *b;

a = PGAGetIndividual(ctx, p1, pop1)->chrom;

b = PGAGetIndividual(ctx, p2, pop2)->chrom;

return (!memcmp(a, b, sizeof(ligand)));

}

Figure 7.5: Duplicate Testing for Structure Data Type

PGAHash HashString (PGAContext *ctx, int p, int pop)

{

void *lig = PGAGetIndividual (ctx, p, pop)->chrom;

return PGAUtilHash (lig, sizeof (ligand), PGA_INITIAL_HASH);

}

Figure 7.6: Hashing for Structure Data Type

46

double Evaluate(PGAContext *ctx, int p, int pop, double *aux)

{

int i, j;

double x[6];

int sc[40];

PGAIndividual *ind;

ligand *lig;

lig = (ligand *)PGAGetIndividual(ctx, p, pop)->chrom;

for (i = 0; i < 6; i++)

x[i] = lig->t[i];

for (i = 0; i < 40; i++)

sc[i] = lig->sc[i];

return (energy(x,sc));

}

Figure 7.7: Evaluation Function for Structure Data Type

MPI_Datatype BuildDT (PGAContext *ctx, int p, int pop)

{

int idx = 0;

int counts [PGA_MPI_HEADER_ELEMENTS + 2];

MPI_Aint displs [PGA_MPI_HEADER_ELEMENTS + 2];

MPI_Datatype types [PGA_MPI_HEADER_ELEMENTS + 2];

MPI_Datatype DT_PGAIndividual;

PGAIndividual *P;

ligand *S;

P = PGAGetIndividual (ctx, p, pop);

S = (ligand *)P->chrom;

idx = PGABuildDatatypeHeader (ctx, p, pop, counts, displs, types);

/* Finish the MPI datatype. Every user defined function needs these.

* The stuff internal to PGAPack is already handled by

* PGABuildDatatypeHeader above.

*/

MPI_Get_address (S->t, &displs [idx]);

counts [idx] = 6;

types [idx] = MPI_DOUBLE;

idx++;

MPI_Get_address (S->sc, &displs [idx]);

counts [idx] = 40;

types [idx] = MPI_INT;

idx++;

MPI_Type_struct (idx, counts, displs, types, &DT_PGAIndividual);

MPI_Type_commit (&DT_PGAIndividual);

return DT_PGAIndividual;

}

Figure 7.8: Message Packing Function for Structure Data Type

47

Chapter 8

Hill-Climbing and Hybridization

Hill-climbing heuristics attempt to improve a solution by moving to a better neighbor solution. Whenever the
neighboring solution is better than the current solution, it replaces the current solution. Genetic algorithms
and hill-climbing heuristics have complementary strong and weak points. GAs are good at finding promising
areas of the search space, but not as good at fine-tuning within those areas. Hill-climbing heuristics, on
the other hand, are good at fine-tuning, but lack a global perspective. Practice has shown that a hybrid
algorithm that combines GAs with hill-climbing heuristics often results in an algorithm that can outperform
either one individually.

There are two general schemes for creating hybrid algorithms. The simplest is to run the genetic algorithm
until it terminates and then apply a hill-climbing heuristic to each (or just the best) string. The second
approach is to integrate a hill-climbing heuristic with the genetic algorithm. Choices to be made in the
second case include how often to apply the hill-climbing heuristic and how many strings in the population
to apply it to.

PGAPack supports hybrid schemes in the following ways:

• By passing, the context variable as a parameter to the user’s hill-climbing function, the user has access
to solution and parameter values, debug flags, and other information.

• The functions PGAGetBinaryAllele, PGAGetIntegerAllele, PGAGetRealAllele, and
PGAGetCharacterAllele allow the user’s hill-climbing function to read allele values, and the functions
PGASetBinaryAllele, PGASetIntegerAllele, PGASetRealAllele, and PGASetCharacterAllele

allow the user’s hill-climbing function to set allele values explicitly.

• The functions PGADecodeRealAsBinary, PGADecodeRealAsGrayCode, PGADecodeIntegerAsBinary,
and PGADecodeIntegerAsGrayCode allow the user’s hill-climbing function to read integer or real num-
bers encoded as binary or Gray code strings.

• The functions PGAEncodeRealAsBinary, PGAEncodeRealAsGrayCode, PGAEncodeIntegerAsBinary,
and PGAEncodeIntegerAsGrayCode allow the user’s hill-climbing function to encode integer or real
numbers as binary or Gray code strings.

• The functions PGAGetEvaluation and PGASetEvaluation allow the user’s hill-climbing func-
tion to get and set evaluation function values, and PGASetEvaluationUpToDateFlag and
PGAGetEvaluationUpToDateFlag to get and set the flag that indicates whether an evaluation function
value is up to date. These functions have an optional fifth argument aux, that allows to get or set the
auxiliary evaluations, see section 4.9.

One way to run a hybrid GA and use PGARun is to use the PGASetUserFunction discussed in Chapter 6
to specify a user function to be called at the end of each GA iteration. A more flexible approach would be
for the user to call the high-level PGAPack functions, and their hillclimber to explicitly specify the steps of
the hybrid GA.

Figure 8.1 is a version of the Maxbit problem given in Section 2.1. It uses the hill-climbing function
hillclimb, which is called after the recombination step. It randomly selects a gene to set to one. Note the

48

PGASetEvaluationUpToDateFlag call. It sets the flag that indicates the evaluation function is not current
with the string (since the string was changed). It is critical that this flag be set when the user changes a
string, since the value of this flag determines whether PGAEvaluate will invoke the user’s function evaluation
routine.

#include "pgapack.h"

double evaluate(PGAContext *, int, int, double *aux);

void hillclimb (PGAContext *, int);

int main(int argc, char **argv)

{

PGAContext *ctx;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetUp (ctx);

PGAEvaluate(ctx, PGA_OLDPOP, evaluate, NULL);

PGAFitness (ctx, PGA_OLDPOP);

while(!PGADone(ctx, NULL)) {

PGASelect (ctx, PGA_OLDPOP);

PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);

hillclimb (ctx, PGA_NEWPOP);

PGAEvaluate (ctx, PGA_NEWPOP, evaluate, NULL);

PGAFitness (ctx, PGA_NEWPOP);

PGAUpdateGeneration (ctx, NULL);

PGAPrintReport (ctx, stdout, PGA_OLDPOP);

}

PGADestroy(ctx);

return 0;

}

void hillclimb(PGAContext *ctx, int pop)

{

int i, p, popsize, stringlen;

popsize = PGAGetPopSize(ctx);

stringlen = PGAGetStringLength(ctx);

for (p=0; p<popsize; p++) {

i = PGARandomInterval(ctx, 0, stringlen-1);

PGASetBinaryAllele (ctx, p, pop, i, 1);

PGASetEvaluationUpToDateFlag (ctx, p, pop, PGA_FALSE);

}

}

Figure 8.1: Hill-Climbing Heuristic for Maxbit Example

49

Chapter 9

Parallel Aspects

This chapter assumes familiarity with the background material in Appendix C. It also assumes that a parallel
version of PGAPack was built and that programs are linked with an MPI library.

Version 1.0 of PGAPack supports parallel and sequential implementations of the single population global
model (GM). The parallel implementation uses a master/slave algorithm in which one process, the master,
executes all steps of the genetic algorithm except the function evaluations. The function evaluations are
executed by the slave processes1.

9.1 Basic Usage

Both sequential and parallel versions of PGAPack may be run by using PGARun. The choice of sequential or
parallel execution depends on the number of processes specified when the program is started. If one process
is specified, the sequential implementation of the GM is used (even in a parallel version of PGAPack). If two
or more processes are specified, the parallel implementation of the GM is used. The examples in Chapter 2
can all be run in parallel by specifying more than one process at startup.

The specification of the number of processors is done at run time. The actual format of the specification
depends on the MPI implementation and computer used (see Appendix C for some examples). PGARun uses
the default MPI communicator, MPI COMM WORLD. This specifies that all processes specified at startup partic-
ipate in the computation: one as the master process, the others as slave processes. A different communicator
may be specified with PGASetCommunicator(ctx, comm), where comm is an MPI communicator.

