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Estimation of probability densities using scale-free field theories
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The question of how best to estimate a continuous probability density from finite data is an intriguing open
problem at the interface of statistics and physics. Previous work has argued that this problem can be addressed
in a natural way using methods from statistical field theory. Here I describe results that allow this field-theoretic
approach to be rapidly and deterministically computed in low dimensions, making it practical for use in day-to-day
data analysis. Importantly, this approach does not impose a privileged length scale for smoothness of the inferred
probability density, but rather learns a natural length scale from the data due to the tradeoff between goodness of
fit and an Occam factor. Open source software implementing this method in one and two dimensions is provided.
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Suppose we are given N data points, x1,x2, . . . ,xN , each
of which is a D-dimensional vector drawn from a smooth
probability density Qtrue(x). How might we estimate Qtrue
from these data? This classic statistics problem is known as
“density estimation” [1] and is routinely encountered in nearly
all fields of science. Ideally, one would first specify a Bayesian
prior p(Q) that weights each density Q(x) according to some
sensible measure of smoothness. One would then compute a
Bayesian posterior p(Q|data) identifying which densities are
most consistent with both the data and the prior. However, a
practical implementation of this straightforward approach has
yet to be developed, even in low dimensions.

This Rapid Communication discusses one such strategy,
the main theoretical aspects of which were worked out by
Bialek et al. [2]. One first assumes a specific smoothness length
scale ℓ. A prior p(Q|ℓ) that strongly penalizes fluctuations in
Q below this length scale is then formulated in terms of a
scalar field theory. The maximum a posteriori (MAP) density
Qℓ, which maximizes p(Q|ℓ,data) and serves as an estimate
of Qtrue, is then computed as the solution to a nonlinear
differential equation. This approach has been implemented
and further elaborated by others [3–10]; a connection to prior
statistics literature on “penalized likelihood” should also be
noted [1].

The question of how to choose ℓ remains. Bialek et al.
argued on theoretical grounds that the data themselves will
typically select a natural value for this smoothness length
scale due to the competing influences of goodness of fit and an
Occam factor [11]. Specifically, if one adopts a “scale-free”
prior p(Q), defined as a linear combination of scale-dependent
priors p(Q|ℓ), then the posterior distribution over length
scales p(ℓ|data) will become sharply peaked in the large data
limit. This important insight was confirmed computationally
by Nemenman and Bialek [3] and provides a compelling
alternative to cross validation, the standard method of selecting
length scales in statistical smoothing problems [1].
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However, computing p(ℓ|data) requires first computing
Qℓ at every relevant length scale, i.e., solving an infinite
compendium of nonlinear differential equations. Nemenman
and Bialek [3] approached this problem by independently
computing Qℓ at a series of length scales chosen by a
standard optimization routine. Although this method yielded
important results, it also has significant limitations. First,
there is no guarantee that this strategy will find the globally
optimum length scale. Second, this approach was observed to
be very computationally demanding and no implementation
has since been developed for general use. Indeed, even simple
performance comparisons to more standard density estimation
methods have yet to be reported.

Here I describe a rapid and deterministic homotopy method
for computing Qℓ to a specified accuracy at all relevant
length scales. This makes low-dimensional density estimation
using scale-free field-theoretic priors practical for use in
day-to-day data analysis. The open source “density estimation
using field theory” (DEFT) software package [12] provides a
Python implementation of this algorithm for one-dimensional
(1D) and two-dimensional (2D) problems. Simulation tests
show favorable performance relative to standard Gaussian
mixture model (GMM) and kernel density estimation (KDE)
approaches [1].

Following Refs. [2,3] we begin by defining p(Q) as a linear
combination of scale-dependent priors p(Q|ℓ),

p(Q) =
∫ ∞

0
dℓ p(Q|ℓ) p(ℓ). (1)

Adopting the Jeffreys prior p(ℓ) ∼ ℓ−1 renders p(Q) covariant
under a rescaling of x [11]. Our ultimate goal will be to
compute the resulting posterior,

p(Q|data) =
∫ ∞

0
dℓ p(Q|ℓ,data)p(ℓ|data). (2)

As in Ref. [3], we limit our attention to a D-dimensional
cube having volume V = LD . We further assume periodic
boundary conditions on Q, and impose GD grid points (G in
each dimension) at which Q will be computed.

To guarantee that each density is positive and normalized,
we define Q in terms of a real scalar field φ via

Q(x) = e−φ(x)
∫

dDx ′ e−φ(x ′)
. (3)
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Each Q corresponds to multiple different φ, but there is a one-
to-one correspondence with fields φnc that have no constant
Fourier component. Using this fact, we adopt the standard
path integral measure Dφnc as the measure on Q space. We
also define the prior p(Q|ℓ) in terms of a field theory on φnc,

p(Q|ℓ) = 1
Z0

ℓ

exp
[

−
∫

dDx
ℓ2α−D

2
φnc$φnc

]
, (4)

where α is a positive integer and $ = (−∇2)α is a differential
operator that formalizes our notion of “smoothness.” Z0

ℓ is
the corresponding normalization factor. This prior effectively
constrains the α-order derivatives of φnc, strongly dampening
Fourier modes that have wavelength much less than ℓ.

Applying Bayes’s rule to this prior yields the following
exact expression for the posterior [13],

p(Q|ℓ,data) = 1
ZN

ℓ

∫ ∞

−∞
dφc e−Sℓ[φ], (5)

where

Sℓ[φ] =
∫

dDx

[
ℓ2α−D

2
φ$φ + NRφ + N

V
e−φ

]
(6)

is an “action” that constrains the field φ, R(x) =
N−1 ∑N

n=1 δ(x − xn) is the raw data density, φ(x) = φnc(x) +
φc, and ZN

ℓ = Z0
ℓ &(N )(V/N )Np(data|ℓ).

The action Sℓ was described by Ref. [2] and explored in
later work [3,8–10]. It also corresponds to one form of log
penalized likelihood discussed in earlier statistics literature
[1]. Note, however, that Ref. [2] used Q(x) = const × e−φ(x)

in place of Eq. (3) and explicitly enforced normalization in
their prior p(Q|ℓ). Equation (6) was then derived using a large
N saddle point approximation. By contrast, Eqs. (5) and (6)
are exact under the formulation presented here.

The MAP density Qℓ corresponds to the field φℓ that
minimizes the action in Eq. (6). To find this minimum we
set δSℓ/δφ = 0, which gives a nonlinear differential equation
for φℓ,

ℓ2α−D$φℓ + N

[
R − e−φℓ

V

]
= 0. (7)

The central finding of this Rapid Communication is that,
instead of independently solving Eq. (7) at various length
scales ℓ, we can compute φℓ to a specified accuracy at all length
scales of interest by using a homotopy method [14]. First we
define t = ln(N/ℓ2α−D), a convenient reparametrization of ℓ.
Next we differentiate Eq. (7) with respect to t , obtaining

[e−t$ + Qℓ]
dφℓ

dt
= Qℓ − R, (8)

where Qℓ(x) = e−φℓ(x)/V is the probability density corre-
sponding to φℓ. If φℓ is known at any specific length scale
ℓi , we can compute it at any other length scale ℓf —and at
all length scales in between—by integrating Eq. (8) from
ℓi to ℓf . Because Sℓ[φ] is a strictly convex function of φ,
each φℓ so identified will be the unique minimum. Moreover,
because Eq. (6) is exact, each corresponding Qℓ will fit the
data optimally even when N is small. And since the matrix
representation of e−t$ + Qℓ is sparse, dφℓ/dt can be rapidly

computed at each successive value of t using standard sparse
matrix methods.