PGARun is really a “wrapper” function that calls PGARunGM with the MPI COMM WORLD communicator. The
user may call PGARunGM directly, that is, PGARunGM(ctx,evaluate,MPI COMM WORLD) where evaluate is the
name of the user’s evaluation function and the third argument is an MPI communicator. Note that the
communicator specified by PGASetCommunicator does not affect PGARunGM.

9.2 Explicit Use

In general, explicit use of the parallel features is more complicated than in the case of sequential func-
tions. This is because the user’s program must coordinate the execution threads of multiple processes.
PGARunGM encapsulates all that is necessary into one routine, and parts of its source code may serve
as a useful starting point if one wishes to develop an explicitly parallel program. The parallel func-
tions in PGAPack may be viewed as a hierarchy with PGARun and PGARunGM at the top of the hierarchy,
PGAEvaluate next, PGASendIndividual, PGAReceiveIndividual, and PGASendReceiveIndividual next,
and PGABuildDatatype at the bottom of the hierarchy.

PGAGetRank(ctx,comm) returns the rank of the process in communicator comm. If comm is NULL it returns
0. PGAGetNumProcs(ctx,comm) returns the number of processes in communicator comm. If comm is NULL it
returns 1.

1In the special case of exactly two processes, the master executes function evaluations as well.

50

The type of algorithm used to execute PGAEvaluate(ctx,pop,f,comm) will depend on the number of
processes in the communicator comm. If it is NULL or contains one process, a sequential implementation will
be used. If more than one process is specified it will execute a master/slave evaluation of the strings in
population pop that require evaluation by applying, f, the user’s evaluation function. PGAEvaluate should
be called by all processes in communicator comm.

PGASendIndividual(ctx,p,pop,dest,tag,comm) will send string p in population pop to process dest.
tag is a tag used to identify the message, and comm is an MPI communicator. This function calls MPI Send

to perform the actual message passing. In addition to string p itself, the evaluation function value, fitness
function value, and evaluation status flag are also sent.

PGAReceiveIndividual is the complementary function to PGASendIndividual. For example,
PGAReceiveIndividual (ctx,p,pop,source,tag,comm,status) will store in location p in population pop

the string and fields of the individual sent from process source with the MPI tag tag and MPI communicator
comm. status is an MPI status vector.

PGASendReceiveIndividual combines the functionality of PGASendIndividual and
PGAReceiveIndividual. This may be useful in avoiding potential deadlock on some systems. For
example, PGASendReceiveIndividual (ctx,sp,spop,dest,stag,rp,rpop,source, rtag,comm,status).
Here, sp is the index of the string in population spop to send to process dest with tag stag. The string
received from process source with tag rtag is stored in location rp in population rpop. comm and status

are the same as defined earlier.
PGABuildDatatype (ctx,p,pop) packs together the string and fields that PGASendIndividual,

PGAReceiveIndividual, and PGASendReceiveIndividual send and receive. The result is of type
MPI Datatype.

9.3 Example

Figure 9.1 is a parallel version of the example in Figure 5.1. Since we now have multiple processes executing
the program at the same time, we must coordinate each ones execution. In the example, the master process
(the one with rank 0 as determined by PGAGetRank) executes all functions, and the slave processes execute
only those functions that take a communicator as an argument. Note that this example will execute correctly
even if only one process is in the communicator.

9.4 Performance

The parallel implementation of the GM will produce the same result as the sequential implementation,
usually faster. However, the parallel implementation varies with the number of processes. If two processes
are used, both the master process and the slave process will compute the function evaluations. If more
than two processes are used, the master is responsible for bookkeeping only, and the slaves for executing the
function evaluations. In general, the speedup obtained will vary with the amount of computation associated
with a function evaluation and the computational overhead of distributing and collecting information to and
from the slave processes.

The speedup that can be achieved with the master/slave model is limited by the number of function
evaluations that can be executed in parallel. This number depends on the population size and the number
of new strings created each generation. For example, if the population size is 100 and a 100 new strings
are created each GA generation, then up to 100 processors can be put to effective use to run the slave
processes. However, with the default rule of replacing only 10% of the population each GA generation, only
10 processors can be used effectively.

51

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

int rank;

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE);

PGASetUp (ctx);

rank = PGAGetRank(ctx, MPI_COMM_WORLD);

PGAEvaluate(ctx, PGA_OLDPOP, evaluate, MPI_COMM_WORLD);

if (rank == 0)

PGAFitness (ctx, PGA_OLDPOP);

while(!PGADone(ctx, MPI_COMM_WORLD)) {

if (rank == 0) {

PGASelect (ctx, PGA_OLDPOP);

PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP);

}

PGAEvaluate(ctx, PGA_OLDPOP, evaluate, MPI_COMM_WORLD);

if (rank == 0)

PGAFitness (ctx, PGA_NEWPOP);

PGAUpdateGeneration (ctx, MPI_COMM_WORLD);

if (rank == 0)

PGAPrintReport (ctx, stdout, PGA_OLDPOP);

}

PGADestroy(ctx);

return(0);

}

Figure 9.1: Simple Parallel Example of Explicit Usage

52

Chapter 10

Fortran Interface

PGAPack is written entirely in ANSI C. A set of interface functions, also written in C, is designed to be
called by Fortran programs and then call the “real” C routine. This mechanism provides most of PGAPack’s
functionality to Fortran programs. The following list contains most major differences between C and Fortran.
Additional, machine-specific idiosyncrasies are noted in Appendix D.

• The Makefiles for the Fortran examples (in ./examples/fortran and ./examples/mgh) are not con-
figured to use the -I mechanism for specifying the include file search path (since not all Fortran compilers
support this). Therefore, you will need to copy or set up a symbolic link to ./include/pgapackf.h

from the directory you are compiling a Fortran program in.

• The context variable is declared integer (or integer*8, see Appendix D) in Fortran.

• PGACreate takes only three arguments in Fortran (not argc or argv as in C).

• The Fortran include file is pgapackf.h and should be included in any Fortran subroutine or function
that calls a PGAPack function, to ensure correct typing and definition of functions and symbolic
constants.

• If a C function returns an { int, double, pointer}, the corresponding Fortran function returns an
{ integer, double precision, integer}. If the C function is void it is implemented as a Fortran
subroutine.

• When supplying function arguments, a C int corresponds to a Fortran integer, and a C double

corresponds to a Fortran double precision. For example, to set the crossover probability to 0.6, use
call PGASetCrossoverProb(ctx, 0.6d0),
or
double precision pc

pc = 0.6

call PGASetCrossoverProb(ctx, pc)

• Gene indices are [0, L− 1] in C, and [1, L] in Fortran, where L is the string length.

• Population member indices are [0, N − 1] in C, and [1, N] in Fortran, where N is the population size.

• Fortran does not support command line arguments (Section 4.13).

• Fortran allows custom usage with native data types (Chapter 6), but not with new data types (Chap-
ter 7).

• In the MPICH implementation of MPI, the Fortran and C versions of MPI Init are different. If the main
program is in C, then the C version of MPI Init must be called. If the main program is in Fortran, the
Fortran version of MPI Init must be called. Therefore, Fortran users of PGAPack with MPICH must
call MPI Init themselves since PGACreate, which calls MPI Init if users haven’t called it themselves,
is written in C.

53

• The DEC Alpha and Silicon Graphics Power Challenge, which have 64-bit C pointers and 32-bit Fortran
integers (but not the Cray T3D which has 64-bit Fortran integers), have additional differences1. These
arise because a Fortran integer is too small to hold the address returned by the C interface routine.

– The context variable should be declared integer*8.

– MPI COMM WORLD should not be passed directly to PGAPack Fortran functions. Instead,
PGAGetCommunicator should be called to return the address into an integer*8 variable. For
example

integer pid

integer*8 comm

comm = PGAGetCommunicator(ctx)

:

pid = PGAGetRank(ctx, comm)

– MPI COMM WORLD can and should be passed directly to any MPI routines called directly from
Fortran.

– Calling an MPI routine that returns a communicator is safe. However, passing the returned
communicator to a PGAPack Fortran function will usually fail.

1More generally, these issues arise whenever the size of a Fortran integer is less than the size of a pointer.

54

Chapter 11

Debugging Tools

PGAPack has a sophisticated built-in trace facility that is useful for debugging. When the facility is invoked,
print statements to stdout allow the programmer to trace the sequence of functions PGAPack executes. Due
to the negative impact on performance this facility is not available by default. Instead, you must explicitly
enable tracing when configuring PGAPack with the -debug flag.

The trace facility uses the concept of a debug level. For example, executing the Maxbit example (Fig-
ure 2.1) with a debug level of 12, maxbit -pgadbg 12, will print the output shown in Figure 11.1. The “0:”
is the process rank. This is followed by the name of a PGAPack function and the “action” that caused the
print statement to execute. In this case, the action is entering the function. Note that the rank printed for
a process is always its rank in the MPI COMM WORLD communicator, even if another communicator was set.

Tracing is enabled by specifying one or more debug levels to trace. A list of debug levels is given in
Table 11.1. Not all debug level values are currently used. The values 1–10 are reserved for users as described
below.

C programmers may set the debug level from the command line using either -pgadbg <debug level>

or -pgadebug <debug level>. Several forms of the <debug level> argument are allowed. -pgadbg 12 will
trace entering all high-level functions as shown in Figure 11.1. -pgadbg 12,13 or -pgadbg 12-13 will trace
entering and exiting of all high-level functions. The command line option -pgahelp debug will list the debug
level options and then exit.

Fortran (and C) programmers may access the trace facility via function calls. The function
PGASetDebugLevel may be called to set a debug level. For example, call PGASetDebugLevel(ctx,12)

would produce the same output shown in Figure 11.1. PGAClearDebugLevel(ctx,12) will clear prints
associated with debug level 12. PGAPrintDebugOptions(ctx) will print the list of available debug options.

The function PGASetDebugLevelByName will turn on debugging of the named function. For exam-
ple, PGASetDebugLevelByName(ctx,’’PGACrossover’’) will enable all the trace prints of PGACrossover.
PGAClearDebugLevelByName will disable the tracing of the specified function.

0: PGACreate : Entered

0: PGASetRandomSeed : Entered

0: PGASetMaxGAIterValue : Entered

0: PGASetUp : Entered

:

0: PGARun : Entered

0: PGARunSeq : Entered

0: PGAEvaluate : Entered

0: PGAFitness : Entered

0: PGAGetStringLength : Entered

:

Figure 11.1: PGAPack Partial Trace Output for Maxbit Example

55

Users can use the trace facility in their own functions (e.g., their evaluation function) in two ways.
First, they can insert PGADebugPrint function calls in their functions using one of the symbolic constants
defined in the header file pgapack.h. These are PGA DEBUG ENTERED, PGA DEBUG EXIT, PGA DEBUG MALLOC,
PGA DEBUG PRINTVAR, PGA DEBUG SEND, and PGA DEBUG RECV for entering a function, exiting a function, al-
locating memory, print a variable’s value, and sending or receiving a string, respectively.

For example, PGADebugPrint(ctx, PGA DEBUG ENTERED, "MyFunc", "Entered", PGA VOID, NULL)

will print the line

0: MyFunc : Entered

when the debug level of 12 is specified. PGADebugPrint(ctx, PGA DEBUG PRINTVAR, "MyFunc", "i =

", PGA INT, (void *) &i) will print the line

0: MyFunc : i = 1

when the debug level of 82 is specified. Users can also use the reserved debug levels of 1–10 to customize the
trace facilities for use in their own functions. For example PGADebugPrint(ctx, 5, "MyFunc", "After

call to MyCleanUp", PGA VOID, NULL); will print the line

0: MyFunc : After call to MyCleanUp

when the debug level of five is specified.
Note that we use MPI COMM WORLD (1) for the random number seed and (2) for PGADebugPrint calls.

56

Table 11.1: Debug Levels in PGAPack

0 Trace all debug prints
11 Trace high-level functions
12 Trace all function entries
13 Trace all function exits
20 Trace high-level parallel functions
21 Trace all parallel functions
22 Trace all send calls
23 Trace all receive calls
30 Trace Binary functions
32 Trace Integer functions
34 Trace Real functions
36 Trace Character functions
40 Trace population creation functions
42 Trace select functions
44 Trace mutation functions
46 Trace crossover functions
48 Trace function evaluation functions
50 Trace fitness calculation functions
52 Trace duplicate checking functions
54 Trace restart functions
56 Trace reporting functions
58 Trace stopping functions
60 Trace sorting functions
62 Trace random number functions
64 Trace system routines
66 Trace utility functions
80 Trace memory allocations
82 Trace variable print statements

57

Part III

Appendixes

58

Appendix A

Default Values

CONCEPT DEFAULT SET WITH
Population size 100 PGASetPopSize

Copied for population replacement PGA_POPREPL_BEST PGASetPopReplaceType

Stopping rule PGA_STOP_MAXITER PGASetStoppingRuleType

Maximum iterations 1000 PGASetMaxGAIterValue

Maximum no change iters 100 PGASetMaxNoChangeValue

Max. population homogeneity before stopping 95 PGASetMaxSimilarityValue

Number of new strings to generate 10 PGASetNumReplaceValue

Apply mutation and crossover PGA_MIX_MUTATE_AND_CROSS PGASetMixingType

Apply mutation or crossover PGA_MIX_MUTATE_OR_CROSS PGASetMixingType

Apply mutation only PGA_MIX_MUTATE_ONLY PGASetMixingType

Traditional crossover then mutation PGA_MIX_TRADITIONAL PGASetMixingType

Crossover type PGA_CROSSOVER_TWOPT PGASetCrossoverType

Probability of crossover 0.85 PGASetCrossoverProb

Uniform crossover bias 0.6 PGASetUniformCrossoverProb

Mutation type (Real strings) PGA_MUTATION_GAUSSIAN PGASetMutationType

Mutation type (Integer strings) PGA_MUTATION_PERMUTE PGASetMutationType

Mutation type (Character strings) Same as initialization PGASetCharacterInitType

Mutation probability 1/L PGASetMutationProb

Real mutation constant 0.1 PGASetMutationRealValue

Integer mutation constant 1 PGASetMutationIntegerValue

Mutation range bounded PGA_TRUE PGASetMutationBoundedFlag

Select type PGA_SELECT_TOURNAMENT PGASetSelectType

Probabilistic binary tournament parameter 0.6 PGASetPTournamentProb

Use restart operator PGA_FALSE PGASetRestartFlag

Restart frequency 50 PGASetRestartFrequencyValue

Restart allele mutation rate 0.5 PGASetRestartAlleleChangeProb

Allow duplicate strings PGA_FALSE PGASetNoDuplicatesFlag

Fitness type PGA_FITNESS_RAW PGASetFitnessType

Fitness type for minimization PGA_FITNESSMIN_CMAX PGASetFitnessMinType

Multiplier for minimization problems 1.01 PGASetCMaxValue

Parameter MAX in fitness by ranking 1.2 PGASetMaxFitnessRank

Frequency of statistics printing 10 PGASetPrintFrequencyValue

L is the string length

Table A.1: PGAPack Default Values

59

CONCEPT DEFAULT SET WITH
Print strings PGA_FALSE PGASetPrintOptions

Print offline statistics PGA_FALSE PGASetPrintOptions

Print online statistics PGA_FALSE PGASetPrintOptions

Print best string PGA_FALSE PGASetPrintOptions

Print worst string PGA_FALSE PGASetPrintOptions

Print genetic distance PGA_FALSE PGASetPrintOptions

Randomly initialize population PGA_TRUE PGASetRandomInitFlag

Probability of initializing a bit to one 0.5 PGASetBinaryInitProb

How to initialize real strings Range PGASetrealInitRange

Real initialization range [0, 1] PGASetRealInitRange

How to initialize integer strings Permutation PGASetIntegerInitPermute

Integer initialization range [0, L− 1] PGASetIntegerInitPermute

How to initialize character strings PGA_CINIT_LOWER PGASetCharacterInitFlag

Seed random number with clock PGA_TRUE PGASetRandomSeed

Default MPI communicator MPI_COMM_WORLD PGASetCommunicator

Differential Evolution (DE) variant PGA_DE_VARIANT_RAND PGASetDEVariant

DE scale factor F 0.9 PGASetDEScaleFactor

DE auxiliary factor K 0.5 · (F + 1) PGASetDEAuxFactor

DE Crossover prob Cr 0.9 PGASetDECrossoverProb

DE Jitter 0.0 PGASetDEJitter

DE Either/Or Probability 0.5 PGASetDEProbabilityEO

DE Number of differences 1 PGASetDENumDiffs

L is the string length

Table A.2: PGAPack Default Values (continued)