To identify a length scale ℓi from which to initiate the
integration of Eq. (8), we look to the large length scale limit
where a weak field approximation can be used to compute
φℓi

. Linearizing Eq. (7) and solving for φℓ gives, for |k| > 0,
φ̂ℓ(k) = − V R̂(k)

1+exp[τk−t] , where hats denote Fourier transforms,
k ∈ ZD indexes the Fourier modes of the volume V , and
each τk = ln[(2π |k|)2αLD−2α] is a log eigenvalue of V $.
To guarantee that none of the Fourier modes of φℓi

are
saturated, ℓi should correspond to a value ti that is sufficiently
less than min|k|>0 τk . This implies ℓi ≫ N

1
2α−D L. Similarly,

we terminate the integration of Eq. (8) at a length scale
ℓf above which Nyquist modes saturate. This yields the
criterion ℓf ≪ n

1
2α−D h, where h = L/G is the grid spacing

and n = N/GD is the number of data points per voxel.
Having computed φℓ at every relevant length scale, a

semiclassical approximation yields

p(ℓ|data) = const × p(ℓ)
e−Sℓ[φℓ]

√
ℓ2α−D det[$ + etQℓ]

. (9)

The ratio in Eq. (9) is equal to the MAP density likelihood
times an Occam factor. This likelihood quantifies goodness
of fit and steadily increases as ℓ gets smaller. The Occam
factor, by contrast, decreases as ℓ gets smaller due to
the decreasing fraction of model space consistent with the
data [11]. As discussed by Refs. [2,3], this tradeoff causes
p(ℓ|data) to peak at a nontrivial data-determined length
scale ℓ∗.

The length scale prior p(ℓ) must decay faster than ℓ−1 in the
infrared in order for p(ℓ|data) to be normalizable. The need
for such regularization reflects a redundancy among the priors
p(Q|ℓ) at large ℓ that results from the volume V supporting
a limited number of long wavelength Fourier modes. Similar
concerns hold in the ultraviolet due to our use of a grid. We
therefore set p(ℓ) = 0 for ℓ > ℓi and for ℓ < ℓf .

Our best estimate of Qtrue is given by the MAP density Q∗

corresponding to the length scale ℓ∗ that maximizes p(ℓ|data).
Uncertainties in this estimate can be computed by sampling
Q ∼ p(Q|data). We do this by first sampling ℓ ∼ p(ℓ|data),
then selecting Q according to a semiclassical approximation
of p(Q|ℓ,data) by choosing

φ(x) = φℓ(x) +
GD∑

j=1

ηj√
ℓ2α−Dλℓ

j

ψℓ
j (x), (10)

where each ψℓ
j is a normalized eigenfunction of the operator

$ + etQℓ, λℓ
j is the corresponding eigenvalue, and each ηj

is an independent normally distributed random variable. If
p(ℓ|data) is strongly peaked, all ψℓ

j and λℓ
j can be evaluated at

ℓ = ℓ∗ to reduce the computational burden.
Figure 1 illustrates the key steps of the DEFT algorithm.

First, the user specifies a data set {xn}Nn=1, a bounding box
for the data, and the number of grid points to be used. A
histogram of the data is then computed using bins that are
centered on each grid point [Fig. 1(a)]. Next, length scales ℓi

and ℓf are chosen. Equation (8) is then integrated to yield φℓ at
a set of length scales between ℓi and ℓf chosen automatically
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FIG. 1. (Color) Illustration of DEFT in 1D. (a) An example density
Qtrue(x) (black) along with a normalized histogram (gray, 100 bins) of
N = 100 sampled data points. (b) Heat map showing all of the MAP
densities Qℓ(x) computed at G = 100 grid points using the data from
(a) and the parameter α = 2; lighter shading corresponds to higher
probability. (c) Posterior probability for each length scale shown in
(b); the y axis is shifted so that ln p(ℓ∗|data) = 0. (d) The estimated
density Q∗(x) (blue) along with 20 densities (orange) sampled from
p(Q|data) using Eq. (10); corresponding length scales are shown
in (c).

by a standard ordinary differential equation (ODE) solver to
achieve the desired accuracy. Equation (9) is then used to
compute p(ℓ|data) at each of these length scales, after which
ℓ∗ is identified. Finally, a specified number of densities are
sampled from p(Q|data) using Eq. (10).