60

Appendix B

Function Bindings

Symbolic Constants

PGAPack defines many symbolic constants that are used as arguments to PGAPack functions. These
constants are the same for both Fortran and C. Below is a list of these constants. These constants are the
same for both Fortran and C.

• PGAPack Data Types

– PGA DATATYPE BINARY

– PGA DATATYPE INTEGER

– PGA DATATYPE REAL

– PGA DATATYPE CHARACTER

– PGA DATATYPE USER

• String Types

– PGABinary

– PGAInteger

– PGAReal

– PGACharacter

• Data Types used in PGAError Calls

– PGA INT

– PGA DOUBLE

– PGA CHAR

– PGA VOID

• True and False

– PGA TRUE

– PGA FALSE

• Miscellaneous PGAPack Flags

– PGA FATAL

– PGA WARNING

– PGA UNINITIALIZED INT

61

– PGA UNINITIALIZED DOUBLE

• PGAPack Temporary and Population Constants

– PGA TEMP1

– PGA TEMP2

– PGA OLDPOP

– PGA NEWPOP

• Debug Levels

– PGA DEBUG ENTERED

– PGA DEBUG EXIT

– PGA DEBUG MALLOC

– PGA DEBUG PRINTVAR

– PGA DEBUG SEND

– PGA DEBUG RECV

• Direction of Optimization

– PGA MAXIMIZE

– PGA MINIMIZE

• Stopping Criteria

– PGA STOP MAXITER

– PGA STOP NOCHANGE

– PGA STOP TOOSIMILAR

• Crossover

– PGA CROSSOVER ONEPT

– PGA CROSSOVER TWOPT

– PGA CROSSOVER UNIFORM

• Fitness

– PGA FITNESS RAW

– PGA FITNESS NORMAL

– PGA FITNESS RANKING

• Fitness Minimization

– PGA FITNESSMIN RECIPROCAL

– PGA FITNESSMIN CMAX

• Mutation Type

– PGA MUTATION CONSTANT

– PGA MUTATION RANGE

– PGA MUTATION UNIFORM

– PGA MUTATION GAUSSIAN

– PGA MUTATION PERMUTE

62

• Population Replacement

– PGA_POPREPL_BEST

– PGA_POPREPL_RANDOM_NOREP

– PGA_POPREPL_RANDOM_REP

– PGA_POPREPL_RTR

• Initialization Options

– PGA CINIT LOWER

– PGA CINIT UPPER

– PGA CINIT MIXED

– PGA IINIT PERMUTE

– PGA IINIT RANGE

– PGA RINIT PERCENT

– PGA RINIT RANGE

• Report Options

– PGA_REPORT_ONLINE

– PGA_REPORT_OFFLINE

– PGA_REPORT_GENE_DISTANCE

– PGA_REPORT_STRING

– PGA_REPORT_WORST

– PGA_REPORT_AVERAGE

• Selection

– PGA_SELECT_PROPORTIONAL

– PGA_SELECT_SUS

– PGA_SELECT_TOURNAMENT

– PGA_SELECT_PTOURNAMENT

– PGA_SELECT_TRUNCATION

• User Functions

– PGA_USERFUNCTION_CREATESTRING

– PGA_USERFUNCTION_MUTATION

– PGA_USERFUNCTION_CROSSOVER

– PGA_USERFUNCTION_PRINTSTRING

– PGA_USERFUNCTION_COPYSTRING

– PGA_USERFUNCTION_DUPLICATE

– PGA_USERFUNCTION_INITSTRING

– PGA_USERFUNCTION_BUILDDATATYPE

– PGA_USERFUNCTION_STOPCOND

– PGA_USERFUNCTION_ENDOFGEN

– PGA_USERFUNCTION_GEN_DISTANCE

– PGA_USERFUNCTION_PRE_EVAL

– PGA_USERFUNCTION_HASH

– PGA_USERFUNCTION_SERIALIZE

– PGA_USERFUNCTION_DESERIALIZE

– PGA_USERFUNCTION_SERIALIZE_FREE

– PGA_USERFUNCTION_CHROM_FREE

63

ANSI C Bindings

The use of any PGAPack function requires that the user have #include "pgapack.h" at the top of the file
that references PGAPack functions.

Type Function

MPI Datatype PGABuildDatatype(PGAContext *ctx, int p, int pop)
void PGAChange(PGAContext *ctx, int p, int pop)
int PGACheckStoppingConditions(PGAContext *ctx)
int PGACheckSum(PGAContext *ctx, int p, int pop)
void PGAClearDebugLevel(PGAContext *ctx, int level)
void PGAClearDebugLevelByName(PGAContext *ctx, char *funcname)
void PGACopyIndividual(PGAContext *ctx, int p1, int pop1, int p2, int pop2)
PGAContext* PGACreate(int *argc, char **argv, int datatype, int len, int maxormin)
void PGACrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1, int c2, int pop2)
void PGADebugPrint(PGAContext *ctx, int level, char *funcname,

char *msg, int datatype, void *data)
void PGADestroy(PGAContext *ctx)
int PGADone(PGAContext *ctx, MPI Comm comm)
int PGADuplicate(PGAContext *ctx, int p, int pop1, int pop2)
void PGAEncodeIntegerAsBinary(PGAContext *ctx, int p, int pop, int start, int end, int val)
void PGAEncodeIntegerAsGrayCode(PGAContext *ctx, int p, int pop, int start, int end, int val)
void PGAEncodeRealAsBinary(PGAContext *ctx, int p, int pop,

int start, int end, double low, double high, double val)
void PGAEncodeRealAsGrayCode(PGAContext *ctx, int p, int pop,

int start, int end, double low, double high, double val)
void PGAError(PGAContext *ctx, char *msg, int level, int datatype, void *data)
void PGAEvaluate(PGAContext *ctx, int pop,

double(*f)(PGAContext *, int, int), MPI Comm comm)
void PGAFitness(PGAContext *ctx, int popindex)
int PGAGetBestIndex(PGAContext *ctx, int pop)
int PGAGetBinaryAllele(PGAContext *ctx, int p, int pop, int i)
double PGAGetBinaryInitProb(PGAContext *ctx)
char PGAGetCharacterAllele(PGAContext *ctx, int p, int pop, int i)
MPI Comm PGAGetCommunicator(PGAContext *ctx)
double PGAGetCrossoverProb(PGAContext *ctx)
int PGAGetCrossoverType(PGAContext *ctx)
int PGAGetDataType(PGAContext *ctx)
double PGAGetEvaluation(PGAContext *ctx, int p, int pop)
int PGAGetEvaluationUpToDateFlag(PGAContext *ctx, int p, int pop)
double PGAGetFitness(PGAContext *ctx, int p, int pop)
double PGAGetFitnessCmaxValue(PGAContext *ctx)
int PGAGetFitnessMinType(PGAContext *ctx)
int PGAGetFitnessType(PGAContext *ctx)
int PGAGetGAIterValue(PGAContext *ctx)
int PGAGetIntegerAllele(PGAContext *ctx, int p, int pop, int i)
int PGAGetIntegerFromBinary(PGAContext *ctx, int p, int pop, int start, int end)
int PGAGetIntegerFromGrayCode(PGAContext *ctx, int p, int pop, int start, int end)
int PGAGetIntegerInitType(PGAContext *ctx)
void PGAHashIndividual(PGAContext *ctx, int p, int pop)