DEFT is not completely scale free because both the box
size L and grid spacing h are prespecified by the user. In
practice, however, Q∗ appears to be very insensitive to the
specific values of L and h as long as the data lie well within
the bounding box and the grid spacing is much smaller than
the inherent features of Qtrue; see Figs. 2(a) and 2(b).

It is interesting to consider how the choice of α affects
Q∗. As Bialek et al. have discussed [2], this field-theoretic
approach produces ultraviolet divergences in φℓ when α <
D/2. Above this threshold, increasing α typically increases
the smoothness of Q∗, although not necessarily by much [see
Fig. 2(c)]. However, larger values of α may necessitate more
data before the principal Fourier modes of Qtrue appear in
Q∗. Increasing α also reduces the sparseness of the $ matrix,
thereby increasing the computational cost of the homotopy
method.
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FIG. 2. (Color) Robustness of DEFT to changes in runtime param-
eters. Q∗(x) was computed using the data from Fig. 1 and various
choices for (a) the length L of the bounding box, (b) the grid spacing
h, and (c) the order α of the derivative constrained by the field theory
prior. L = 10 corresponds to the bounding box shown, and h = 0.1
is the grid spacing used for the histogram (gray). Qtrue(x) is shown in
black.

To assess how well DEFT performs in comparison to
more standard density estimation methods, a large number
of data sets were simulated, after which the accuracy of Q∗

produced by various estimators was computed. Specifically,
the “closeness” of Qtrue to each estimate Q∗ was quantified
using the natural geodesic distance [15],

Dgeo(Qtrue,Q
∗) = 2 cos−1

[ ∫
dDx

√
QtrueQ∗

]
. (11)

As shown in Fig. 3, DEFT performed substantially better when
α = 2 or 3 than when α = 1. This likely reflects the smooth-
ness of the simulated Qtrue densities. DEFT outperformed the
KDE method tested here and, for α = 2 and 3, performed
as well or better than GMM. This latter observation suggests
nearly optimal performance by DEFT, since each simulated
Qtrue was indeed a mixture of Gaussians.

In two dimensions, DEFT shows a remarkable ability to
discern structure from a limited amount of data (Fig. 4). As in
1D, larger values of α give a smoother estimate Q∗. However,
DEFT requires substantially more computational power in 2D
than in 1D due to the increase in the number of grid points
and the decreased sparsity of the $ matrix. For instance, the
computation shown in Fig. 1 took about 0.3 s, while the DEFT
computations in Fig. 4 took about 1–3 s each [16].

Field-theoretic density estimation faces two significant
challenges in higher dimensions. First, the computational
approach described here is impractical for D ! 3 due to the
enormous number of grid points that would be needed. It
should be noted, however, that the 1D field theory discussed
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FIG. 3. (Color) Comparison of 1D density estimation methods.
One hundred different densities Qtrue(x) were generated, each as the
sum of five random Gaussians. Data sets of various size N were then
drawn from each Qtrue, after which estimates Q∗ were computed using
DEFT (G = 100, various α), KDE (using Scott’s rule to set kernel
bandwidth), and GMM (using the Bayesian information criterion to
choose the number of components). Accuracy was quantified using
the geodesic distance Dgeo(Qtrue,Q

∗) shown in Eq. (11). Box plots
indicate median, interquartile range, and 5%–95% quantiles.

by Holy [4] allows Qℓ to be computed without using a grid. It
may be possible to extend this approach to higher dimensions.

The “curse of dimensionality” presents a more fundamental
problem. As discussed by Bialek et al. [2], this manifests in the
fact that increasing D requires a proportional increase in α, i.e.,
in one’s basic notion of “smoothness.” This likely indicates a
fundamental problem with high dimensional priors of the form
shown in Eq. (4). Using a different operator $, e.g., one with
reduced rotational symmetry, might provide a way forward.

Qtrue
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30
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0
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00

FIG. 4. Density estimation in 2D. Shown is a simulated density
Qtrue composed of two Gaussians, normalized histograms R for
sampled data sets of various size N , and resulting density estimates
Q∗ computed using DEFT (G = 20), KDE, and GMM. The grayscale
in all plots is calibrated to Qtrue.
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