64

Type Function

double PGAGetMaxFitnessRank(PGAContext *ctx)
int PGAGetMaxGAIterValue(PGAContext *ctx)
int PGAGetMaxIntegerInitValue(PGAContext *ctx, int i)
double PGAGetMaxMachineDoubleValue(PGAContext *ctx)
int PGAGetMaxMachineIntValue(PGAContext *ctx)
double PGAGetMaxRealInitValue(PGAContext *ctx, int i)
int PGAGetMinIntegerInitValue(PGAContext *ctx, int i)
double PGAGetMinMachineDoubleValue(PGAContext *ctx)
int PGAGetMinMachineIntValue(PGAContext *ctx)
double PGAGetMinRealInitValue(PGAContext *ctx, int i)
int PGAGetMutationAndCrossoverFlag(PGAContext *ctx)
int PGAGetMutationBoundedFlag(PGAContext *ctx)
int PGAGetMutationIntegerValue(PGAContext *ctx)
int PGAGetMutationOnlyFlag(PGAContext *ctx)
int PGAGetMutationOrCrossoverFlag(PGAContext *ctx)
double PGAGetMutationProb(PGAContext *ctx)
double PGAGetMutationRealValue(PGAContext *ctx)
int PGAGetMutationType(PGAContext *ctx)
int PGAGetNoDuplicatesFlag(PGAContext *ctx)
int PGAGetNumProcs(PGAContext *ctx, MPI Comm comm)
int PGAGetNumReplaceValue(PGAContext *ctx)
int PGAGetOptDirFlag(PGAContext *ctx)
double PGAGetPTournamentProb(PGAContext *ctx)
int PGAGetPopReplaceType(PGAContext *ctx)
int PGAGetPopSize(PGAContext *ctx)
int PGAGetPrintFrequencyValue(PGAContext *ctx)
int PGAGetRandomInitFlag(PGAContext *ctx)
int PGAGetRandomizeSelect(PGAContext *ctx)
int PGAGetRandomSeed(PGAContext *ctx)
int PGAGetRank(PGAContext *ctx, MPI Comm comm)
double PGAGetRealAllele(PGAContext *ctx, int p, int pop, int i)
double PGAGetRealFromBinary(PGAContext *ctx, int p, int pop,

int start, int end, double lower, double upper)
double PGAGetRealFromGrayCode(PGAContext *ctx, int p, int pop,

int start, int end, double lower, double upper)
int PGAGetRealInitType(PGAContext *ctx)
double PGAGetRestartAlleleChangeProb(PGAContext *ctx)
int PGAGetRestartFlag(PGAContext *ctx)
int PGAGetRestartFrequencyValue(PGAContext *ctx)
int PGAGetRTRWindowSize(PGAContext *ctx)
int PGAGetSelectType(PGAContext *ctx)
int PGAGetSortedPopIndex(PGAContext *ctx, int n)
int PGAGetStoppingRuleType(PGAContext *ctx)
int PGAGetStringLength(PGAContext *ctx)
int PGAGetTournamentSize(PGAContext *ctx)
int PGAGetTournamentWithReplacement(PGAContext *ctx)
double PGAGetTruncationProportion(PGAContext *ctx)
double PGAGetUniformCrossoverProb(PGAContext *ctx)
int PGAGetWorstIndex(PGAContext *ctx, int pop)
double PGAGeneDistance(PGAContext *ctx, int popindex)
double PGAMean(PGAContext *ctx, double *a, int n)
int PGAMutate(PGAContext *ctx, int p, int pop)

65

Type Function

void PGAPrintContextVariable(PGAContext *ctx, FILE *fp)
void PGAPrintIndividual(PGAContext *ctx, FILE *fp, int p, int pop)
void PGAPrintPopulation(PGAContext *ctx, FILE *fp, int pop)
void PGAPrintReport(PGAContext *ctx, FILE *fp, int pop)
void PGAPrintString(PGAContext *ctx, FILE *file, int p, int pop)
void PGAPrintVersionNumber(PGAContext *ctx)
double PGARandom01(PGAContext *ctx, int newseed)
int PGARandomFlip(PGAContext *ctx, double p)
double PGARandomGaussian(PGAContext *ctx, double mean, double sigma)
int PGARandomInterval(PGAContext *ctx, int start, int end)
double PGARandomUniform(PGAContext *ctx, double start, double end)
int PGARank(PGAContext *ctx, int p, int *order, int n)
void PGAReceiveIndividual(PGAContext *ctx, int p, int pop, int source,

int tag, MPI Comm comm, MPI Status *status)
void PGARestart(PGAContext *ctx, int source pop, int dest pop)
int PGARound(PGAContext *ctx, double x)
void PGARun(PGAContext *ctx, double(*evaluate)(PGAContext *c, int p, int pop, double *aux))
void PGARunGM(PGAContext *ctx, double(*f)(PGAContext *, int, int), MPI Comm comm)
void PGARunMutationAndCrossover(PGAContext *ctx, int oldpop, int newpop)
void PGARunMutationOnly(PGAContext *ctx, int oldpop, int newpop)
void PGARunMutationOrCrossover(PGAContext *ctx, int oldpop, int newpop)
void PGASelect(PGAContext *ctx, int popix)
int PGASelectNextIndex(PGAContext *ctx, int pop)
void PGASendIndividual(PGAContext *ctx, int p, int pop, int dest, int tag, MPI Comm comm)
void PGASendReceiveIndividual(PGAContext *ctx, int send p,

int send pop, int dest, int send tag, int recv p, int recv pop,
int source, int recv tag, MPI Comm comm, MPI Status *status)

void PGASetBinaryAllele(PGAContext *ctx, int p, int pop, int i, int val)
void PGASetBinaryInitProb(PGAContext *ctx, double probability)
void PGASetCharacterAllele(PGAContext *ctx, int p, int pop, int i, char value)
void PGASetCharacterInitType(PGAContext *ctx, int value)
void PGASetCommunicator(PGAContext *ctx, MPI Comm comm)
void PGASetCrossoverProb(PGAContext *ctx, double crossover prob)
void PGASetCrossoverType(PGAContext *ctx, int crossover type)
void PGASetDebugLevel(PGAContext *ctx, int level)
void PGASetDebugLevelByName(PGAContext *ctx, char *funcname)
void PGASetEvaluation(PGAContext *ctx, int p, int pop, double val)
void PGASetEvaluationUpToDateFlag(PGAContext *ctx, int p, int pop, int status)
void PGASetFitnessCmaxValue(PGAContext *ctx, double val)
void PGASetFitnessMinType(PGAContext *ctx, int fitness type)
void PGASetFitnessType(PGAContext *ctx, int fitness type)
void PGASetIntegerAllele(PGAContext *ctx, int p, int pop, int i, int value)
void PGASetIntegerInitPermute(PGAContext *ctx, int min, int max)
void PGASetIntegerInitRange(PGAContext *ctx, int *min, int *max)
void PGASetMaxFitnessRank(PGAContext *ctx, double fitness rank max)
void PGASetMaxGAIterValue(PGAContext *ctx, int maxiter)
void PGASetMaxNoChangeValue(PGAContext *ctx, int max no change)
void PGASetMaxSimilarityValue(PGAContext *ctx, int max similarity)

66

Type Function

void PGASetMixingType(PGAContext *ctx, int type)
void PGASetMutationBoundedFlag(PGAContext *ctx, int val)
void PGASetMutationIntegerValue(PGAContext *ctx, int val)
void PGASetMutationProb(PGAContext *ctx, double mutation prob)
void PGASetMutationRealValue(PGAContext *ctx, double val)
void PGASetMutationType(PGAContext *ctx, int mutation type)
void PGASetNoDuplicatesFlag(PGAContext *ctx, int no dup)
void PGASetNumReplaceValue(PGAContext *ctx, int pop replace)
void PGASetPTournamentProb(PGAContext *ctx, double ptournament prob)
void PGASetPopReplaceType(PGAContext *ctx, int pop replace)
void PGASetPopSize(PGAContext *ctx, int popsize)
void PGASetPrintFrequencyValue(PGAContext *ctx, int print freq)
void PGASetPrintOptions(PGAContext *ctx, int option)
void PGASetRandomInitFlag(PGAContext *ctx, int RandomBoolean)
void PGASetRandomizeSelect(PGAContext *ctx, int value)
void PGASetRandomSeed(PGAContext *ctx, int seed)
void PGASetRealAllele(PGAContext *ctx, int p, int pop, int i, double value)
void PGASetRealInitPercent(PGAContext *ctx, double *median, double *percent)
void PGASetRealInitRange(PGAContext *ctx, double *min, double *max)
void PGASetRestartAlleleChangeProb(PGAContext *ctx, double prob)
void PGASetRestartFlag(PGAContext *ctx, int val)
void PGASetRestartFrequencyValue(PGAContext *ctx, int numiter)
void PGASetRTRWindowSize(PGAContext *ctx, int size)
void PGASetSelectType(PGAContext *ctx, int select type)
void PGASetStoppingRuleType(PGAContext *ctx, int stoprule)
void PGASetTournamentSize(PGAContext *ctx, int size)
void PGASetTournamentWithReplacement(PGAContext *ctx, int v)
void PGASetTruncationProportion(PGAContext *ctx, double prop)
void PGASetUniformCrossoverProb(PGAContext *ctx, double uniform cross prob)
void PGASetUp(PGAContext *ctx)
void PGASetUserFunction(PGAContext *ctx, int constant, void *f)
void PGASortPop(PGAContext *ctx, int pop)
double PGAStddev(PGAContext *ctx, double *a, int n, double mean)
void PGAUpdateGeneration(PGAContext *ctx, MPI Comm comm)
void PGAUsage(PGAContext *ctx)

Fortran 77 Bindings

Use the rules defined in Chapter 10 (and the machine-specific idiosyncrasies noted in Appendix D) to
determine the Fortran bindings.

67

Appendix C

Parallelism Background

Parallel Computer Taxonomy

Traditionally, parallel computers are classified according to Flynn’s taxonomy [12]. Flynn’s classification
distinguishes parallel computers according to the number of instruction streams and data operands being
computed on simultaneously.

Flynn’s single-instruction single-data (SISD) model is the traditional sequential computer. A single
program counter fetches instructions from memory. The instructions are executed on scalar operands. There
is no parallelism in this model.

In the single-instruction multiple-data (SIMD) model there is again a single program counter fetching
instructions from memory. However, now the operands of the instructions can be one of two types: either
scalar or array. If the instruction calls for execution involving only scalar operands, it is executed by the
control processor (i.e., the central processing unit fetching instructions from memory). If, on the other hand,
the instruction calls for execution using array operands, it is broadcast to the array of processing elements.
The processing elements are separate computing devices that rely upon the control processor to determine
the instructions they will execute.

In a multiple-instruction multiple-data (MIMD) computer there exist multiple processors each of which
has its own program counter. Processors execute independently of each other according to whatever in-
struction the program counter points to next. MIMD computers are usually further subdivided according to
whether the processors share memory or each has its own memory.

In a shared-memory MIMD computer both the program’s instructions and the part of the program’s data
to be shared exist within a single shared memory. Additionally, some data may be private to a processor
and not be globally accessible by other processors. The processors execute asynchronously of each other.
Communication and synchronization between the processors are handled by having them each read or write
a shared-memory location.

A distributed-memory MIMD computer consists of multiple “nodes.” A node consists of a processor, its
own memory, a network interface, and sometimes a local disk. The program instructions and data reside in
the node’s memory. The nodes are connected via some type of network that allows them to communicate
with each other. Parallelism is achieved by having each processor compute simultaneously on the data in its
own memory. Communication and synchronization are handled by passing of messages (a destination node
address and the local data to be sent) over the interconnection network.

Processes vs. Processors

We distinguish the two terms process and processor. A process is a software abstraction with a unique address
space that can be scheduled by the operating system. A processor is the physical computer hardware on
which computations take place.

On MIMD parallel computers, usually one process executes on each processor (although this is not
required). On a uniprocessor, multiple processes timeshare the single processor.

68

Message-Passing Programming Model

In the message-passing programming model multiple processes communicate by passing messages—trans-
ferring data from the address space of one process into the address space of another process. When a process
needs data stored in the memory of another process, the data must be sent from the process that “owns” it,
to the memory of the process that needs it.

The message-passing programming model is currently one of the most popular. One reason for the
popularity is portability. Message passing is the natural programming model on distributed-memory MIMD
computers. Each process is naturally mapped to one of the machine’s nodes. A similar implementation
is common on a workstation network where one process runs on each workstation. On a shared-memory
MIMD computer multiple processes can emulate message passing by communicating only via logical message
queues—areas of shared memory partitioned by process. On a uniprocessor the multiple processes that
timeshare the physical processor can also emulate the idea of logical message queues for their communication.

One example of the message-passing programming model is the master/slave model. In this model a
master process distributed work (computation to be performed) to the slave processes. The slaves perform
the work and return the result to the master. In many implementations the master plays a bookkeeping role
only and does not perform any computation.

Parallel Genetic Algorithms

When using the term “parallel genetic algorithm” it is important to distinguish between parallel models,
their (parallel or sequential) implementation, and the computer hardware.

Models

A sequential GA model (more accurately called a global model) has a single population and no restrictions
(partitioning) upon which strings recombine with which. The sequential GA is the traditional GA model
given in the literature. In a parallel GA model there are either multiple populations (an island model) or a
partitioning of a single population (often called a fine-grained model).

Implementations

Both parallel and sequential GA models can have parallel or sequential implementations. A sequential
implementation of the global model is the traditional approach discussed in the GA literature. One process,
running on a uniprocessor (PCs and workstations), performs all the calculations. In a parallel implementation
of the global model the steps of the GA (some or all of selection, crossover, mutation, and fitness calculation)
are executed simultaneously by multiple processes running on a parallel computer or workstation network.

In a sequential implementation of a parallel GA model, multiple processes, each responsible for a subpop-
ulation or partition of the full population, time share the processor of the uniprocessor they are running on.
In a parallel implementation of a parallel GA model, the multiple processes each run on a unique processor
of a parallel computer or workstation network.

MPI

MPI (Message Passing Interface) is a specification of a message-passing library for parallel computers and
workstation networks—it defines a set of functions and their behavior. The actual implementation of this
interface is left up to vendors and researchers to develop. At the time of this writing several implementations
of MPI, both proprietary and freely available, exist. MPI was designed by a large group of parallel computer
vendors, computer researchers, and application developers as a standard for message passing.

69

Communicators

Almost all MPI functions require a communicator. If MPI routines are called directly, the user must supply
a communicator. Also, if any of PGAPack’s parallel routines, other than PGARun, are used, the user must
supply a communicator as well.

A communicator combines the notions of context and group. A context is an extension of the notion of a
“tag” used in many other message-passing systems to identify a message. Contexts differ from tags in that
they are allocated by the system, not the user, and that no wild-card matching among contexts is allowed.
A group contains n processes whose rank is an integer between 0, . . . , n− 1. Processes may belong to more
than one group and have a unique rank within each.

Any MPI implementation will always supply the default communicator MPI COMM WORLD. This communi-
cator contains all processes that were created when MPI was initialized. For most users this is all they have
to know about communicators. Simply supply MPI COMM WORLD whenever a communicator is required as an
argument. For more sophisticated use, users are referred to [13, 15].

Parallel I/O

The issue of parallel I/O is independent of PGAPack. However, since we assume many PGAPack users
will wish to do I/O we address this topic. A primary consideration has to do with whether one or all
processors do I/O. Consider the following two code fragments, keeping in mind that they are being executed
simultaneously by multiple processes:

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 30, PGA_MINIMIZE)

and

int len;

scanf("%d",&len);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MINIMIZE);

In the first case, all processes will receive the value of 30 for the string length since it is a constant. In
the second case, however, the value of the string length is determined at run time. Whether one or all
processes execute the scanf function is undefined in MPI and depends on the particular parallel computing
environment. In PGAPack we require that all processes have the same values for all fields in the context
variable. Since some of these fields may be set by using values specified at run time, we suggest that your
I/O that reads in PGAPack parameters be done as follows:

#include "pgapack.h"

double evaluate (PGAContext *ctx, int p, int pop, double *aux);

int main(int argc, char **argv)

{

PGAContext *ctx;

int myid, len;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid == 0) { /* Process 0 has a dialog */

printf("String length? "); /* with the user and */

scanf("%d", &len); /* broadcasts the user’s */

}

MPI_Bcast(&len, 1, MPI_INT, 0, MPI_COMM_WORLD);

ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, len, PGA_MAXIMIZE);

PGASetUp(ctx);

PGARun(ctx, evaluate);

PGADestroy(ctx);

70

MPI_Finalize();

return(0);

}

The key point is that only process 0 (as determined by MPI Comm rank) performs I/O and the value of
len is then broadcast (using MPI Bcast) to the other processes.

71

Appendix D

Machine Idiosyncrasies

Data Type Sizes

PGAPack is written entirely in ANSI C. However, because it is callable from Fortran, and no standards exist
for interlanguage communication, problems may arise. These have to do with a lack of consistency in the
size of data types between the two languages.

On all machines we have tested, an integer declaration in Fortran is the same size as an int declaration
in C and everything works properly. For floating-point numbers, however, we have found at least one
inconsistency. The requirement is for the Fortran floating-point number to be the same size as a C double.
On most machines a Fortran double precision declaration is the equivalent size. On the Cray T3D,
however, by default, the Fortran data type double precision is not supported and must be handled as
described below.

Since Fortran does not support pointers, an integer variable is used to hold the address of the context
variable (and possibly MPI communicator addresses as well). Therefore, a Fortran integer must be “large
enough” to hold an address on the machine. For all 32-bit address space machines we have tested this is
the case. On machines with a 64-bit address space, however, this may not be true. In particular, the size
of a Fortran integer on the Silicon Graphics Power Challenge and DEC Alpha (but not the Cray T3D) is
32-bits and is not large enough to hold a machine address. The solution on these machines is to use the
(nonstandard, but supported) Fortran declaration integer*8 for the context variable.

Startup

The MPI standard provides for source code portability. However, the MPI standard does not specify how
an MPI program shall be started or how the number of processes in the computation is specified. These
will vary according to the computer being used and the choice of MPI implementation. The notes below are
from our experiences testing PGAPack on different machines.

Silicon Graphics Challenge

The Silicon Graphics Challenge is a 32-bit symmetric multiprocessor. We used MPICH with the ch shmem

device and the ncc C compiler. Several warnings were received

warning(3262): parameter "ctx" declared and never referenced

warning(3141): cast between pointer-to-object and pointer-to-function

but the library was successfully built. To run a parallel PGAPack program, use either

a.out -np nprocs

or MPICH’s mpirun command.

72

Silicon Graphics Power Challenge

The Silicon Graphics Power Challenge is similar to the Challenge, except that it has a 64-bit address space.
On this machine the size of an integer (int in C and integer in Fortran) is not the same as the size of an
address. Fortran users should use the declaration integer*8 for the context variable (and integer for other
Fortran integer declarations). See also Chapter 10.

We used MPICH with the ch p4 device and the the MIPSpro C compiler (cc). We found a bug in pca,
the Power C Analyzer, and recommend not using it for now. (To do this do not specify the -pca switch to
cc). To run a parallel PGAPack program, use

a.out -np nprocs

or MPICH’s mpirun command.

Cray T3D

The Cray T3D has a 64-bit address space. However, the size of an integer on the T3D is the same as the
size of an address, and therefore no special considerations are needed for declaring the context variable in
Fortran.

On the T3D a C double is 64 bits. The Fortran double precision data type, however, is not supported
(by default). One workaround is to declare all floating-point numbers REAL, as these are 64 bits on the T3D.
The other workaround is to use the compiler switch “-dp”.

To compile for a Cray T3D, cross compilation is done on a front-end machine (a Cray C90 in our case).
Set Cray’s TARGET environment variable so the compiler, linker, etc., will know which architecture to compile
for.

setenv TARGET cray-t3d

An alternative is to use “-T cray-t3d” with cc and “-C cray-t3d” with cf77. Another alternative is to
explicitly use the cross compilers (/mpp/bin/cc and /mpp/bin/cf77) and linker (/mpp/bin/mppldr).

We used the MPI in /usr/local/mpp/lib/libmpi.a. Adding -lmpi in your link step may also find the
MPI library. If a successful T3D executable was built, the command “file a.out” should say “MPP absolute.”

To run a parallel PGAPack program, use

a.out -npes nprocs

where nprocs is a power of two.

Intel Paragon

We used MPICH with the ch nx device and compiled with cc -nx. To run a parallel PGAPack program, use

a.out -sz nprocs

or MPICH’s mpirun command.

IBM SP2

We tested the IBM SP2 using both MPICH with the ch eui device, and IBM’s research MPI, MPI-F. We
compiled PGAPack with xlc and linked with mpCC. Execution required setting a number of environment
variables. We were successful with the following, but this may vary with the system software installed on
the SP you are using.

setenv MP_HOSTFILE /sphome/hostfile

setenv MP_PROCS np

setenv MP_EUILIB us

setenv MP_INFOLEVEL 0

setenv MP_HOLD_STDIN YES

setenv MP_PULSE 0

a.out

73

Convex Exemplar

We used MPICH with the ch shmem device. Be sure to compile (the Fortran examples) with fort77, not f77.
Also, you must link with /usr/lib/libU77.a last to satisfy iargc and getarg. This must be done manually
in the prototype makefiles ./examples/fortran/Makefile.in and ./examples/mgh/Makefile.in before
running configure. To run a parallel PGAPack program using MPICH use the mpirun command.

Sun SparcStation

We used MPICH with the ch p4 device and the GNU C compiler gcc. The instverf test program was run
using 4 processes with:

/usr/local/mpi/bin/mpirun instverf -arch sun4 -np 4

Silicon Graphics Workstation

We used MPICH with the ch p4 device and mpirun command, the cc C compiler, and f77 Fortran compiler.

IBM/RS6000 Workstation

We have successfully run PGAPack on both single workstations and networks of workstations using the
MPICH implementation with the ch p4 device.

Hewlett Packard Workstation

We used MPICH with the ch shmem device and mpirun command, the gcc C compiler, and fort77 Fortran
compiler.

DEC Alpha Workstation

DEC Alpha workstations have a 64-bit address space. On this machine the size of an integer (int in C
and integer in Fortran) is not the same as the size of an address. Fortran users should use the declaration
integer*8 for the context variable (and integer for other Fortran integer declarations). See also Chapter 10.

74

Appendix E

Common Problems

• When reading input value to be used as parameters in PGASet calls, the PGAset calls themselves may
not be executed until after PGACreate has been called.

• In C, when reading input parameters which are of type double, the scanf conversion specification
should be of the form %lf, not %f which is appropriate for floats.

• An infinite loop can occur if the number of permutations of the bit string is less than the population
size. For example, for a binary-valued string of length four, there are 24 = 16 possibilities. If the
population size is greater than 16, and duplicate strings are not allowed in the population, an infinite
loop will occur.

• Erroneous results can occur if the name of a user’s function conflicts with a library function used by
PGAPack. For example, if a program defined its own ceil function, this would conflict with the C
math library function of the same name.

• All floating point constants and variables used in PGAPack are of type double. Particularly from
Fortran, the user should be careful to make sure that they pass a double precision constant or
variable.

• PGACreate removes command line arguments. One consequence is that if PGACreate is called twice in
the same program (unusual, but legal), the second PGACreate call will not receive the command-line
arguments.

• If one includes mpi.h (or mpif.h) when it should not be, errors will result, as well as warnings about
redefining macros and typedefs. This usually happens when a sequential version of PGAPack is used
(with “fake” MPI stub routines and definitions) and the user’s program explicitly includes “real” mpi.h
or mpif.h header files.

• If one fails to include mpi.h (or mpif.h) when it should be (such as calling MPI functions directly)
errors may result. Since pgapack.h includes mpi.h this should not happen in C. The Fortran include
file, pgapackf.h, however, does not include mpif.h. The user must explicitly include it in every
subroutine and function that makes MPI calls. Not including mpif.h could result in any of several
different errors, including

– syntax errors when compiling (for example, MPI COMM WORLD being undefined)

– general errors in the computed results

– the program crashing when it calls the undefined subroutine MPI Init

– general MPI errors such as:

0 - Error in MPI_COMM_RANK : Invalid communicator

[0] Aborting program!

75

We have also seen the following error from not including bmpif.h in the main program:

PGACreate: Invalid value of datatype: 0

PGAError: Fatal

• If the ch p4 device in MPICH is used to run on workstations one must have a correct processor group
file (procgroup). The error message

(ptera-36%)a.out

p0_18429: p4_error: open error on procgroup file (procgroup): 0

(ptera-37%)

may occur if the processor group file is not specified correctly. See the MPICH users guide for more
details.

• A common error with the procgroup file when using the ch p4 device in MPICH is to have an incorrect
path to the executable.

• When compiling the examples directory we have seen “multiply defined” error messages. For example:

Making C examples

Compiling classic

ld: /usr/local/mpi/lib/sun4/ch_p4/libmpi.a(initialize.o): _MPI_Initialized: multiply defined

collect2: ld returned 2 exit status

We have seen this error occur when a sequential version of PGAPack was built and the library
(./lib/arch/libpgag.a or ./lib/arch/libpgaO.a) was not deleted before attempting to build a
new, parallel version of PGAPack. The “fake” MPI stub routines are in the sequential library and
have name conflicts when a “real” MPI library is referenced. The solution is to delete the old .a file
and rerun make install.

76

Bibliography

[1] J. Baker. Reducing bias and inefficiency in the selection algorithm. In J. Grefenstette, editor, Proceedings
of the Second International Conference on Genetic Algorithms and Their Applications, pages 14–21,
Hillsdale, New Jersey, 1987. Lawrence Erlbaum Associates.

[2] Julian Blank, Kalyanmoy Deb, and Proteek Chandan Roy. Investigating the normalization procedure
of NSGA-III. In Kalyanmoy Deb, Erik Goodman, Carlos A. Coello Coello, Kathrin Klamroth, Kaisa
Miettinen, Sanaz Mostaghim, and Patrick Reed, editors, Evolutionary Multi-Criterion Optimization,
10th International Conference (EMO), volume 11411 of Lecture Notes in Computer Science, pages 229–
240. Springer, East Lansing, MI, USA, March 2019.

[3] Indraneel Das and J. E. Dennis. Normal-boundary intersection: A new method for generating the pareto
surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3):631–657,
August 1998.

[4] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[5] Kalyanmoy Deb. An efficient constraint handling method for genetic algorithms. Computer Methods in
Applied Mechanics and Engineering, 186(2–4):311–338, June 2000.

[6] Kalyanmoy Deb and Ram Bushan Agrawal. Simulated binary crossover for continuous search space.
Complex Systems, 9(2):115–148, 1995.

[7] Kalyanmoy Deb and Debayan Deb. Analysing mutation schemes for real-parameter genetic algorithms.
International Journal of Artificial Intelligence and Soft Computing, 4(1):1–28, February 2014.

[8] Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search (GeneAS) for engineering
design. Computer Science and Informatics, 26(4):30–45, 1996.

[9] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems with box constraints.
IEEE Transactions on Evolutionary Computation, 18(4):577–601, August 2014.

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, April
2002.

[11] Vladimir Filipović, Jozef Kratica, Dušan Tošić, and Ivana Ljubić. Fine grained tournament selection
for the simple plant location problem. In 5th Online World Conference on Soft Computing Methods in
Industrial Applications, pages 152–158. January 2000.

[12] M. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Computers,
21:948–960, 1972.

[13] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journal
of Supercomputing Applications, 8(3/4), 1994.

[14] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems, 3(5):493–530, 1989.

77

[15] W. Gropp, E. Lusk, and A. Skjellum. USING MPI Portable Parallel Programming with the Message-
Passing Interface. The MIT Press, Cambrigde, 1994.

[16] Georges Harik. Finding multiple solutions in problems of bounded difficulty. IlliGAL Report 94002,
Illinois Genetic Algorithm Lab, May 1994.

[17] Georges R. Harik. Finding multimodal solutions using restricted tournament selection. In Larry J.
Eshelman, editor, Proceedings of the International Conference on Genetic Algorithms (ICGA), pages
24–31. Morgan Kaufmann, July 1995.

[18] Georges R. Harik and David E. Goldberg. Learning linkage. In Richard K. Belew and Michael D. Vose,
editors, Foundations of Genetic Algorithms (FOGA) 4, pages 247–262, San Diego, CA, August 1996.
Morgan Kaufmann.

[19] J. Holland. Adaption in Natural and Artificial Systems. MIT Press, Cambrigde, 1992.

[20] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part II: Handling constraints and extending to
an adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4):602–622, August 2014.

[21] Martin Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolu-
tionary Algorithms, volume 170 of Studies in Fuzziness and Soft Computing. Springer, 2005.

[22] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer, Berlin, Heidelberg, 2005.

[23] Ralf Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of bench-
mark functions. a survey of some theoretical and practical aspects of genetic algorithms. Biosystems,
39(3):263–278, 1996.

[24] Artem Sokolov and Darrell Whitley. Unbiased tournament selection. In Hans-Georg Beyer, editor,
Genetic and Evolutionary Computation GECCO 2005), page 1131–1138, Washington DC, June 2005.
ACM.

[25] W. Spears and K. DeJong. On the virtues of parameterized uniform crossover. In R. Belew and
L. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages
230–236, San Mateo, 1991. Morgan Kaufmann.

[26] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report TR-95-012, International Computer Science
Institute (ICSI), March 1995.

[27] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Global Optimization, 11(4):341–359, December 1997.

[28] G. Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 2–9, San Mateo, 1989. Morgan Kaufmann.

[29] Tetsuyuki Takahama and Setsuko Sakai. Constrained optimization by the ǫ constrained differential
evolution with gradient-based mutation and feasible elites. In IEEE International Conference on Evo-
lutionary Computation (CEC). Vancouver, BC, Canada, July 2006.

[30] Tetsuyuki Takahama and Setsuko Sakai. Constrained optimization by the ǫ constrained differential
evolution with an archive and gradient-based mutation. In IEEE Congress on Evolutionary Computation
(CEC), Barcelona, Spain, July 2010.

[31] Ryoji Tanabe and Alex Fukunaga. Reevaluating exponential crossover in differential evolution. In
Thomas Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and Jim Smith, editors, Parallel Problem
Solving from Nature – PPSN XIII, volume 8672 of Lecture Notes in Computer Science, pages 201–210.
Springer, Ljubljana, Slovenia, September 2014.

78

[32] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproduc-
tive trials is best. In J. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 116–121, San Mateo, 1989. Morgan Kaufmann.

[33] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Rocky Mountain Conference
on Artificial Intelligence, pages 118–130, Denver, 1988.

[34] Darrel Whitley, Timothy Starkweather, and Daniel Shaner. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In Lawrence Davis, editor, Handbook
of Genetic Algorithms, chapter 22, pages 350–372. Van Nostrand Reinhold, 1991.

79

